
In Proc. AAAI 2017, pp. 1777-1783, AAAI Press, 2017.

PAC Identification of a Bandit Arm Relative to a Reward Quantile

Arghya Roy Chaudhuri and Shivaram Kalyanakrishnan
Department of Computer Science and Engineering

Indian Institute of Technology Bombay, Mumbai 400076, India
{arghya, shivaram}@cse.iitb.ac.in

Abstract

We propose a PAC formulation for identifying an arm in an
n-armed bandit whose mean is within a fixed tolerance of the
mth highest mean. This setup generalises a previous formu-
lation with m = 1, and differs from yet another one which
requires m such arms to be identified. The key implication of
our proposed approach is the ability to derive upper bounds
on the sample complexity that depend on n/m in place of n.
Consequently, even when the number of arms is infinite, we
only need a finite number of samples to identify an arm that
compares favourably with a fixed reward quantile. This facil-
ity makes our approach attractive to applications such as drug
discovery, wherein the number of arms (molecular configura-
tions) may run into a few thousands.
We present sampling algorithms for both the finite- and
infinite-armed cases, and validate their efficiency through the-
oretical and experimental analysis.We also present a lower
bound on the worst case sample complexity of PAC algo-
rithms for our problem, which matches our upper bound up
to a logarithmic factor.

1 Introduction
The Multi-armed bandit (Berry and Fristedt 1985) is a well-
studied abstraction of decision making under uncertainty.
Each arm of a bandit may be pulled in order to obtain a
reward. The experimenter, based on his/her objective, must
decide which arm to pull at every round. He/she may consult
the preceding history of pulls and rewards in order to make
this decision. Bandits were originally introduced as an ab-
straction of clinical drug testing (Robbins 1952), with each
arm corresponding to a drug, a pull its administration to a
particular patient, and the reward the success of the treat-
ment. Subsequently, the formalism has also found applica-
tion in simulation optimisation (Amaran et al. 2015), game-
playing (Goschin et al. 2012), and on-line advertising (Li et
al. 2010).

We consider the stochastic multi-armed bandit (Auer,
Cesa-Bianchi, and Fischer 2002; Robbins 1952), wherein
the rewards from each arm come as i.i.d. samples from a cor-
responding distribution (by contrast, the rewards may come
from an arbitrary sequence in the adversarial setting (Auer

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2003)). The predominant body of work in the stochas-
tic setting addresses regret minimisation, which amounts to
maximising the expected sum of rewards from the pulls of
the arms. Naturally a successful strategy here must explore
the arms sufficiently to infer their mean rewards, but also
exploit profitable arms enough to reap high rewards.

More recently, applications such as product testing (Au-
dibert, Bubeck, and Munos 2010)—wherein there is a
dedicated experimentation period before the product is
launched—have also motivated the study of the pure ex-
ploration setting. In this setting, the rewards accrued while
experimenting are immaterial; the objective is to either (1)
minimise the number of pulls required to identify an arm that
satisfies a reward constraint (Even-Dar, Mannor, and Man-
sour 2002; Kalyanakrishnan et al. 2012; Mannor et al. 2004),
or to (2) maximise the expected reward of an arm that is re-
turned after a specified number of pulls (Audibert, Bubeck,
and Munos 2010; Carpentier and Valko 2015). Our contri-
butions, which we introduce below, fall in the first category.
Background. Let us consider an arbitrary instance of
an n-armed bandit, n ≥ 2, with a set of arms A =
{a1, a2, · · · , an}. Each pull of an arm returns a reward
drawn i.i.d. from a corresponding distribution; for simplic-
ity we assume that reward distributions have their support
in [0, 1]. Let the mean reward of arm a ∈ A be µa. With-
out loss of generality, assume µai ≥ µaj if i < j, for
i, j ∈ {1, 2, . . . , n}. The means of the bandit arms are not
known to the experimenter, who must implement an algo-
rithm. Based on the historical sequence of pulls and rewards,
an algorithm either (1) terminates and returns an answer, or
(2) specifies an arm to be pulled next. Algorithms can be
either deterministic or randomised.

Given a “tolerance” ε ∈ [0, 1], and given m ∈
{1, 2, . . . , n}, we define an arm a ∈ A to be (ε,m)-optimal
if µa ≥ µam − ε. The earliest treatment of the pure explo-
ration setting, by Even-dar et al. (2002), considers the de-
sign of algorithms, which, for a given mistake probability
δ ∈ (0, 1], must return an (ε, 1)-optimal arm with proba-
bility at least 1 − δ. This Probably Approximately Correct
(PAC) formulation to identify a near-optimal arm was sub-
sequently generalised by Kalyanakrishnan and Stone (2010)
to the problem of finding a near-optimal subset of arms, as
defined below.



Definition 1 (SUBSET). An instance of SUBSET is fixed
by an n-armed bandit instance, n ≥ 2, with a set of arms
A; m ∈ {1, 2, . . . , n}; ε ∈ (0, 1]; and δ ∈ (0, 1]. An al-
gorithm L is said to solve SUBSET if for every instance
(n,A,m, ε, δ), L terminates with probability 1, and returns
m (ε,m)-optimal arms with probability at least 1− δ.

Kalyanakrishnan and Stone (2010) generalise the
Median-Elimination algorithm introduced by Even-dar et
al. (2002) to obtain an algorithm that solves SUBSET
while taking at most O((n/ε2) log(m/δ)) pulls for ev-
ery instance (n,A,m, ε, δ). Kalyanakrishnan et al. (2012)
also show that there exist problem instances (n,A,m, ε, δ)
for which any algorithm that solves SUBSET must incur
Ω((n/ε2) log(m/δ)) pulls, establishing the tightness of the
upper bound up to a constant factor.
Problem statement. In this paper, we propose a problem
that is related to SUBSET, but which is easier to solve. Under
this problem—denoted Q-F, for reasons explained below—
it is only required that a single (ε,m)-optimal arm be re-
turned.
Definition 2 (Q-F). An instance of Q-F is fixed by an n-
armed bandit instance, n ≥ 2, with a set of arms A; m ∈
{1, 2, . . . , n}; ε ∈ (0, 1]; and δ ∈ (0, 1]. An algorithm L
is said to solve Q-F if for every instance (n,A,m, ε, δ), L
terminates with probability 1, and returns an (ε,m)-optimal
arm with probability at least 1− δ.

Q-F caters to the situation most-commonly encountered
in practice, in which it suffices to identify an arm that com-
pares favourably with a specified reward quantile, say 90%.
It would be unnecessarily expensive, in such cases, to try
and (1) identify an (ε, 1)-optimal arm (which is defined with
respect to the the 100% quantile) (Even-Dar, Mannor, and
Mansour 2002), or to (2) identify an entire (n/10)-sized
subset of arms (Kalyanakrishnan and Stone 2010). In princi-
ple, one can control the trade-off between sample efficiency
(the number of pulls) and quality (mean reward) in SUB-
SET by varying ε, the tolerance threshold. However, a close
inspection of SUBSET unearths a more fundamental limita-
tion. Notice that the lower bound for SUBSET has a linear
dependence on the number of arms; clearly SUBSET is in-
feasible to solve when the number of arms is large (poten-
tially even infinite). On the other hand, it is quite common
to encounter applications with a large number of arms. For
example, arms might correspond to strategies for playing
games (Goschin et al. 2012), locations for mining miner-
als (Berry et al. 1997), or molecular configurations for drug
design (Berry et al. 1997). In all these cases, the number of
arms is at least a few thousands. SUBSET is no longer a good
modeling choice. Q-F, however, continues to offer a viable
way to identify a good arm.

