
In Proc. AAAI 2020. To appear.

Regret Minimisation in Multi-Armed Bandits Using Bounded Arm Memory

Arghya Roy Chaudhuri, Shivaram Kalyanakrishnan
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
Mumbai 400076 India

{arghya, shivaram}@cse.iitb.ac.in

Abstract
Regret minimisation in stochastic multi-armed bandits is a
well-studied problem, for which several optimal algorithms
have been proposed. Such algorithms depend on (sufficient
statistics of) the empirical reward distributions of the arms
to decide which arm to pull next. In this paper, we consider
the design of algorithms that are constrained to store statistics
from only a bounded number of arms. For bandits with a finite
set of arms, we derive a sub-linear upper bound on the regret
that decreases with the “arm memory” size M . For instances
with a large, possibly infinite, set of arms, we show a sub-linear
bound on the quantile regret.
Our problem formulation generalises that of Liau et al. (2018),
who fix M = O(1), and so do not obtain bounds that depend
on M . More importantly, our algorithms keep exploration and
exploitation tightly coupled, without a dedicated exploration
phase as employed by Liau et al. (2018). Although this choice
makes our analysis harder, it leads to much-improved practical
performance. For bandits with a large number of arms and
no known structure on the rewards, our algorithms serve as
a viable option. Unlike many other approaches to restrict the
memory of bandit algorithms, our algorithms do not need any
additional technical assumptions.

1 Introduction
We consider the well-studied problem of regret minimi-
sation in stochastic multi-armed bandits (Robbins 1952;
Berry and Fristedt 1985), which has applications in areas
as diverse as drug-testing (Armitage 1960; Colton 1963),
crowd-sourcing (Tran-Thanh et al. 2014), and on-line ad-
vertising (Li et al. 2010). Having to maximise its rewards
by sequentially sampling unknown distributions, an agent
must strike an optimal balance between exploring all the dis-
tributions and exploiting the most rewarding ones. Several
algorithms have been proposed in the literature (Auer, Cesa-
Bianchi, and Fischer 2002; Audibert and Bubeck 2009) with
their loss (or regret) within a constant factor of optimal (Lai
and Robbins 1985; Auer et al. 2003). Invariably, these al-
gorithms maintain statistics of the pulls performed on each
arm (such as the number of pulls and the observed mean
reward); on every round, they determine the next arm to pull

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

based on this empirical evidence. Hence, even if a constant
number of statistics are recorded for each arm, the memory
size needed to run such algorithms is linear in the number of
arms. In this paper, we consider a setup in which algorithms
may only store statistics from a fixed, specified, number of
arms, M ≥ 2.

Our setting is motivated by a number of practical appli-
cations, and is also of independent theoretical interest. In
crowd-sourcing (Tran-Thanh et al. 2014) instead of tasking
all the available workers simultaneously, an experimenter is
often constrained to recruit a fixed number of workers for a
given duration and assign jobs sequentially among them. In
on-line advertising (Schwartz, Bradlow, and Fader 2017) an
ad agency might have a large number of products to advertise,
but the budget or space only to display a small, fixed number
of ads for some specified period.

Researchers have long been drawn to the design of learn-
ing agents with a bounded memory size—starting with
problems in hypothesis testing (Robbins 1956; Isbell 1959;
Cover, Freedman, and Hellman 1976). In the context of ban-
dits, Cover (1968) considers the realisation of an algorithm
as a finite state machine, which for two-armed Bernoulli
instances, asymptotically converges to the optimal average
reward. The model we present in this paper does allow the
memory size to depend on the horizon—but restricts that
the memory be populated based on rewards from a bounded
number of arms. To the best of our knowledge, the earliest
analysis of such a constraint was undertaken by Herschkorn,
Peköz, and Ross (1996). They present a non-recalling algo-
rithm, which can store statistics from only a single arm (that
is, M = 1). For infinite bandit instances with Bernoulli arms,
their algorithm maximises the almost sure average reward
over an infinite horizon. Berry et al. (1997) improve these
results when the sampling distribution over the infinite set of
Bernoulli arms is uniform. Peköz (2003) demonstrates pecu-
liarities that arise in this setting if the the reward distributions
of the arms are not stochastically-ordered.

