
/dev/stdpkt: A Service Chaining Architecture with
Pipelined Operating System Instances in a Unix Shell

Motomu Utsumi

The University of Tokyo

Hajime Tazaki

IIJ Research Laboratory

Hiroshi Esaki

The University of Tokyo

1 INTRODUCTION
By fully utilizing the power of virtualization, Network Func-

tion Virtualization (or NFV) has the potential to solve not

only the original motivation of replacing hard-to-upgrade

facilities of network functions based on hardware appliances,

but also to bring the flexibility of composing those functions

by chaining/concatenating multiple functions. We believe

that the flexibility, to be fully recomposable, is a key to mak-

ing the technology useful in practice.

We implemented function chaining using Unix pipelines

in a standard Unix shell. Unix pipelines, first championed

by McIlroy [3], and later expanded to network resources by

Plan9 from Bell Labs [6], concatenates multiple programs

into a stream to process data. Following the Unix philoso-

phy, composing a simple program (or function) which does
a simple job well, then chaining them to do larger jobs, we

implemented Service Function Chaining (SFC) in Unix, pro-

viding modularity, simplicity, robustness, etc [7], making

a well-working system. Prior work such as EtherPIPE [2]

showed that this idea was useful for simple network packet

processing. However, it did not function well, or was diffi-

cult to implement, if the processing was complicated such as

network address translation (NAT), or load balancing with

stateful connection tracking.

We explore 1) the applicability of Unix pipelines for service

function chaining with a feature-rich network stack, 2) study

the performance with benchmarks, and 3) envision possi-

ble use cases of function chaining using the Unix pipeline

framework addressing the goals of SFC. These preliminary

contributions are the first steps of designing a SFC frame-

work using Unix pipes in our prototype implementation,

/dev/stdpkt, using a userspace network stack derived from
Linux Kernel Library (LKL).

2 DESIGN AND IMPLEMENTATION
2.1 Challenges
Feature rich network function:Wewant to compose com-

plex functions such as NAT or a stateful load balancer. To

achieve such rich network functions, we extend a userspace

APSys ’17, September 2, 2017, Mumbai, India
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Application

LKL system call

Anonymous pipe
Named pipe

LKL

FS

VIRTIO

pipe rx pipe tx Anonymous pipe
Named pipe

NET MM

Linux kernel

DRIVERS

Figure 1: LKL application components and their ex-
tended modules (hatched area): pipe as a network
channel.

network stack, the Linux Kernel Library (LKL), to harmonize

with Unix shell pipeline.

Function chain in a shell pipeline:While a shell pipeline

is usually unidirectional, packet flow is usually bidirectional.

By using anonymous pipes (standard input, output) and

named pipes together as a network channel, network func-

tions implemented in the Linux kernel can interact within a

shell command line.

2.2 Design
Figure 1 illustrates the detail of one LKL application com-

ponent. Traditionally, service function chaining uses virtual

machines to realize network functions and connects the vir-

tual machine with network devices such as bridges and taps.

In contrast, we use an LKL application instead of a virtual

machine, and use pipes and named pipes instead of bridges

or tap devices.

2.3 Usage
IF0="tap0" IP0="10.0.0.1" NETMASK0="24" \
IF1="named pipe1|/dev/stdout" IP1="192.168.0.1" NETMASK1="24"\
LD_PRELOAD=liblkl-hijack.so ./nat-config.sh | \
IF0="/dev/stdin|named pipe1" IP0="192.168.0.2" NETMASK0="24"\
IF1="tap1" IP1="10.10.2.1" NETMASK1="24" \
LD_PRELOAD=liblkl-hijack.so ./firewall-config.sh

The sequence above is an example of how we compose a

NAT and a firewall. TheNATLKL application (nat-config.sh)
has two interfaces, the first interface uses tap0 to send and

receive packets, the second interface uses named pipe1 as a

receive channel and standard output as a transmission chan-

nel. The Firewall LKL application (firewall-config.sh)

https://doi.org/10.1145/nnnnnnn.nnnnnnn

APSys ’17, September 2, 2017, Mumbai, India Motomu Utsumi, Hajime Tazaki, and Hiroshi Esaki

64 128 256 512 1024 1500 2048 5000
payload size of netperf (bytes)

0

2

4

6

8

10

12
g

o
o

d
p

ut
 (G

b
p

s)

Figure 2: Application goodput as a function of packet
payload size with the standard deviation from 100
replications.

also has two interfaces, the first receives standard input and

named pipe1 as its output channel, the second interface uses

tap1 as typical NICs.