Essentially, Q-F requires the identification of an arm
whose reward is within ε of the (1 − ρ)-quantile, for ρ =
m/n ∈ (0, 1]. Interestingly, we can bound the number of
samples needed to do so in terms of ρ, but independent of
n. The strategy to escape the dependence on n is randomisa-
tion. Observe that if Õ(1/ρ) arms are selected uniformly at
random fromA, at least one must exceed the (1−ρ)-quantile
with high probability. This arm can be isolated (modulo ε) by

sampling each selected arm Õ(1/ε2) times, yielding an over-
all bound of Õ(1/ρε2) samples. In fact, this strategy does not
need full access to the set of arms A; rather, it only needs to
be able to draw arms from A at random. Thus, the strategy
may be extended to bandit instances wherein A is not finite,
as long as arms can be drawn from A based on a probability
distribution PA. Formally, define an arm a ∈ A to be [ε, ρ]-
optimal, ε, ρ ∈ (0, 1], if Pa′∼PAA{µa ≥ µa′ − ε} ≥ 1 − ρ.
Whereas Q-F optimises with respect to a reward Quantile
in a Finite armed bandit, we may extend the same idea to
bandit instances whose arms can be drawn at random based
on a Probability distribution.

Definition 3 (Q-P). An instance of Q-P is fixed by a ban-
dit instance with a set of arms A; a probability distribution
PA over A; ρ ∈ (0, 1]; ε ∈ (0, 1]; and δ ∈ (0, 1]. An algo-
rithm L is said to solve Q-P if and only if for every instance
(A, PA, ρ, ε, δ), L terminates with probability 1, and returns
an [ε, ρ]-optimal arm with probability at least 1− δ.

Contributions. In this paper, we propose efficient algo-
rithms for Q-F and Q-P.

1. First, we present algorithms and corresponding upper
bounds that apply to every instance of Q-F and Q-P (Sec-
tion 3). Here we also present a lower bound on the worst
case sample complexity of the PAC algorithms for Q-F
which is also extensible to Q-P.

2. Although the upper bounds in Section 3 apply even to
the hardest bandit instances (in which the arms all have
the same mean), in practice one will likely encounter in-
stances with some separation between arms. In Section 4,
we describe a fully sequential PAC algorithm for Q-F that
achieves a tighter instance-specific bound than those that
carry over from SUBSET (Even-Dar, Mannor, and Man-
sour 2002; Kalyanakrishnan et al. 2012). Our proof in-
corporates ideas from the analysis of the LUCB algo-
rithm (Kalyanakrishnan et al. 2012) for SUBSET.

3. In Section 4, we extend our ideas to derive a fully-
sequential algorithm for algorithm Q-P. The algorithm is
parameterised by the number of arms it can keep in mem-
ory. Although a constant-size memory suffices for cor-
rectness, we present experimental results (in Section 5)
to demonstrate the practical gains of using larger memory
sizes.

Before presenting the technical contributions of the paper,
we briefly contrast them with related work.

2 Related Work
Whereas infinite-armed bandits have been considered be-
fore in the literature, most previous studies make structural
assumptions about the arms and/or the rewards. Starting
with Agrawal’s “continuum-armed bandit” (Agrawal 1995),
there is a significant body of literature devoted to the setting
wherein the arms are embedded in a metric space, with re-
spect to which the rewards are continuous (Kleinberg 2005;
Auer, Ortner, and Szepesvári 2007; Kleinberg, Slivkins, and
Upfal 2008). A separate line of research, while making no
assumption about the relationship between arms, assumes



specific properties for the reward distribution: for example
that it is uniform (Berry et al. 1997), or that there is a con-
centration of mass around the optimal reward (Wang, Audib-
ert, and Munos 2008; Carpentier and Valko 2015). Among
these it is worth mentioning that whereas all the other ef-
forts listed above focus on regret minimisation, Carpentier
and Valko (2015) aim to minimise simple regret: a pure ex-
ploration setting in which the number of pulls (rather than
the tolerance and mistake probability) is fixed beforehand.

It is an empirical question whether for a given application
of infinite-armed bandits—of which there are several (Berry
et al. 1997)—one can find features to generalise well across
the arms, or if indeed, the set of rewards possesses some
structure. We make no assumptions in either respect.Thus,
our approach is not preferable when useful inductive biases
are available, but preferable when they are not.

The line of work most closely related to ours is that of
Goschin et al. (2012). In their PAC formulation, the objec-
tive is to identify an arm whose mean reward exceeds a spec-
ified threshold r0. At the heart of both this formulation and
ours is the “good” probability mass lying above r0. We be-
lieve it is more natural to fix this mass (equivalently, the
quantile) rather than the actual reward, which may not be
easy to guess. Users generally do not have a very good es-
timate of the highest or near-highest reward if the reward
distribution across the arms is fat-tailed. In such cases, it
could be inefficient to find an arm with satisfactory expected
reward. Note that Q-F and Q-P are well-defined for every
bandit instance as long as ε > 0; our algorithm in Section 4
can easily be adapted to work even when ε = 0 on ban-
dit instances with a non-zero separation of means. We view
our work as a more practical cousin of that of Goschin et
al. (2012). For example, we provide fully sequential algo-
rithms for Q-F and Q-P, whereas Goschin et al. primarily
focus on worst-case bounds.

As mentioned in Section 1, our work draws on previous
PAC formulations (Even-Dar, Mannor, and Mansour 2002;
Mannor et al. 2004; Kalyanakrishnan and Stone 2010;
Kalyanakrishnan et al. 2012), which we cite wherever ap-
propriate in the paper. Our work is not to be confused with
the “quantile-based approach” of Szörényi et al. (2015), in
which the quantile in question is of each arm’s reward dis-
tribution, with the rewards themselves coming from an arbi-
trary totally-ordered set. On the other hand, our definition of
an arm’s optimality (in terms of a reward quantile) is sim-
ilar to that proposed by Chaudhuri et al. (2009), who con-
sider regret minimisation in the adversarial, full-information
setting. Their objective is to devise a parameter-free on-line
learning algorithm. By contrast, our objective is to eliminate
the sampling algorithm’s dependence on the number of arms
in a PAC setting.