With M = 1, an algorithm essentially has to begin afresh
when it replaces the arm in its memory with a new one.
Hence, the design of algorithms in this regime mainly fo-
cuses on an optimal schedule for sampling and erasing from
memory. The algorithms are also restricted to 0-1 reward

distributions, which are intimately tied to decision making.
Expanding the memory size toM ≥ 2 opens up a completely
new dimension, since one or more “good” arms can be kept
in memory as a safeguard against bad luck. Indeed Liau et
al. (2018) have recently proposed UCBCONSTANTSPACE,
an algorithm that achieves sub-linear regret for finite bandit
instances when M = 4. Unlike previous results, their bounds
hold in finite time, and for arbitrary bounded reward distribu-
tions. Yet, their result is limited in three respects, all of which
we address in this paper.

The algorithm proposed by Liau et al. (2018) follows an
“explore-then-commit” paradigm, wherein a pure-exploration
phase targeted at identifying a rewarding arm is followed
by a phase to exploit the same arm. The primary technical
contribution of Liau et al. (2018) is therefore a best arm
identification algorithm that needs to remember the statistics
of exactly four arms at any time. Whereas this approach
greatly simplifies the analysis—and delivers sub-linear regret
in finite bandits—it is known to be inferior to strategies that
fully interleave exploration and exploitation (Agrawal and
Goyal 2013; Auer, Cesa-Bianchi, and Fischer 2002). Our
algorithm, UCB-M, adopts the latter approach, which, as
expected, performs much better in practice. We also formally
show a sub-linear regret bound for UCB-M.

Even if they restrict the arm memory size, Liau et al. (2018)
require that their algorithm eventually sample all the arms in
the bandit instance. In other words, they assume that there is
sufficient time to pull all the arms even if there is not space to
simultaneously monitor all the arms. In modern applications,
the constraint is usually the opposite: one is apt to run out of
time before running out of space. With an eye on practical
relevance, we devise an algorithm, QUCB-M, which does
not have to explore the entire set of arms. Naturally we cannot
guarantee sub-linear regret for QUCB-M, as we do for UCB-
M. However, we show a sub-linear bound on the quantile
regret (Roy Chaudhuri and Kalyanakrishnan 2018)—which
applies even when the set of arms is infinite.

We design our algorithms to work with an arbitrary arm
memory size M ≥ 2, given as an input parameter. Conse-
quently we obtain upper bounds on the regret and quantile
regret as functions of M . Such bounds are novel; the algo-
rithm and analysis of Liau et al. (2018) assume M is fixed to
4. Hence, in a scenario where the experimenter allows only
M < 4, UCBCONSTANTSPACE (Liau et al. 2018) will not
be a choice. Alternatively, if the experimenter allows M > 4,
UCBCONSTANTSPACE is again unable to take advantage of
the increased arm memory.

In short, restricting arm memory adds an extra layer to
the exploration-exploitation dilemma, which our algorithms
negotiate effectively. To the best of our knowledge, the struc-
ture and analysis of UCB-M are novel, and at any rate dis-
tinct from UCBCONSTANTSPACE (Liau et al. 2018). In fact,
UCB-M represents a whole spectrum of algorithms parame-
terised by the arm memory size. We formalise our problem
and then present our algorithms.

2 Problem Definition
A bandit instance B = (A,D) comprises a set of arms A
and a set of reward distributions D. Each arm a ∈ A, when

pulled, generates a reward drawn i.i.d. from the correspond-
ing reward distribution Da ∈ D, which we assume to be
supported in [0, 1]. The expected reward of arm a ∈ A is
given by µa = Er∼Da [r]. The experimenter has no infor-
mation regarding D, and can only gather knowledge about
it by pulling the arms. The experimenter’s interaction with
the bandit instance results in a history Ht at each round
t ≥ 1: Ht

def
= {(ai, ri)}ti=1, where, ri ∈ [0, 1] is the reward

produced at i-th step by pulling the arm ai ∈ A.