3 EVALUATION
We evaluate packet processing speed as application goodput,

and the time to boot. Our tests were conducted on a single

machine with the following components: Intel i7-6700 (4

cores, 3.4 GHz) CPU, Intel 10-Gigabit X540-AT2 Network

Card, 2x16G DDR4-2133 RAM, running a 64-bit Linux kernel

4.9.0, Netperf version 2.7.0, and LKL
1
.

Packet Processing Speed: We measured the network

performance of two LKL applications directly connected via

a pipe and a named pipe. We used netperf TCP_STREAM
mode to measure how fast the LKL applications sent and

received packets. netperf transmits packets to stdout which

is redirected to the stdin of the netperf server (netserver)
via a pipe. netserver transmits packets to the named pipe

and netperf receives packets from the named pipe. We var-

ied the payload of netperf and measured 100 times for each

payload size. To explore the maximum performance in this

scenario, we used an MTU of 65500 bytes, enabled check-

sum offload, TCP Segmentation Offload (TSO), and allowed

LKL to merge receive buffers. Figure 2 shows the application

goodput as a function of payload size. When the payload

size is less than 1024 bytes, goodput increases in accordance

with the increase of payload size. Goodput reaches at most

9.1 Gbps with the 1024 bytes payload size.

Boot time: We measured the time from the start of the

LKL application to its transmission of the first packet. We

also measured how the numbers of LKL applications on a

single machine affects the boot time. We instantiated 1000

LKL applications in sequence for 100 times, and measured

the boot time of each LKL application.

Figure 3 shows the boot time of each LKL application

instance with the LKL application ID we assigned to each

instance. The boot time of the first instance was 47.4 msec,

1
https://github.com/libos-nuse/lkl-linux-pipe

0 200 400 600 800 1000
LKL application ID

40

60

80

100

120

140

160

B
o

o
t

tim
e

(m
se

c)

Figure 3: Boot time of each instance of the LKL appli-
cation: the error bar indicates the standard deviation
from 100 replications of the experiment.

and it constantly increases if the ID is larger than 600, due

to the concurrent processing load presented by many LKL

instances. Past research alsomeasured the boot time: ClickOS

boots about 30 msec [5]. Jitsu unikernel, which is based on

MirageOS, takes 20 msec on x86, 350 msec on ARM [4]. OSv

with memcached takes 600 msec to start serving requests [1].

4 FUTUREWORK
A number of future directions are possible: 1) service chain-

ing flows in our proposal are fixed, thus not able to dynam-

ically update on each network flow request. This will be

addressed by extending the current prototype to accept cre-

ation of new channels. 2) the base performance shown sug-

gests much more optimization of several components of our

prototype implementation.

ACKNOWLEDGMENTS
The authors thank to Randy Bush for his proofreading on

this paper.

REFERENCES
[1] Kivity, A., Laor, D., Costa, G., Enberg, P., Har’El, N., Marti, D.,

and Zolotarov, V. OSv—Optimizing the Operating System for Virtual

Machines. In USENIX ATC (2014), USENIX Association, pp. 61–72.

[2] Kuga, Y., Matsuya, T., Hazeyama, H., Cho, K., Meter, R. V., and

Nakamura, O. A packet i/o architecture for shell script-based packet

processing. China Communications 11, 2 (Feb 2014), 1–11.
[3] Laboratories, B. THE UNIX ORAL HISTORY PROJECT . http://www.

princeton.edu/~hos/Mahoney/expotape.htm. (Accessed Jun 2nd 2017).

[4] Madhavapeddy, A., Leonard, T., Skjegstad, M., Gazagnaire, T.,

Sheets, D., Scott, D., Mortier, R., Chaudhry, A., Singh, B., Ludlam,

J., Crowcroft, J., and Leslie, I. Jitsu: Just-in-time summoning of

unikernels. In NSDI (2015), USENIX Association, pp. 559–573.

[5] Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M., Bifulco,

R., and Huici, F. Clickos and the art of network function virtualization.

In NSDI (2014), USENIX Association, pp. 459–473.

[6] Presotto, D. L., andWinterbottom, P. The Organization of Networks

in Plan 9. In USENIX Winter. (1993).
[7] Raymond, E. S. The art of Unix programming. Addison-Wesley Profes-

sional, 2003, ch. Basics of the Unix Philosophy.

http://www.princeton.edu/~hos/Mahoney/expotape.htm
http://www.princeton.edu/~hos/Mahoney/expotape.htm

	1 Introduction
	2 Design and Implementation
	2.1 Challenges
	2.2 Design
	2.3 Usage

	3 EVALUATION
	4 FUTURE WORK
	Acknowledgments
	References