3 Worst-Case Bounds Across Problem
Instances

In this section, we bound the worst-case sample complexity
of algorithms for Q-F and Q-P across bandit instances. First
we obtain an upper bound on the sample complexity of al-
gorithms that solve Q-P; the reducibility of Q-F to Q-P im-

plies a corresponding upper bound for Q-F. Specifically, let
IF = (n,A,m, ε, δ) be an instance of Q-F. Now consider
the instance IP = (A, UA, (m−1/2)/n, ε, δ) of Q-P, where
UA is the uniform distribution over A. By this construction,
an [ε, ρ]-optimal arm for IP is necessarily an (ε,m)-optimal
arm for IF , since

Pa′∼UAA{µa ≥ µa′ − ε} ≥ 1− (m− 1/2)/n

⇒ µa ≥ µam − ε.

Therefore, an algorithm that solves Q-P can easily be
adapted into one that solves Q-F. To get an upper bound
for Q-P, we consider an algorithm, P1, which implements
the strategy mentioned in Section 1 (and is similar to one
proposed by Goschin et al. (2012, see Algorithm 5)). Given
an instance (A, PA, ρ, ε, δ), the first step in P1 is to draw
a set of arms from A i.i.d. according to PA, treating possi-
ble repetitions of arms as different arms. Let the set of arms
drawn be A′, and let the number of arms drawn be

|A′| = N(ρ, δ) = d(1/ρ) ln(2/δ)e .

The second step in P1 is to apply the Median-Elimination
algorithm (Even-Dar, Mannor, and Mansour 2002) to find
an (ε, 1)-optimal arm in A′, specifically by solving instance
(N(ρ, δ),A′, 1, ε, δ/2) of SUBSET. This arm (more pre-
cisely, its corresponding arm in A) is returned by P1.
Theorem 3.1. P1 solves Q-P. Given an instance
(A, PA, ρ, ε, δ), its number of pulls is upper-bounded by
O((1/ρε2)(log(1/δ))2).

Proof. The probability that A′ does not contain a (0, ρ)-
optimal arm is at most (1−ρ)N(ρ,δ) ≤ δ/2, and the probabil-
ity that the Median-Elimination algorithm does not find an
(ε, 1)-optimal arm inA′ is at most δ/2. Thus, the probability
that P1 does not identify [ε, ρ]-optimal arm inA is at most δ.
The sample complexity is O((N(ρ, δ)/ε2) log(1/δ)) (Even-
Dar, Mannor, and Mansour 2002), which gives the desired
result.

Let F1 be an algorithm for Q-F that translates its input
into an instance of Q-P (as described above) and then ap-
plies P1. The correctness and sample complexity of F1 are
immediate from Theorem 3.1.
Corollary 3.2. F1 solves Q-F. Given an instance
(n,A,m, ε, δ), its number of pulls is upper-bounded by
O((n/mε2)(log(1/δ))2).

We can also show lower bounds for Q-F and Q-P, which
match the corresponding upper bounds up to a Θ

(
log 1

δ

)
factor.
Theorem 3.3. For 0 < ε ≤ 1√

32
, 0 < δ < e−1

4 , and n ≥
2m, an algorithm L that solves Q-F must incur a sample
complexity of at least 1

306 .
1
ε2 .

n
m ln

(
1
4δ

)
.

The above theorem admits a proof which is similar to the
proof of Theorem 8 of Kalyanakrishnan et al. (2012), but
differs in the fact that their proof relies on the highest m
arms having to be returned (under Q-F, only one has to be
returned). Our detailed proof is given in the supplemental
material. This lower bound can be easily extended to Q-P.



Corollary 3.4. For 0 < ε ≤ 1√
32

, 0 < δ < e−1

4 , and
0 < ρ ≤ 1/2 an algorithm L that solves Q-P must incur
a sample complexity of at least 1

306 .
1
ε2 .

1
ρ ln

(
1
4δ

)
.

4 Fully Sequential Algorithms for Q-F and
Q-P

We expect bandit instances encountered in practice to have
arms whose means are relatively well-spread apart. If so, our
algorithms can (implicitly) estimate the gaps between the
arms by monitoring empirical rewards, and use this infor-
mation to sample and stop more efficiently. The LUCB algo-
rithm (Kalyanakrishnan et al. 2012) for SUBSET applies this
idea. Under LUCB, the m arms with the highest empirical
means are kept in one set, and the remaining arms in another.
The most “contentious” arm from each set—defined in terms
of lower and upper confidence bounds—is sampled. The al-
gorithm stops and returns the first set if its lowest lower con-
fidence bound does not overlap the highest upper confidence
bound in the second set by more than ε. This fully sequen-
tial algorithm (in the sense that it samples O(1) arms before
making the next decision) enjoys an expected sample com-
plexity bound that depends on the gaps between the arms.
Our first exercise in this section is to describe an algorithm,
F2, which achieves a similar bound for Q-F.

4.1 Algorithm F2

Define, for a ∈ A:

∆a =

{
µa1 − µam+1

, if a ∈ {a1, a2, . . . , am},
µa1 − µa, otherwise,

and define Hε =
∑
a∈A 1/max(∆a, ε/2)2. Our main

contribution is an O(Hε log(Hε/δ)) upper bound for F2,
which resembles the bound provided by Kalyanakrishnan et
al. (2012) for LUCB. Recall that Q-F can be solved by solv-
ing an instance of SUBSET with any subset size up to m.
However, it can be verified that the resulting bounds (by ap-
plying LUCB) can never be tighter than ours: provably, the
corresponding “∆” values for the arms in the LUCB bound
are equal or smaller than those in our bound.

Algorithm 1 describes F2, our fully sequential algorithm
for solving Q-F. For convenience, we use notation similar to
that used to describe LUCB (Kalyanakrishnan et al. 2012).
The algorithm proceeds sequentially through rounds t =
1, 2, . . . . Let uta be the number of times arm a ∈ A has been
pulled until (and excluding) round t, and p̂ta the correspond-
ing empirical mean. We draw upper and lower confidence
bounds on the true mean of the arms, given by ucb(a, t) =

p̂ta+
√

1
2uta

ln
(
knt4

δ

)
, and lcb(a, t) = p̂ta−

√
1

2uta
ln
(
knt4

δ

)
,

where k = 5/4 (we can use tighter concentration bounds in
practice, as we do in our experiments).

At each round t, we partition the set of arms into three
sets: we put the arm with the highest lower confidence bound
in the set At1. We sort the remaining arms in non-increasing
order of their upper confidence bounds, placing the highest
m − 1 arms in the set At2, and the remaining n − m arms
in the set At3. Ties are broken arbitrarily. At each round the

sampling strategy ensures exploration from each these three
sets by pulling a “contentious” arm from each. Since At1 is a
singleton set, there is no choice: the arm pulled is the unique
element ht∗. From At2, we choose mt

∗, the arm that has been
pulled the fewest times so far. The arm lt∗ pulled from At3 is
the one with the highest upper confidence bound in this set.
The algorithm terminates and returns ht∗ if its lower confi-
dence bound gets sufficiently separated from the upper con-
fidence bound of lt∗.