Regret Minimisation. Assuming µ∗ def
= min{y ∈ [0, 1] :

∀a ∈ A, µ(a) ≤ y}, and a given horizon of pulls T , the
(conventional) cumulative regret incurred by an algorithm is
defined as

R∗T
def
= Tµ∗ −

T∑
t=1

E[µat], (1)

where at is the arm pulled by the algorithm on round t.
The expectation is taken over random rewards and possi-
ble randomisation introduced by the algorithm. In recent
work, Roy Chaudhuri and Kalyanakrishnan (2018) introduce
“quantile regret”, an alternative measure of performance that
is especially relevant to infinite-armed bandits. Under their
definition, a problem instance I = (B, PA) consists of a
bandit instance B as well as a sampling distribution PA for
selecting arms fromA. Letting ρ ∈ [0, 1], the (1−ρ)-th quan-
tile of PA is given by µρ = inf{x ∈ [0, 1] : Pra∼PA{µa ≤
x} ≥ 1 − ρ}. Then, for a specified horizon T , the quantile
regret for parameter ρ, or the “ρ-regret”, is given by

RT (ρ)
def
= Tµρ −

T∑
t=1

E[µat]. (2)

If A is infinite, one cannot hope to achieve sub-linear regret
unless some side information is available regarding A and/or
D (for example, that the mean reward is a linear function of
features of the arms (Dani, Hayes, and Kakade 2008)). Yet,
even without side information, one can achieve sub-linear
ρ-regret for ρ > 0 (Roy Chaudhuri and Kalyanakrishnan
2018).

Word RAM Model. Constrained to use a bounded mem-
ory size, an algorithm can either curtail the precision with
which individual arms’ statistics are stored and/or store
statistics only from a small number of arms. In this pa-
per, we consider a model that allows individual arms’
sufficient statistics to be stored exactly, but which limits
the storage to a total of M such arms. We consider the
“word RAM” model (Aho, Hopcroft, and Ullman 1974;
Cormen et al. 2009), which considers a word as the unit
of space. This model assumes that each of the input values
and variables can be stored in O(1) word space. For finite
bandit instances (|A| <∞), assuming the horizon T � |A|,
we consider a word to consist of O(log T) bits. Therefore,
the O(M) words available to our algorithm result in a total
space complexity of O(M log(|A|T)) bits, where the addi-
tive log |A| bits are required to uniquely address the arms.

For infinite bandit instances (|A| =∞), assuming that the ex-
perimenter needs to analyse ρ-regret for some ρ ∈ [0, 1] and a
horizon T � 1/ρ, we take the word size asO(log(T/ρ)) bits,
which leads to a total space complexity of O(M log(T/ρ))
bits. In this case an algorithm encounters an arm only if it
is sampled by PA. It does not need the memory to address
every arm in A. Roughly O(1/ρ) arms need to be sampled
to get one from the top ρ-fraction of arms, and so we allow
each sampled arm to be indexed using O(log(1/ρ)) bits. We
refer to the set of arms stored in memory as the arm memory,
whose cardinality is at most M . Before pulling a new arm—
one that is not currently in the arm memory— the algorithm
must first load it in memory, possibly by deleting an existing
arm.

Our aim is to devise algorithms that minimise (conven-
tional) regret and quantile regret while using an arm memory
of size at most M ; below we formalise these two problems.

CR-M. An algorithm L is said to solve CR-M if for all
bandit instances (A,D) and M ≥ 2: for a sufficiently large
horizon T (not necessarily known beforehand), L achieves
R∗T ∈ o(T) using an arm memory size at most M .

QR-M. An algorithm L is said to solve QR-M if for all
problem instances (B, PA) and M ≥ 2: for all ρ ∈ (0, 1] and
sufficiently large horizon T (that depends on ρ, and may not
necessarily known beforehand), L achieves RT (ρ) ∈ o(T)
using an arm memory size at most M .

In the following section, we outline the building blocks
of our algorithms for solving CR-M and QR-M. These al-
gorithms are then presented in detail in sections 4 and 5,
respectively.

