
Rack Level Scheduling for Containerized Workloads
Qiumin Xu

University of Southern California
qiumin@usc.edu

Krishna T. Malladi
Samsung Semiconductor
k.tej@samsung.com

Manu Awasthi
IIT Gandhinagar
manua@iitgn.ac.in

1 INTRODUCTION
Many large scale cloud services today that target a variety
of application domains are hosted in large data centers. Such
services are often interactive, resulting in sensitivity to sys-
tem latency. Therefore, high performance storage solutions
such as NVMe SSDs and NVMe-over-Fabrics (NVMf) that
can provide lower I/O access latencies and higher through-
put are becoming prevalent in data centers [1]. Furthermore,
NVMf allows servers in the same rack to share high perfor-
mance storage with performance similar to that of the direct
attached devices.

In this paper, we propose an efficient mechanism to sched-
ule datacenter workloads within a server rack sharing stor-
age resources using NVMf. Current large scale server sys-
tems have a datacenter level scheduler that centralizes decision-
making after considering the applicationâĂŹs Quality-of-
Service (QoS) requirements and the underlying server level
resources. The current schedulers consider resources like
CPU cores and memory but have limited support for the stor-
age system. In general, the scheduling mechanism attempts
to minimize data movement from storage by locating jobs
closer to data.

While this style of scheduling has the benefit of global re-
source visibility and the ability to utilize complex scheduling
algorithms, it suffers from three important shortcomings: 1)
The scheduling does not account for the presence of high
performance storage drives like NVMe SSDs that substan-
tially lower storage latency. These also do not consider other
important factors of the storage subsystem like capacity,
sequential/random read/write bandwidth, storage queues,
garbage collection, wear leveling, write amplification, effects
of flash translation layer and overprovisioning. 2) The sched-
uling also introduces additional, centralized complexity to
take corrective action in the case where the algorithm has in-
correctly located workloads across the datacenter. 3) Even if
it were to perform such correction, it cannot account for the
relative ease with which NVMf allows NVMe drives to obtain
the benefits of data locality even with remote execution.

We introduce a second level of scheduling intelligence at
the rack level that addresses all the aforementioned problems.
In particular, we apply this to high performance distributed
SSD drives in the presence of NVMf networking stack. More-
over, we consider these systems running containerized ap-
plications that are known to maximize the system utilization
without application level interference.

50%: 72 us
90%: 245 us

95%: 1.4ms
99%:3.9ms

max: 13ms

1

10

100

1000

10000

100000

1000000

0% 20% 40% 60% 80% 100%

L
at

en
cy

 (u
s)

Hundreds

(a)

0

10

20

30

40

50

1 2 3 4 5 6 7 8

N
or

m
al

iz
ed

 L
at

en
cy

of Concurrent Services

WorkloadA P99 WorkloadD P99

(b)

Figure 1: (a) random write-access latency distribution
of an example SSD running a datacenter-level sched-
uler (b) normalized tail latency when running current
Cassandra services (results are normalized to the p99
latency of workload A)

2 MOTIVATIONAL DATA
We first present results highlighting issues with existing
datacenter level scheduling. Figure 1a shows the latency
distribution of a high performance Samsung NVMe SSD run-
ning containerized applications. 80% of the storage access
latency is within 100us, while 1% of the requests have latency
longer than 3.9 ms. Figure 1b shows that this long tail latency
increases exponentially as more services are concurrently
executing on the same server and competing for resources.
For each container, we loaded 100 million/100GB records in
the database. The test run consisted of 100 million queries
of workload A (50% reads, 50% updates, zipfian distribution)
and workload D (95% reads, 5% inserts, uniform distribution)
from 16 YCSB client threads. Another interesting observation
is that of the eight workloads, the worst case p99 latency
is much higher than the best p99 latency. This indicates
that shifting the worst performing job to another node with
more resources will result in decreasing the large gap be-
tween best and worst case latencies. Traditionally, this has
been very difficult since migrating jobs between machines
also meant migrating the data associated with those jobs.
However, with techniques like NVMf becoming increasingly
common within a rack, this hurdle is becoming easier to
overcome. Therefore, this motivates us to design a new rack
âĂŞ level scheduling algorithm that is able to reduce tail
latency more efficiently.

3 RACK LEVEL SCHEDULING
As mentioned above, NVMf enables multiple server nodes
in the same rack to share remote NVMe storage through
high speed Ethernet. With shared storage, the job-migration

overheads are substantially reduced, since no data needs to
be moved. With this insight, we describe the key compo-
nents of the rack-level scheduling algorithm, namely, a tail
latency anomaly monitor, a target discover unit and a service
migration unit.

Tail LatencyAnomalyMonitor (TLAM).TLAM is launched
either as a background daemon or as part of storage stack
driver in order to constantly monitor and tag each job with
the p99 latency. If the TLAM detects p99 violation for a job, it
will mark and send the job id number to the target discover
unit.