Algorithm 1: F2

Input: n,A,m, ε, δ
Output: a ∈ A

1 Pull each arm a ∈ A for once. t = n.
2 do
3 t = t+ 1.
4 At

1 = {a : a ∈ A, a = argmaxa′∈A lcb(a
′, t)}.

5 At
2 = {a : a ∈ A \At

1 s.t. ucb(a, t) ≥ ucb(a′, t)∀a′ ∈
S ⊂ A \At

1 s.t. |S| = n−m}.
6 At

3 = A \ {At
1 ∪At

2}.
7 ht

∗ ∈ At
1. // Note that |At

1| = 1.
8 mt

∗ = argmin{a∈At2} u
t
a.

9 lt∗ = argmax{a∈At3} ucb(a, t).
10 Pull ht

∗, mt
∗, and lt∗.

11 while ucb(lt∗, t+ 1)− lcb(ht
∗, t+ 1) > ε

12 return ht
∗.

The analysis of F2 proceeds along similar lines as that of
LUCB (Kalyanakrishnan et al. 2012). Our key contribution
is in defining ht∗, m

t
∗, and nt∗ such that the desired depen-

dence on Hε can be shown.

Theorem 4.1. F2 solves Q-F, and incurs an expected sam-
ple complexity of O (Hε log (Hε/δ)).

Proof. The correctness of F2 is established by bounding
the probability that the confidence bounds are ever vio-
lated (across arms and rounds), which is seen not to ex-
ceed δ. For each arm a ∈ A and t ≥ 1, define u∗(a, t) =
(1/2 max(∆a, (ε/2))2) ln(knt4/δ)). We can show that the
following event has a low probability.

CROSSta
def
= µa < lcb(a, t) or µa > ucb(a, t).

Recall that F2 samples arms from the sets At1, At2, and
At3; our argument connects these arms with three related
“ground truth” sets B1 = {a1}, B2 = {a2, ..., am}, and
B3 = {am+1, ..., an}. If a1 is sampled at least 16u∗(a, t)
times, the following event has a low probability.

ErrLta
def
= a ∈ B3 and lcb(a, t) > lcb(a1, t).

If any arm a ∈ A is sampled at least 16u∗(a, t) times, the
following events also have a low probability.

ErrU ta
def
= a ∈ B3 and ucb(a, t) > ucb(a1, t).



Needyta =



[
(lcb(a, t) < µa −∆am+1

/2)∧

(p̂ta − lcb(a, t) > ε/2)
]

if a ∈ B1.[
(ucb(a, t) > µa + ∆a/2)∧

(ucb(a, t)− p̂ta > ε/2)
]

if a ∈ B3.

The main part of the proof involves showing that if the
“CROSS” event does not happen, and the algorithm has not
terminated, then one of the “ErrU”, “ErrL”, and “Needy”
events must have occurred. These events, in turn, imply with
high probability that corresponding arms cannot have been
sampled sufficiently. By an argument based on the pigeon-
hole principle (Kalyanakrishnan et al. 2012, see Lemma 5),
the bound on the expected sample complexity follows.

Below we present the core logic underlying our analysis,
to show that progress is made by the sampling strategy. If
the algorithm has not terminated at round t, we carefully
go through cases (it is worth recalling that mt

∗ is the least
sampled arm in At2—a key property used by the proof).

if ∃b1 ∈ B1 ∩At
1

if ∃b3 ∈ B3 ∩At
2 and ∀b′3 ∈ B3 ucb(b3) ≥ ucb(b′3) :

Then eitherNeedytb1 orNeedytb3 must have occurred.

elif ∃b3 ∈ B3 ∩At
3 and ∀b′3 ∈ B3 ucb(b3) ≥ ucb(b′3) :

Then eitherNeedytb1 orNeedytb3 must have occurred.

elif ∃b1 ∈ B1 ∩At
2

if ∃b3 ∈ B3 ∩At
1

Then the event ErrLt
a must have occurred.

elif ∃b3 ∈ B3 ∩At
2 and ∀b′3 ∈ B3 ucb(b3) ≥ ucb(b′3) :

Then eitherNeedytb1 orNeedytb3 must have occurred.

elif ∃b3 ∈ B3 ∩At
3 and ∀b′3 ∈ B3 ucb(b3) ≥ ucb(b′3) :

Then eitherNeedytb1 orNeedytb3 must have occurred.

elif ∃b1 ∈ B1 ∩At
3

if ∃b3 ∈ B3 ∩At
1

if b1 == lt∗
Then the event ErrLt

a must have occurred.
else

Then either lt∗ ∈ B3 or B3 ∩At
2 6= ∅;

therefore the event ErrU t
a must have occurred.

else
Then ErrU t

a must have occurred.

The full proof of Theorem 4.1 is provided in the supple-
mental material.

Next we construct an algorithm for Q-P, using the LUCB
algorithm (Kalyanakrishnan et al. 2012) as a subroutine. We
denote this algorithm P2.

4.2 Algorithm P2
The basic structure underlying P2 is the same as that of P1,
which was introduced in Section 1. Recall that P1 chooses
N(ρ, δ) arms fromA, and proceeds to separate out an (ε, 1)-
optimal arm from among them by applying the Median-
Elimination algorithm (Even-Dar, Mannor, and Mansour

2002). Surely we can improve upon this scheme in prac-
tice by replacing the call to the Median-Elimination algo-
rithm with a call to LUCB instead (with a subset size of
1). The advantage is that LUCB will exploit the gaps be-
tween the means of the chosen arms while identifying an ε-
optimal arm. We encounter a subtle difference between the
two approaches (Median-Elimination and LUCB) when we
consider the memory they require. In principle, the Median-
Elimination approach can be implemented with constant-
size memory, since only the arm with the maximal empir-
ical mean, after each arm is sampled Θ̃(1/ε2) times, needs
to be retained. On the other hand, LUCB gains efficiency
by avoiding the Θ̃(1/ε2) pulls per arm, which it achieves by
comparing confidence bounds. Thus, we can expect LUCB
to perform best if, indeed, we can keep all of the N(ρ, δ) =

Θ̃(1/ρ) arms in memory and sample them judiciously. How-
ever, in practice it might not be feasible to store a large num-
ber of arms in memory.

We take a practical approach, giving the available mem-
ory size M as an input to the algorithm we develop for Q-P.
This algorithm, P2 (see Algorithm 2), applies LUCB within
batches of size M to separate out an ε-optimal winner effi-
ciently. Batches are repeatedly refreshed until N(ρ, δ) arms
have been evaluated. Note that a batch size of 2 corresponds
to only storing the “currently maximal” arm and its chal-
lenger.

Algorithm 2: P2

Input: A, PA, ρ, ε, δ, memory size M ≥ 2.
Output: a ∈ A.

1 δ0 = (δ/2)b(M − 1)/(N(ρ, δ)− 1)c.
2 Choose an arm from A according to PA; place it in the set S.

narms = 1.
3 while narms < N(ρ, δ) do
4 Choose min{M − 1, N(ρ, δ)− narms} arms from A

according to PA; place them in the set R.
5 S = S ∪R; narms = narms+ |R|.
6 a = LUCB(|S|, S, subset size = 1, ε, δ0).
7 S := {a}.

