
Dike: Revisiting Resource Management for Distributed Deep
Learning

Erci Xu
Ohio State University
xu.1556@osu.edu

Mohit Saxena
saxena.mohit@gmail.com

Feng Qin
Ohio State University

qin.34@osu.edu

ABSTRACT
The recent adoption of deep learning for diverse applications has
required scaling infrastructures both horizontally and vertically.
As a result, efficient resource management for distributed deep
learning (DDL) frameworks is becoming increasingly important.
However, existing techniques for scaling DDL applications rely on
general-purpose resource managers originally designed for data
intensive applications. In contrast, DDL applications present unique
challenges for resource management as compared to traditional big
data frameworks, such as a different master-slave communication
paradigm, deeper ML models that are more computationally and
network bound than I/O, and use of heterogeneous resources (GPUs,
TPUs, and variable memory). In addition, most DDL frameworks
require data scientists to manually configure the task placement
and resource assignment to execute DDL models.

In this paper, we present Dike, an application scheduler frame-
work that transparently makes scheduling decisions for placement
and resource assignment to DDL workers and parameter servers,
based on the unique characteristics of the DDL model (number and
type of parameters and neural network layers), node heterogeneity
(CPU/GPU ratios), and input dataset. We have implemented Dike as
a resource manager for DDL jobs in Tensorflow on top of Apache
Mesos. We show that Dike significantly outperforms both manual
and static assignment of resource offers to Tensorflow tasks, and
achieves at least 95% of the optimal throughput for different DDL
models such as ResNet, Inception.

INTRODUCTION
Today, distributed deep learning (DDL) is the widely used in differ-
ent areas ranging from image classification to speech recognition
[11, 12]. Various open source frameworks for DDL such as Tensor-
flow, MXnet, Azure Machine Learning [1, 2] are being offered as
services by cloud providers or deployed by users in private clusters
using resource containers. As a result, efficient resource manage-
ment [8, 10] for DDL frameworks is critically important.

Resource management in major DDL frameworks is still evolving
and does not account for the unique characteristics of the machine
learning jobs. For example, the data scientist has to address the
following four questions while deploying the DDL model: (1) How
many DDL tasks need to be launched? (2) How much resource
allocated for each task? (3) What is the role or functionality of each
task? (4) Which physical node to use for launching each task? As
these questions are specific to the requirements of the DDL model
and have multiple possible answers, users need to iteratively try out
different deployment plans, which requires considerable manual
tuning. Moreover, even if a good solution is obtained, it may be

no longer suitable if users change the cluster configurations, use
different models, or train on another dataset.

Previously, answering similar questions in other data-intensive
analytic frameworks [4] is often straightforward due to a clear
guideline of mitigating bottleneck [9]. As a result, most big data
frameworks provide resource assignment by allocating sufficient
memory to each task and reduce frequent disk I/O (addressing ques-
tions - 1 and 2). For task placement, locality has been the foremost
priority to minimize network transfers (addressing question - 3/4).

Unfortunately, simply applying these principles to resource man-
agement for DDL frameworks would not always lead to a good solu-
tion. This is attributed to three unique features of DDL: deeper ML
model pipelines that are both more computationally and network-
bound than disk-bound, master-slave communication paradigm
between parameter-servers and workers, and the use of heteroge-
nous resources for DDL such as GPUs and variable memory.

First, most DDL models use a computation-intensive procedure
called gradient descent. Iteratively computing to minimize the loss
function in gradient descent is the key bottleneck rather than disk
I/O[3]. Similarly, the DL pipelines usually comprise of several lay-
ers of highly computationally-intensive operations and backward
propagation of parameters. As a result, allocating resources to tasks
in DDL based on memory requirements alone may lead to allocate
more than enough memory for workers and subsequently waste of
computing resources.

Second, DDL introduces a new role for classic distributed master-
slave communication - parameter server (PS) [7]. This affects the
task placement as a slave node can either serve as a worker execut-
ing the DL models or a PS that maintains a synchronized view of
the DL model parameters across different workers. Accordingly, re-
sources assigned to a PS have very different requirements than that
of a worker. Similarly, a PS needs to be placed in a location so as to
minimize the network overhead for synchronizing the parameters
with the workers for which it is responsible.

Third, DDL clusters are usually equippedwith very heterogenous
hardware such as differnet compute power - GPU, TPU, and differ-
ent provisionedmemory [1]. As a result, selecting the right compute
and memory offers to provision for the different DL model oper-
ators becomes critical. For example, GPUs offer high parallelism
and concurrency levels well suited for computation on workers.
Most data analytic frameworks run on homogeneous configura-
tions. However, simply binding the GPU nodes to workers and
CPUs to PS, may not result in the optimal placement, as different
workers need to be co-located with different PS.

In existing systems [1, 2], most of the resource assignment and
task placement is still done by the data scientist by selecting the
physical nodes or resource containers for executing different work-
ers and PS. For example, Tensorflow requires the data scientists



writing the DL model to determine the total number of workers
and PS, location of PS/worker tasks, and their CPU/GPU and mem-
ory configurations. In contrast, resource management frameworks
based on Apache Mesos [5, 6] use coarse-grained levels for resource
assignment and scheduling strategies not aware of the DL model
characteristics. In addition, data scientists still need to determine
the total number of tasks and resources for each of them. As a result,
we find that their task assignment is not optimal in most cases.

In this paper, we present Dike, an online scheduler framework for
DDL as shown in Figure 1. Data scientists only need to write their
DL models, which are similar to the Tensorflow models, however,
without requiring any resource management details. Dike creates
a new wrapper Context over Tensorflow context to intercept and
capture runtime information, including model details and cluster
configuration, from the DDL framework. Dike then passes this
information, as shown in Figure 2 to its Generator component to
produce multiple candidate resource assignment plans. These plans
are finally evaluated by Dike’s Scheduler based on a cost model,
which decides the best plan and its placement for each task. We
show that Dike achieves at least 95% of the optimal performance
for distributed DDL workloads and automates most of the cluster
resource management. In addition, Dike provides 81% speed-up as
compared to manual configuration employed by data scientists on
a 30-instance cluster.

Figure 1: Architecture of Dike.

Future work of Dike includes: supporting various DDL frame-
works, such as MxNet and CNTK, adapting to more types of neural
networks models, and optimizing resource management algorithms
for large scale cluster. We aim at building Dike as a platform where
it supports various DDL framework and connects other backends.
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Figure 2: Detailed Process of Dike
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