Target Discover Unit (TDU). This unit samples system
utilization information locally to share with other nodes in
the same rack. It also makes decisions locally as to whether
the job can be migrated and to which node. TDU also ex-
changes system utilization information with remote nodes
within the same rack following a token ring like topology.
The token methodology ensures that only one node can per-
form decision-making about job migration at a time avoiding
hazards where multiple nodes could flood the same target
node when offloading jobs.

The decision algorithm. Proper assignment of the new
job will maximize the reward function which is a linear
weighted function of number of available CPUs, size of avail-
able memory and available network and disk bandwidth:

Rewardj,i , = Ai ∗ Rcpuj + Bi ∗ Rmemj +Ci ∗ Rnetj + Di ∗ Rdiskj
where: node i is the node making migration decision, j is

a candidate target node. A, B, C, D are weights adjusted ac-
cording the jobâĂŹs requirement for resources. Rcpu , Rmem ,
Rnet , Rdisk are the ratios of increased resource deltas in the
candidate machine compared with available resources of the
local machine to the amount of that resource ideally required
by the job. If the reward is less than zero, the job will not be
migrated to the remote node. Otherwise, it will identify the
target node, which maximizes the rewards among all candi-
date nodes in the rack. The disk bandwidth is equivalent to
NVMf network bandwidth when nodes are accessing storage
remotely. While the current systemâĂŹs reward is focused
on reducing tail latency, systems can implement power and
cooling costs to increase server consolidation.

Service Migration Unit (SMU). Enabled by latest NVMf
technology, nodes on the same rack are connected to a shared
storage network. In this case, migrating a job to another
node becomes much easier, since data on shared storage
doesn’t need to be migrated. The process states inside cache
and memory, are flushed down to the NVMf storage before
migration. In case where NVMf bandwidth is temporally
unavailable, the states will first be flushed to a local disk.
After a small wait period (e.g. 2 mins), the flush through
NVMf will be retried.

Rack
Server Node 1

Server Node 2

Server Node M

Client Node

. . .
. . .Container

Migration

Access the data
through high
bandwidth NVMf.
No data migration
needed.

Shared Remote
Storage Server

(a)

0.26
0.39

0

0.5

1

1.5

2

2.5

Packing Mesos RLSN
or

m
al

iz
ed

 L
at

en
cy

p95 latency p99 latency

(b)

Figure 2: (a) system setup of the preliminary results
(b) comparison of tail latencies of workload D (results
are normalized to p95 latency of the baseline packing
method)

4 RESULTS
The experimental setup consists of four server nodes (Fig-
ure 2a). Each has a dual-socket Intel Xeon E5 core, with 48
hyper-threaded CPUs. We use three nodes for Cassandra
client and server configuration - one client driving YCSB
traffic (over 10 Gbps ethernet) onto the other two server
nodes that run multiple, containerized versions of Cassandra.
The fourth node is configured as an NVMf target storage
server that exports Samsung PM1725 NVMe SSDs as NVMf
targets to the server nodes over a 40 Gbps, RDMA capable
ethernet fabric using the RoCE protocol.

Wemeasure and compare the tail latencies of the following
scenarios in Figure 2b: (1) Packing. 8 Cassandra containers
are packed and concurrently run on one server; (2)Mesos.
We setup mesos + marathon + zookeeper frameworks to
allocate Cassandra containers1 (3) Rack Level Scheduler
(RLS).We monitor various resource utilizations and deter-
mine proper assignment of containers based on the reward
function. As a result, four containers are scheduled on server
node 1 and other four containers on server node 2. With
benefits from NVMf, the containers allocated on Node 2 can
still access their data on the shared remote storage server.
Overall, this allocation of the rack level scheduler leads to
significant reduction of tail latencies. While the p95 latency
was reduced by 3.8×, the p99 latency was reduced by 3.9×
compared to baseline packing strategy.

5 CONCLUSIONS
With the advent of high performance remote storage tech-
niques such as NVMf, workload migration between servers
on the same rack becomes much cheaper. We propose rack
level scheduling that exploits fast, remote storage, to provide
3.8× reduction in tail latency.

REFERENCES
[1] Q. Xu, et al., Performance analysis of containerized applications on

local and remote storage, in Proc. of MSST, 2017
[2] Jeffrey Dean and Luiz André Barroso, The tail at scale, in Commun.

ACM,2013

1Note that Mesos doesn’t have disk bandwidth allocation support yet, and
therefore is not very effective in scheduling containerized databases.

2

	1 INTRODUCTION
	2 MOTIVATIONAL DATA
	3 Rack level scheduling
	4 RESULTS
	5 CONCLUSIONS
	References