The correctness of P2 is achieved by setting the mistake
probability passed to LUCB accordingly. There are two sep-
arate aspects contributing to the sample complexity of P2:
the hardness of a randomly chosen M -sized bandit instance,
and the sequence in which such batches are encountered
(since they are always compared with the currently maximal
arm). It is easy to see that for the available memory size M ,
P2 needsO((N(ρ, δ)/ε2) log(N(ρ, δ)/(Mδ))) samples if it
uses Median Elimination. Evidently the use of LUCB leads
to lesser sample complexity. We verify this fact experimen-
tally. Our experiments also validate the intuition that larger
batch sizes lead to more efficiency.

5 Experiment and Results
We evaluateF2 by comparing it with (1) LUCB (Kalyanakr-
ishnan et al. 2012), which can be applied with any setting
of the subset size from 1 to m, and with (2) uniform sam-
pling. All the algorithms terminate based on F2’s stopping



Table 1: I1: all arms except the best arm has the same mean.
I2: difference of mean between two consecutive arms is the
same. I3: the best 4 arms have the same mean and also the
worst 6 arms have the same mean which is different from
that of the best 4.

Arms: a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

I1 0.99 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
I2 0.99 0.88 0.77 0.66 0.55 0.44 0.33 0.22 0.11 0.01
I3 0.99 0.99 0.99 0.99 0.7 0.7 0.7 0.7 0.7 0.7

rule. We simulate rewards based on Bernoulli distributions.
For all algorithms we use KL-divergence based confidence
bounds (Cappé et al. 2013; Kaufmann and Kalyanakrish-
nan 2013), which, in our experiments, give at least a 10-fold
improvement over the Hoeffding-based bounds used in Sec-
tion 4 for the purposes of illustration.

We consider three 10-armed bandit instances, which are
described in Table 1. We set m = 4, ε = 0 and δ = 0.001.
The corresponding sample complexity is plotted in Fig-
ure 1(a). Observe that F2 outperforms both uniform sam-
pling and LUCB on all three instances. Since µa4 = µa5
and ε = 0, LUCB with a subset size of 4 does not terminate
on instance I1. On the other hand, F2 quickly identifies a1.
Figures 1(b) and 1(c) show the distribution of pulls across
the arms on I1 and I2, respectively: F2 seldom samples any
single arm more than any of the other algorithms.

Although F2 is more efficient than LUCB on Q-F,
both algorithms take progressively longer to terminate as
the number of arms is increased. Figure 1(d) shows the
performance of F2 on four bandit instances, with n =
20, 100, 1000, and 3000, respectively. Each instance con-
tains four equal-sized groups of arms, whose expected re-
wards are 0.99, 0.66, 0.33, and 0.01. After setting ρ =
0.1, ε = 0.05, and δ = 0.001, we pass a subset size of
m = ρn to F2. Observe that even as the complexity of F2

increases with n, those of the other three algorithms in the
figure—P2 with batch sizes of 2, 30, and 77 (= N(ρ, δ))—
remains constant. On the 3000-armed instance, P2 is sig-
nificantly better with any of these memory sizes; on each
instance, a larger memory size leads to faster termination.
Thus, in applications with a large number of arms, P2 is the
method of choice.

6 Conclusion
This paper presents a PAC problem formulation for identify-
ing an arm in a multi-armed bandit whose mean lies within
a specified tolerance of a specified quantile. This problem
is easier to solve than related problems studied previously
in the literature (Even-Dar, Mannor, and Mansour 2002;
Kalyanakrishnan and Stone 2010), and unlike them, re-
mains viable to solve even when the number of arms is
large (possibly infinite). Our formulation is similar to an-
other previously-proposed one in which an arm that exceeds
a specified reward threshold is to be returned (Goschin et al.
2012). It might not be easy for an experimenter to guess a
suitable (or even valid) reward threshold; by contrast, our
problem (in terms of quantiles) is well-defined for every
bandit instance.

(a)

(b)

(c)

(d)

Figure 1: Sample complexity ofF2, P2, LUCB (with differ-
ent subset sizes) and uniform sampling. The y axis of each
graph shows the sample complexity (averaged over 100 in-
dependent runs, with error bars corresponding to one stan-
dard error of the mean). Full details are provided in Sec-
tion 5.



We discuss two variants of our problem: when the arms
can be enumerated, and when they can only be chosen at
random. We present upper and lower bounds for both cases.
We then adapt the fully sequential algorithm designed for
a related problem (Kalyanakrishnan et al. 2012) to address
ours. We furnish an instance-specific upper bound on the ex-
pected sample complexity that improves upon previous re-
sults. For infinite-armed bandits, we also demonstrate that
whereas a PAC algorithm only requires finite memory, a
larger memory-size can be used effectively to cut down the
number of samples needed.

We also plan to compare our algorithms with ones
that do make structural assumptions on the arms and re-
wards (Kleinberg, Slivkins, and Upfal 2008)—and espe-
cially identify the domains in which combining these con-
trasting approaches would be beneficial.

7 Acknowledgments
We are grateful to Peter Auer for guiding the derivation of
a lower bound for Q-F. We are also thankful to the anony-
mous reviewers for their comments. Shivaram Kalyanakr-
ishnan was partially supported by DST INSPIRE Faculty
grant DST/INSPIRE/04/2013/001156.

References
Agrawal, R. 1995. The continuum-armed bandit problem.
SIAM J. Control Optim. 33(6):1926–1951.
Amaran, S.; Sahinidis, N. V.; Sharda, B.; and Bury, S. J.
2015. Simulation optimization: a review of algorithms and
applications. Annals of Op. Res. 1–30.
Audibert, J.-Y.; Bubeck, S.; and Munos, R. 2010. Best arm
identification in multi-armed bandits. In Proc. COLT 2010,
41–53. Omnipress.
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E.
2003. The nonstochastic multiarmed bandit problem. SIAM
J. Comput. 32(1):48–77.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2-3):235–256.
Auer, P.; Ortner, R.; and Szepesvári, C. 2007. Improved
rates for the stochastic continuum-armed bandit problem. In
Proc. COLT 2007, 454–468. Springer.
Berry, D., and Fristedt, B. 1985. Bandit Problems: Sequen-
tial Allocation of Experiments. Monographs on Statistics
and Applied Probability Series. Chapman & Hall.
Berry, D. A.; Chen, R. W.; Zame, A.; Heath, D. C.; and
Shepp, L. A. 1997. Bandit Problems With Infinitely Many
Arms. The Annals of Statistics 25(5):2103–2116.
Cappé, O.; Garivier, A.; Maillard, O.-A.; Munos, R.; and
Stoltz, G. 2013. Kullback-Leibler upper confidence bounds
for optimal sequential allocation. Annals of Statistics
41(3):1516–1541.
Carpentier, A., and Valko, M. 2015. Simple regret for in-
finitely many armed bandits. In Proc. ICML 2015, 1133–
1141. JMLR.