3 Key Intuitions
To get familiar with our approach, first consider our sim-
pler problem: CR-M for finite bandit instances (|A| <∞).
Assume M < |A|; otherwise one may apply regular algo-
rithms such as UCB1 (Auer, Cesa-Bianchi, and Fischer 2002).
Also assume, to simplify our argument, that there is a unique
optimal arm a∗ ∈ A.

Minimising a Product of Probabilities. Intuitively, an al-
gorithm that solves CR-M for finite bandit instances must
ensure that the probability of pulling a∗ is increased by pro-
gressively increasing at least one of two probabilities: (1)
the probability that a∗ is in arm memory, and (2) if a∗ is
in arm memory, the probability that it will be pulled more
often than the other arms in arm memory. For any algorithm
that achieves sub-linear regret, we can write, with T denot-
ing horizon: R∗T ∈ o(T) =⇒ limT→∞R∗T /T = 0 =⇒
limT→∞

∑T
t=1 Pr{at = a∗}/T = 1. Now, imposing the

arm memory constraint, and letting Xt be the arm memory at
t-th pull, we notice {at = a∗} =⇒ {a∗ ∈ Xt}. Therefore,

Pr{at = a∗} = EXt [Pr{at = a∗|a∗ ∈ Xt}Pr{a∗ ∈ Xt}]. (3)

Given a bandit instance, the UCBCONSTANTSPACE algo-
rithm of Liau et al. (2018) first solves a pure-exploration prob-
lem up to a horizon T̄ to maximise the quantity Pr{a∗ ∈ Xt}
in the R.H.S. of Equation (3). Once the number of pulls

crosses T̄ (which is determined based on the accrued re-
wards), the algorithm chooses the arm with the highest em-
pirical reward in Xt and assigns the remaining pulls to that
arm. Therefore, for t > T̄ , it switches to a pure-exploitation
mode, now looking to maximise Pr{at = a∗|a∗ ∈ XT̄ }.

We adopt a more balanced exploration strategy, aiming
to simultaneously increase Pr{a∗ ∈ Xt} and Pr{at =
a∗|a∗ ∈ Xt} throughout the sampling process—with no
explicit switch at T̄ . Note that for the sake of sufficient explo-
ration, an algorithm must not stick to the same arm memory
for too long. However, while selecting new arms (not in the
current arm memory), it must judiciously decide which arms
in memory to replace. It is desirable that the empirically-best
arms in memory do not get replaced—this would help retain
a∗ in memory if it is already present. Achieving this property
amounts to minimising simple regret, which is defined for
the t-th round to be µ∗ − E[µat] if at ∈ A denotes the arm
pulled by the algorithm (Bubeck, Munos, and Stoltz 2009).
To design our algorithms, we take advantage of a result by
Bubeck, Munos, and Stoltz (2009) on the relation between
(conventional) regret and simple regret.

Minimising Simple Regret. To present our approach, first
we recall the definition of a general forecaster (Bubeck,
Munos, and Stoltz 2009), depicted in Figure 1. Given a set of
armsA as input, at each step t, possibly depending on history
Ht−1, the forecaster selects an arm at by using a strategy
called the “allocation strategy”. By pulling at it receives
a reward rt. Then it executes a “recommendation strategy”
that takes Ht as the input and outputs an arm bt. The fore-
caster alternates between its allocation and recommendation
strategies until some stopping condition is met.

t = 1, H0 = {∅}.
While (stopping condition is not met){
1. Execute allocation strategy that possibly depending on
Ht−1 selects an arm at.

2. Pull the arm at, and get a reward rt. Update Ht = Ht−1 ∪
{(at, rt)}.

3. Execute recommendation strategy that possibly depending
on Ht outputs an arm recommendation bt. Update t =
t+ 1.
}

Figure 1: A general forecaster, as defined by Bubeck, Munos,
and Stoltz (2009).

In Figure 1, if bt ≡ at, then the cumulative regret (Equa-
tion 1, defined using at) of the forecaster is identical to the
sum of the simple regret over time steps t (defined using bt).
Theorem 1 by Bubeck, Munos, and Stoltz (2009) shows that
the simple and the cumulative regret cannot be minimised all
the way to optimality simultaneously. However, as a positive
result, they present an upper bound on the simple regret for
a number of forecasters (Bubeck, Munos, and Stoltz 2009,
Table 1), one of which is defined below.
UCB-MPA. A forecaster, which on each round uses
UCB1 (Auer, Cesa-Bianchi, and Fischer 2002) as the alloca-
tion strategy, and uses a recommendation strategy that outputs
the most played arm (MPA) thus far, is denoted UCB-MPA.

On their attempt to establish a problem-dependent upper
bound on the simple regret incurred by UCB-MPA, Bubeck,
Munos, and Stoltz (2009) [Section 4.2, Theorem 3] obtain a
problem-independent bound, which, interestingly, becomes
valid for horizons that exceed a problem-dependent threshold.
The problem-dependent bound they present closely resembles
the problem-independent bound, and does not offer much
additional insight. In this paper, we quote their problem-
independent upper bound (Bubeck, Munos, and Stoltz 2009,
Theorem 3) in Theorem 3.1 which becomes the cornerstone
of our analysis of UCB-M.

Theorem 3.1 (Theorem 3 in Bubeck, Munos, and Stoltz
(2009)). Given a K-sized set of arms A as input, if UCB-
MPA runs for a horizon of T pulls such that T ≥ K(K + 2),
then for some constant C > 0, its simple regret is at most
C
√
K log T/T .

In summary, although UCB1 was originally designed as
a regret minimisation algorithm (Auer, Cesa-Bianchi, and
Fischer 2002), it still performs reasonably well as an explo-
ration strategy—in fact ideal for the exploration-exploitation
balance we seek for CR-M. We choose UCB-MPA over
other forecasters as it is easy to comprehend and leads to a
simpler derivation. Next we present an algorithm for solving
CR-M on finite instances.

4 Algorithm for Finite-armed Bandit
Instances

We present UCB-M (which internally uses UCB-MPA) and
establish a problem-independent upper-bound on its cumula-
tive regret. We empirically compare UCB-M and its varia-
tions with the algorithm by Liau et al. (2018). In principle,
one may replace the underlying call to UCB1 with any other
allocation strategy, such as Thompson sampling (Agrawal
and Goyal 2012) or MOSS (Audibert and Bubeck 2009), as
we do in our experiments.

4.1 Upper-Bounding Conventional Regret
Algorithm 1 describes UCB-M, which solves CR-M on
finite bandit instances. We improve upon the contribution of
Liau et al. (2018) in three aspects: (1) UCB-M is empirically
seen to be more efficient even with M = 2 (as opposed
to M = 4 for theirs) as it avoids pure-exploration-based
elimination; (2) it scales with the arm memory size; (3) we
present a problem-independent upper bound on its regret.

Given a finite set of arms A (|A| = K < ∞) and arm
memory sizeM (2 ≤M < K), UCB-M approaches the task
in phases. It breaks each phase into h0 = d(K−1)/(M−1)e
sub-phases. Inside any phase w, at each sub-phase j, it runs
UCB-MPA on an M -sized subset of arms Sw,j (the arm
memory), assigns the recommended arm to â, and forwards
it to the next sub-phase. On the subsequent sub-phase (which
might belong to the next phase), it chooses M − 1 new arms
from A, along with the arm â forwarded from the previous
sub-phase, and repeat the previous steps. It is to be noted
that the horizon spent on each sub-phase of a phase w is the
same and is given by bw. Also, for w ≥ 2, the total horizon
spent in phase w is given by h0bw = 2h0bw−1. To satisfy

the assumption in Theorem 3 of Bubeck, Munos, and Stoltz
(2009), in the first phase, for each of the sub-phases, UCB-M
chooses a horizon of b1 = M(M + 2) pulls. For M ≥ K, as
the arm memory size is large enough, it effectively removes
the memory constraint. Without the constraint, it is preferable
to directly run UCB1 (Auer, Cesa-Bianchi, and Fischer 2002)
on the whole instance, which will incur a lower regret. We
handle this case within UCB-M. Theorem 4.1 upper-bounds
the regret incurred by the algorithm.