Chaudhuri, K.; Freund, Y.; and Hsu, D. J. 2009. A
parameter-free hedging algorithm. In Bengio, Y.; Schuur-
mans, D.; Lafferty, J. D.; Williams, C. K. I.; and Culotta, A.,
eds., Advances in Neural Information Processing Systems
22. Curran Associates, Inc. 297–305.

Even-Dar, E.; Mannor, S.; and Mansour, Y. 2002. PAC
bounds for multi-armed bandit and markov decision pro-
cesses. In In Fifteenth Annual Conference on Computational
Learning Theory (COLT), 255–270.

Goschin, S.; Weinstein, A.; Littman, M. L.; and Chastain,
E. 2012. Planning in reward-rich domains via PAC bandits.
In Proc. EWRL 2012, volume 24 of JMLR W & CP, 25–42.
JMLR.

Kalyanakrishnan, S., and Stone, P. 2010. Efficient selection
of multiple bandit arms: Theory and practice. In Proc. ICML
2010, 511–518. Omnipress.

Kalyanakrishnan, S.; Tewari, A.; Auer, P.; and Stone, P.
2012. PAC subset selection in stochastic multi-armed ban-
dits. In Proc. ICML 2012, 655–662. Omnipress.

Kalyanakrishnan, S. 2011. Learning Methods for Sequen-
tial Decision Making with Imperfect Representations. Ph.D.
Dissertation, The University of Texas at Austin.

Kaufmann, E., and Kalyanakrishnan, S. 2013. Information
complexity in bandit subset selection. In Proc. COLT 2013,
volume 30 of JMLR W&CP, 228–251. JMLR.

Kleinberg, R.; Slivkins, A.; and Upfal, E. 2008. Multi-armed
bandits in metric spaces. In Proc. STOC 2008, 681–690.
ACM.

Kleinberg, R. 2005. Nearly tight bounds for the continuum-
armed bandit problem. In Advances in Neural Information
Processing Systems 17, 697–704. MIT Press.

Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010.
A contextual-bandit approach to personalized news article
recommendation. In Proc. WWW 2010, 661–670. ACM.

Mannor, S.; Tsitsiklis, J. N.; Bennett, K.; and Cesa-bianchi,
N. 2004. The sample complexity of exploration in the multi-
armed bandit problem. JMLR 5:623–648.

Robbins, H. 1952. Some aspects of the sequential design of
experiments. Bulletin of the American Mathematical Society
58(5):527–535.

Szörényi, B.; Busa-Fekete, R.; Weng, P.; and Hüllermeier,
E. 2015. Qualitative multi-armed bandits: A quantile-based
approach. In 32nd International Conference on Machine
Learning, 1660–1668.

Wang, Y.; Audibert, J.-Y.; and Munos, R. 2008. Algo-
rithms for infinitely many-armed bandits. In Proceedings
of the 21st International Conference on Neural Information
Processing Systems, NIPS’08. USA: Curran Associates Inc.
1729–1736.



8 Supplemental Material
This section provides supplemental material for the paper
“PAC Identification of a Bandit Arm Relative to a Reward
Quantile”. Subsection 8.1 contains a proof of Theorem 3.3.
In Subsection 8.2 we present the proof of Theorem 4.1 and
correctness of the Algorithm 1.

8.1 Proof of the Theorem 3.3
Bandit Instances: The proof technique for Theorem 3.3
follows a path similar to that of Theorem 8 of Kalyanakrish-
nan et al. (2012), but differs in the fact that only one of the
(ε,m)-optimal arms needs to be returned instead of all the
m.

Assume we are given a set of n arms A =
{0, 1, 2, · · · , n − 1}. Let I0 = {0, 1, 2, · · · ,m − 1} and
Im = {I : I ⊆ {A \ I0} ∧ |I| = m}. With each
I ∈ {I0} ∪ Im we associate an n-armed bandit instance
BI , in which each arm a produces a reward from a Bernoulli
distribution with mean µa defined as:

µa =


1
2 if a ∈ I0
1
2 + 2ε if a ∈ I for I 6= I0
1
2 − 2ε else.

(1)

Notice that there is no arm a in BI0 , such that µa = 1
2 + 2ε.

Also ∀I ∈ {I0} ∪ Im there are exactly m (ε,m)-optimal
arms. For I = I0, all of those (ε,m)-optimal arms are in I0
and for I ∈ Im they are in I . The key idea of the proof is that
without sufficient sampling of each arm, it is not possible to
correctly identify one of the (ε,m)-optimal arms with high
probability.

Bounding Error Probability:

Theorem 3.3. For 0 < ε ≤ 1√
32

, 0 < δ ≤ e−1

4 , and n ≥
2m an algorithm L that solves Q-F must incur a sample
complexity of at least 1

306 .
1
ε2 .

n
m ln

(
1
4δ

)
.

We shall prove the theorem by first making the following
assumption, which we shall demonstrate leads to a contra-
diction.

Assumption 1. There exists an algorithm L that solves all
instances of Q-F incurring sample complexity of at most
C
ε2 .

n
m ln

(
1
4δ

)
where C = 1

306 .

For convenience we denote by PI the probability distri-
bution induced by the bandit instance BI and the possible
randomisation introduced by the algorithm L. Also let aL be
the arm returned (output) by L and TS be the total number
of times the arms in S ⊆ A get sampled before L produces
the output. As L is (ε,m)-optimal, therefore for the instance
BI0 ,

PI0{aL ∈ I0} ≥ 1− δ. (2)

By Assumption 1

EI0 [TA] ≤ C

ε2
.
n

m
ln

(
1

4δ

)
. (3)

Changing PI0 to PJ where J ∈ Im: If Assumption (1) is
correct, then for the instance BI0 , there must exist an in-
stance J ∈ Im such that EI0 [TJ ] ≤ C

ε2 ln
(

1
4δ

)
. Define

T ∗ = 4C
ε2 ln

(
1
4δ

)
. Then using Markov’s inequality we get:

PI0 {TJ ≥ T ∗} <
1

4
. (4)

Let ∆ = 2εT ∗+
√
T ∗ and also letKJ be the total rewards

obtained from J .
Lemma 8.1. For J ∈ Im

PI0
{
TJ ≤ T ∗ ∧KJ ≤

TJ
2
−∆

}
≤ 1

4
.

Proof. Let KJ(t) be the total sum obtained from J at the
end of the trial t. As for BI0 , ∀j ∈ J µj = 1/2− 2ε, hence
selecting and pulling one arm at each trial from J following
any rule (deterministic or probabilistic) is equivalent to se-
lection of a single arm from J for once and subsequently per-
form pulls on it. Hence whatever be the strategy of pulling
one arm at each trial from J , the expected reward for each
pull will be 1/2 − 2ε. Let ri be the i.i.d. reward obtained
from the ith trial. Then KJ(t) =

∑t
i=1 ri and V ar [ri] =(

1
2 − 2ε

) (
1
2 + 2ε

)
=
(

1
4 − 4ε2

)
< 1

4 . As ∀i : 1 ≤ i ≤ t, ri
are i.i.d., we get V ar[KJ(t)] =

∑t
i=1 V ar(ri) <

t
4 . Now

we can write the following:

PI0
{

min
1≤t≤T∗

(
KJ(t)− t

(
1

2
− 2ε

))
≤ −
√
T ∗
}

≤ PI0
{

max
1≤t≤T∗

∣∣∣∣KJ(t)− t
(

1

2
− 2ε

)∣∣∣∣ ≥ √T ∗}
≤ V ar[KJ(T ∗)]

T ∗
<

1

4
, (5)

wherein we have used Kolmogorov’s inequality.