Algorithm 1: UCB-M: For finite bandit instances.
Input: A: the set of K arms indexed by [K], M(≥ 2): Arm

memory size.
1 if M ≥ K then
2 Run UCB1 on A until the horizon runs out.

3 else
4 b1 =M(M + 2). // Initial horizon per

sub-phase
5 â = 1. // Initial arm recommendation
6 w = 1. // Counts number of phases
7 h0 = d(K − 1)/(M − 1)e. // The number of

sub-phases in a phase
8 Randomly shuffle the arm indices.
9 while the horizon is not finished // start a new

phase
10 do
11 l = 0.
12 for each sub-phase j = 1, · · · , h0; if the horizon is

not finished do
13 Sw,j = {min{l + 1,K}, · · · ,min{l + 1 +

(M − 1),K}}.
14 l

def
= maxa{Sw,j \ â} if{
{â ∈ Sw,j} ∧ {â > 1 + maxa{Sw,j \ â}}

}
else maxa S

w,j .
15 if â 6∈ Sw,j then
16 Sw,j = {â} ∪ Sw,j \ {l}.
17 l = l − 1.

/* ALLOCATION STRATEGY */

18 Run UCB1 on Sw,j for horizon of bw pulls or
the remaining horizon; whichever is smaller.

/* RECOMMENDATION STRATEGY */

19 â
def
= The most played arm in Sw,j . // To be
forwarded to next sub-phase

20 w = w + 1. // Increment phase count
21 bw = 2 · bw−1. // Increment horizon per

sub-phase

Theorem 4.1. Given as input a set ofK armsA, withK ≥ 3,
and an arm memory size M , such that 2 ≤ M < K, for a
horizon of T pulls, with T > KM2(M +2), UCB-M incurs

regret R∗T = O
(
KM + (K3/2/M)

√
T log(T/KM)

)
.

Proof Summary. We outline our proof strategy here and
furnish the full proof in Appendix A (see supplemental mate-
rial for all our appendices). For a given bandit instance with
K arms, an arm memory size M , and horizon T , the total

number of phases is upper bounded by dlog2(2T/MK)e
(Lemma A.2). In each phase, UCB-M ensures that every arm
gets stored in the arm memory at least once (Corollary A.3).
This fact, along with Theorem 3.1 helps us upper-bound the
difference between the means of any optimal arm a∗ ∈ A,
and the best arm in the current arm memory (Lemma A.5).
We note that the regret incurred in each sub-phase is linearly
dependent on that difference (Equation (4)). As the budget
spent on each sub-phase progressively doubles in each phase,
that difference falls quickly towards zero, resulting a sub-
linear growth in regret. On the other hand, in each sub-phase
the incurred regret is sub-linear with respect to the optimal
arm in the arm memory (Lemma A.7). Subsequently, we take
a sum over all the sub-phases across all the phases to prove
the theorem (lemmas A.6 and A.8).

4.2 Experimental Evaluation
We empirically compare UCB-M and its variations with the
algorithm UCBCONSTANTSPACE (Liau et al. 2018). The
use of UCB1 (Auer, Cesa-Bianchi, and Fischer 2002) as a
subroutine in Algorithm 1 can be replaced with any other
allocation strategy, which in effect will give rise to a differ-
ent upper bound. We consider MOSS (Audibert and Bubeck
2009) and Thompson Sampling (Agrawal and Goyal 2013) in
our experiments, and rename UCB-M to TS-M and MOSS-
M, respectively. Everything else in Algorithm 1, including
the recommendation strategy, is kept unchanged.

We run our set of experiments on three different kinds
of K-armed Bernoulli instances earlier used by Jamieson
and Nowak (2014): BKL , BK0.3, and BK0.6. The means of the
arms in BKL are equally spaced between µ1 = 0.99, and
µK = 0.01. For BK0.3 and BK0.6 the mean of the i-th arm is
given by µi = 0.01 + µ∗ − (µ∗ − 0.01)((i− 1)/(K − 1))α

for α = 0.3, and 0.6, respectively.
For K = 100, Figure 2(a) compares the cumulative regret

incurred by UCB-M, TS-M, and MOSS-M for an arm mem-
ory size M = 2, with the UCBCONSTANTSPACE algorithm
of Liau et al. (2018). A comparison of cumulative regret and
the number of pulls to individual arms (on instances with
K = 10) is presented in Figure 3. It is important to note
that despite using a larger arm-memory size M = 4, which
is twice that of the others, UCBCONSTANTSPACE incurs a
significantly higher regret. Due to its pure-exploration phase,
UCBCONSTANTSPACE spends a prohibitively large number
of pulls on sub-optimal arms, leading to a high regret. By
contrast, our algorithms just make sure that at any instant,
the expected difference between the mean of the optimal arm
and the best arm in the current arm memory is not too large.
Apparently, this difference increases with the subsequent sub-
phases. However, UCB-M chooses the optimal arm in its arm
memory at least once in any given phase, leading to a “reset”
of the difference. On the other hand, this difference progres-
sively reduces across phases due to doubling the horizon in
each phase, explaining why UCB-M, TS-M, and MOSS-M
incur significantly lower regret.

As UCB-M can take advantage of a larger arm mem-
ory size, we compare the incurred regret as a function of
M . Recall that under UCB1 (Auer, Cesa-Bianchi, and Fis-

(a)

(b)

Figure 2: 2(a) presents a comparison of incurred cumulative regret
in log scale (y axis), by UCB-M, TS-M, MOSS-M, forM = 2, and
the UCBCONSTANTSPACE algorithm of Liau et al. (2018) (uses
M = 4) after 106 pulls. Each bar represents the average over 100
runs, with one standard error. For details about the instances, see
Section 4.2. 2(b) presents a comparison of incurred regret (y axis) on
the instance B100

L by different algorithms by varying arm memory
size M (x axis), after 106 pulls. Each bar represents incurred regret
averaged over 100 runs, with one standard error. For details about
the instances, see Section 4.2.

cher 2002), if an arm a has been pulled uta times up to
round t, and if µ̂ta is its empirical average reward, then the
upper confidence bound of that arm is given by ucbta =

µ̂ta + η
√

2 ln t/uta, with η = 1. It can be experimentally
validated that tuning η can lead to achieving a smaller regret
as claimed by the authors (Auer, Cesa-Bianchi, and Fischer
2002, Section 4). We present the regret incurred by UCB-M
for η = 0.2, alongside the other algorithms.

Intuition suggests that increasing M should help in achiev-
ing a low regret, as it increases the chance of pulling the
optimal arm more frequently. Also, the upper bound given
by Theorem 4.1 supports this intuition. However, in practice,
we notice an interesting behaviour. On the instance B100

L , we
compare the cumulative regret incurred by UCB-M, TS-M,
and MOSS-M by varying M . Figure 2(b) shows the results;
for a comparison on other instances, the reader is referred
to Figure 4 in Appendix B. As expected, UCB-M, TS-M
and MOSS-M always incur a higher regret than their uncon-
strained (M = K) counterparts. Also, for UCB-M with
η = 0.2, TS-M and MOSS-M, increasing the arm mem-
ory size M reduces the regret. However, the behaviour of
UCB-M with η = 1 is different. If M < K, it incurs a
relatively low regret for M = 2, afterwards increasing with
M , followed by a slow decrease. On the other hand, UCB-M
with η = 0.2 and the other algorithms not only incur a lower
regret but behave consistently. We posit that this peculiar be-
haviour is due to the looseness of the upper confidence bound
in UCB1—which explains why it is absent if η = 0.2.