Lemma 8.2. Let J ∈ Im and let W be some fixed sequence
of rewards obtained by a single run of algorithm L on BI0
such that TJ ≤ T ∗ and KJ ≥ TJ

2 −∆, then:
PJ{W} > PI0{W} · exp(−16ε∆). (6)

Proof. Recall the fact that all the arms in J have the same
mean. Hence, if chosen one at each trial (following any strat-
egy), the expected reward at each trial remains the same.
Hence the probability of getting a given reward sequence
generated from J is independent of the sampling strategy.
Again as the arms in J have higher mean in BJ , the proba-
bility of getting the sequence (of rewards) decreases mono-
tonically as the 1-rewards for BI0 become fewer. So we get

PJ{W} = PI0{W}
(

1
2 + 2ε

)KJ ( 1
2 − 2ε

)TJ−KJ(
1
2 − 2ε

)KJ ( 1
2 + 2ε

)TJ−KJ
≥ PI0{W}

(
1
2 + 2ε

)(TJ
2 −∆

) (
1
2 − 2ε

)(TJ
2 +∆

)
(

1
2 − 2ε

)(TJ
2 −∆

) (
1
2 + 2ε

)(TJ
2 +∆

)

= PI0{W} ·
( 1

2 − 2ε
1
2 + 2ε

)2∆

> PI0{W} · exp(−16ε∆)

[
for 0 < ε ≤ 1√

32

]
.



Lemma 8.3. If (4) holds for an instance J ∈ Im and ifW
is the set of all possible reward sequences W , obtained by
algorithm L on BI0 , then:

PJ{W} >
(
PI0 {W} −

1

2

)
· 4δ.

In particular
PJ{aL ∈ I0} > δ. (7)

Proof. Let for some fixed sequence (of rewards) W , TWJ
and KW

J respectively denote the total number of samples
received by the arms in J and the total number of 1-rewards
obtained before the algorithm L stopped. Then:

PJ{W} = PJ(W : W ∈ W)

≥ PJ
{
W : W ∈ W

∧
TWJ ≤ T ∗

∧
KW
J ≥

TWJ
2
−∆

}
> PI0

{
W : W ∈ W

∧
TWJ ≤ T ∗

∧
KW
J ≥

TWJ
2
−∆

}
· exp(−16ε∆)

≥
(
PI0
{
W : W ∈ W

∧
TWJ ≤ T ∗

}
− 1

4

)
· exp(−16ε∆)

≥
(
PI0 {W} −

1

2

)
· 4δ for C =

1

306
, δ <

e−1

4
.

In the above, the 3rd, 4th and the last step are obtained us-
ing Lemma 8.2, Lemma 8.1 and Equation (4) respectively.
The inequality (7) is obtained by using inequality (2), that
is, PI0{aL ∈ I0} > 1− δ ≥ 1− e−1

4 > 3
4 .

Hence we get a contradiction to Assumption 1, thereby
proving the theorem.

8.2 Analysis of Q-F
In this section we shall upper bound the sample complex-
ity of the Algorithm 1 and also show its correctness. Re-
call that at each step, the algorithm pulls three “contentious”
arms. We shall show that if the algorithm has not termi-
nated at round t and CROSSta does not occur for any
a ∈ A, either of ErrU ta, ErrLta or Needyta must have
occurred. We shall also show that if enough number of
samples are taken, the probability of these events are suf-
ficiently small. For the following proofs we have assumed

u∗(a, t) =

⌈
1

2 max{∆a,
ε
2}2

ln
(
knt4

δ

)⌉
, where k = 5/4.

Some of the proofs are taken from the thesis of Kalyanakr-
ishnan (2011).

Lemma 8.4 (UCB and LCB Comparison). At any time in-
stant t > 0, it holds that: P [ErrU ta] ≤ δ

knt4 if uta ≥
4u∗(a, t), and P [ErrLta] ≤ δ

knt4 if ut1 ≥ 4u∗(a, t). There-
fore

P
[
∃a ∈ B3 : ErrU ta|uta ≥ 4u∗(a, t)

]
≤ n−m

n
· δ
kt4

<
δ

kt4
,

and similarly

P
[
∃a ∈ B3 : ErrLta|ut1 ≥ 4u∗(a, t)

]
<

δ

kt4
. (8)

Proof. This follows from the line of proof of Theorem 1
in (Auer, Cesa-Bianchi, and Fischer 2002). Assuming ∀a ∈
A, β(a, t, δ) =

√
1

2uta
ln
(
knt4

δ

)
, we see that P [ErrU ta] =

P [ucb(a, t) > ucb(a1, t)] = P [p̂ta + β(a, t, δ) > p̂1 +
β(a1, t, δ)]. ThusErrU ta occurs if at least one of the follow-
ing occurs: p̂ta > µa + β(a, t, δ) or p̂t1 < µ1 − β(a1, t, δ) or
2β(a, t, δ) > µ1 − µa Now using Hoeffding bound P [p̂ta >
µa + β(a, t, δ)] ≤ δ/knt4 and P [p̂t1 < µ1 − β(a1, t, δ)] ≤
δ/knt4. For t ≥ (2/∆2

a) ln(knt4/δ) β(a, t, δ) < (µ1 −
µa)/2. Hence the proof follows. Upper bounding P [ErrLta]
follows in a similar way.

Lemma 8.5 (Separation). For any time instant t > 0, it
holds that:
P [Needyta|uta ≥ 16u∗(a, t)] ≤ δ

knt4 . Hence
P [∃a : Needyta|uta ≥ 16u∗(a, t)] ≤ δ

kt4 .

Proof. Recall thatNeedyta is defined for arm a inB1 orB3.
If a ∈ B1 then:

P
[
lcb(a, uta) < µa −

∆am+1

2

∣∣∣uta ≥ 16u∗(a, t)
]

≤ P
[
p̂a < µa −

∆am+1

4

∣∣∣uta ≥ 16u∗(a, t)
]
≤ δ

knt4 . (9)

Else if a ∈ B3 then:

P
[
ucb(a, uta) < µa +

∆am+1

2

∣∣∣uta ≥ 16u∗(a, t)
]

≤ P
[
p̂a < µa +

∆am+1

4

∣∣∣uta ≥ 16u∗(a, t)
]
≤ δ

knt4 .(10)

We take a union bound to prove the second statement.

Lemma 8.6 (Cross). ∀a ∈ A and ∀t ≥ 0, P [CROSSta] ≤
δ

knt4 . Hence we get:

P
[
∃t ≥ 0 ∧ ∃a ∈ A : CROSSta|uta ≥ 0

]
≤ δ

kt3
.

Lemma 8.7. Let CROSSt def
= ∃a ∈ A : CROSSta,

Needyt
def
= ∃a : Needyta and Termt def

= ucb(lt∗, t + 1) −
lcb(ht∗, t + 1) < ε. If the algorithm has not terminated at
round t and CROSSt does not occur, then ∃a ∈ B1 ∪ B3

for which ErrU ta, ErrLta or Needyt must have occurred.

Proof. Let β(a, t) =
√

1
2uta

ln
(
knt4

δ

)
. First we shall show

that (ErrU ta ∨ErrLta)∧¬Termt ⇒ CROSSt ∨Needyt,
and then ¬CROSSt ∧ ¬Needyt ⇒ Termt.

To prove the first part it is sufficient to prove that
(ErrU ta ∨ ErrLta) ∧ ¬Termt ∧ ¬Needyt ⇒ CROSSt.



For b1 ∈ B1, b3 ∈ B3, to prove that ErrLta ∧ ¬Termt ∧
¬Needyt ⇒ CROSSt, notice that ErrLta ∧ ¬Termt ⇒
∃b1 ∈ B1 and b3 ∈ B3, such that

p̂tb1 − β(b1, t) < p̂tb3 − β(b3, t) and

p̂tb1 − β(b1, t) + ε < p̂tb3 + β(b3, t).

Therefore, p̂tb1 − β(b1, t) + ε/2 < p̂tb3 [since ¬Needyt]
⇒ p̂tb1 − p̂

t
b3 < β(b1, t)− ε/2 < 0 [since ¬Needyt]

⇒ CROSSt.

Similarly it can be shown that ErrU ta ∧ ¬Termt ∧
¬Needyt ⇒ CROSSt.

So, we are left to prove that ¬CROSSt ∧ ¬Needyt ⇒
Termt i.e. ¬Needyt ∧ ¬Termt ⇒ CROSSt. Now
¬Termt ⇒ ∃b1 ∈ B1 and b3 ∈ B3 : lcb(b3, t) −
ucb(b1, t) > ε ⇒ p̂tb1 − p̂tb3 < (β(b1, t) + β(b3, t)) − ε.
Because of ¬Needyt, each of β(b1, t) and β(b3, t) is less
than ε/2. Hence we get ¬Needyt ∧ ¬Termt ⇒ p̂tb1 −
p̂tb3 < 0, which implies (due to ¬Needyt) the occurrence
of CROSSt.

Lemma 8.8. If T = CHε ln
(
Hε
δ

)
, then for C ≥ 604, the

following holds:

T > 2 + 32
∑
a∈A

u∗(a, T ).

Proof. This proof is taken from Appendix B.3 of PhD thesis
of Kalyanakrishnan (2011).

2 + 32
∑
a∈A

u∗(a, T )

= 2 + 32
∑
a∈A

⌈
1

2 max(∆a, (ε/2))2
ln
knt4

δ

⌉

≤ 2 + 32n+ 16Hε ln
knT 4

δ

= 2 + 32n+ 16Hε + ln k + 16Hε ln
n

δ
+ 64Hε lnT

< (34 + 16 ln k)Hε + 16Hε ln
n

δ

+ 64Hε

[
lnC + lnHε + ln ln

Hε

δ

]
< (34 + 16 ln k)Hε + 16Hε ln

n

δ

+ 64Hε

[
lnC + lnHε + ln

Hε

δ

]
< 50Hε + 16Hε ln

n

δ

+ 64Hε

[
lnC + lnHε + ln

Hε

δ

]
< 50Hε + 16Hε ln

Hε

δ

+ 64Hε

[
lnC + 2 ln

Hε

δ

]

< (194 + 64 lnC)Hε ln
Hε

δ

< CHε ln
Hε

δ
[For C ≥ 604] .

Lemma 8.9. Let T ∗ =

⌈
604Hε ln

(
Hε
δ

)⌉
. For every T >

T ∗1 , the probability that the Algorithm 1 has not terminated
after T rounds of sampling is at most 8δ

T 2 .

Proof. Letting T̄ = T
2 we define two events for T̄ ≤ t ≤

T − 1: E(1) = ∃a ∈ A : CROSSta and E(2) = ∃(ErrU ta ∨
ErrLta ∨ Needyta). If the algorithm stops for t < T̄ , then
there is nothing to prove. On the contrary let the algorithm
has not stopped after t > T̄ and neither E(1) nor E(2) has
occurred. Then the number of rounds (beyond T̄ ) required,
can be upper bounded as:

#rounds =
∑
t=T̄

11[Needytht∗ ∨Needy
t
lt∗

]

≤
T−1∑
T̄

∑
a∈A

11[(a ∈ {ht∗, lt∗}) ∧Needyta]

=

T−1∑
T̄

∑
a∈A

11[(a ∈ {ht∗, lt∗}) ∧ (uta < 16u∗(a, t)))]

≤
T−1∑
T̄

∑
a∈A

11[(a ∈ {ht∗, lt∗}) ∧ (uta < 16u∗(a, t)))]

≤
∑
a∈A

T−1∑
T̄

11[(a ∈ {ht∗, lt∗}) ∧ (uta < 16u∗(a, t)))]

≤
∑
a∈A

16u∗(a, t).

Using Lemma 8.8, T ≥ T ∗ ⇒ T > 2 + 32
∑
a∈A u

∗(a, t).
Hence if neither E(1) nor E(2) occurs then the algo-
rithm runs for at most T̄ + #rounds ≤ dT/2e +∑
a∈A 16u∗(a, t) < T number of rounds.
The probability that the algorithm doesn’t stop within

T rounds is upper-bounded by P [E(1) ∨ E(2)]. Applying
Lemma 8.4 and Lemma 8.5,

P [E(1) ∨ E(2)] ≤
T−1∑
t=T̄

(
δ

kt3
+

δ

kt4
+

δ

kt4
+

δ

kt4

)

≤
T−1∑
t=T̄

δ

kt3

(
1 +

3

t

)
≤

(
T

2

)
8δ

kT 3

(
1 +

6

T

)
<

8δ

T 2
.

Theorem 4.1. The expected sample complexity of the Algo-
rithm 1 can be upper bounded as

E[SC] ≤ O
(
Hε ln

(
Hε

δ

))
. (11)



Theorem 8.10 (Correctness). Algorithm F2 solves Q-F.

Proof. Here we need to prove that, if the F2 stops, it returns
an arm from B3 with probability at most δ.

Suppose F2 stops after round t, and returns an arm (say
b3) from B3. Then ∃ an arm b ∈ (B1 ∪ B2) ∩ At3. Now
this can occur only if either CROSStb or CROSStb3 occurs.
However by the Lemma 8.6, this probability is bounded by
δ/t3. Now taking union bound over time t, we prove the the-
orem.