(a)

10
0

10
2

10
4

10
6

10
0

10
2

10
4

10
6

1 2 3 4 5 6 7 8 9 10
10

0

10
2

10
4

10
6

(b)

Figure 3: Comparison of incurred cumulative regret (3(a)) and
the number of pulls to the individual arms (3(b)) in log scale (y
axis), on the instances B10

L , B10
0.3 and B10

0.6 by algorithms UCB-M,
TS-M, MOSS-M (for M = 2), and UCBCONSTANTSPACE (Liau
et al. 2018), after 106 pulls. Each bar represents the average over
100 iterations, and with one standard error. For details about the
instances and the algorithms we refer to Section 4.2.

5 Algorithm for Infinitely-armed Bandit
Instances

Quantile-regret minimisation is conceived by Roy Chaudhuri
and Kalyanakrishnan (2018) as a practical approach in bandit
instances in which the number of arms is too large for all
to be sampled. It would be impossible to achieve sublinear
regret on such instances unless some side information regard-
ing the embedding of the arms or the rewards is available. By
contrast, sublinear quantile regret can be obtained without
such structural information: the simple idea is that if 1/ρ
arms are sampled at random, in expectation one will lie in the
top ρ fraction. Roy Chaudhuri and Kalyanakrishnan (2018)
have proven that for any ρ ∈ (0, 1) (unknown to the algo-
rithm), and for a sufficiently large horizon T , their algorithm
QRM2 achieves RT (ρ) ∈ O(((1/ρ) log(1/ρ))

2.89
+T 0.674).

In this section, we provide a bounded arm-memory algorithm,
QUCB-M, that builds on this idea and enjoys sub-linear
quantile regret. We empirically compare the algorithm with
previous ones from the literature.

5.1 Upper-Bounding Quantile Regret
We solve the QR-M problem by modifying the QRM2 algo-
rithm (Roy Chaudhuri and Kalyanakrishnan 2018) to make it
use UCB-M as the sub-routine, and adjust its arm exploration
rate accordingly to minimise the upper bound. We call the
resulting algorithm QUCB-M and describe it in Algorithm 2.
Theorem 5.1 presents its upper bound on its quantile regret.

Theorem 5.1. Given as input any problem instance and
an arm memory size M ≥ 2: for ρ ∈ (0, 1) and
for a sufficiently large horizon T , the quantile regret
incurred by QUCB-M is upper-bounded as RT (ρ) ∈

Algorithm 2: QUCB-M
Input: A, PA, and arm memory size M

1 Set α = 0.205, B =
(
M2(M + 2)

) 1
1−α , and K0 = ∅.

2 for r = 1, 2, 3, · · · do
3 tr = 2rB, nr = dtαr e.
4 Form a set Kr by selecting additional nr − |Kr−1| arms

from A using PA, and adding to Kr−1.
5 Run UCB-M on Kr , for horizon of tr , with arm memory

size M .

o

((
1
ρ log 1

ρ

)4.89

+MT 0.205 + T 0.81
√

logM
M2 log T

M

)
.

The proof applies Theorem 4.1 and follows the steps of
the proof of Theorem 3.3 in the paper by Roy Chaudhuri
and Kalyanakrishnan (2018). We present the detailed proof
in Appendix C. Roy Chaudhuri and Kalyanakrishnan (2018)
obtain the upper bound on the quantile regret by simultane-
ously minimising (1) the regret incurred before discovering a
good arm, and once such an arm is discovered, (2) the regret
incurred by the subsequent exploration-exploitation routine.
The memory constraint on UCB-M means its regret upper
bound (Theorem 4.1) grows faster than that of UCB1 as a
function of the number of arms K. Since QUCB-M uses
UCB-M as a subroutine, naturally, its optimised dependence
on T comes out larger than that of QRM2.

It is to be noted that inside QUCB-M one can use the algo-
rithm UCBCONSTANTSPACE by Liau et al. (2018) instead of
UCB-M. However, as we have already shown in Section 4.2
that UCB-M is empirically superior to their algorithm, we
do not consider this variation in our experiments.

5.2 Experimental Evaluation
Although QUCB-M is designed with the aim of minimising
quantile regret, we use conventional cumulative regret as
the evaluation metric. Similar to UCB-M, the QUCB-M
algorithm can be altered to use TS-M or MOSS-M as the
subroutine instead; we call the resulting variants QTS-M and
QMOSS-M, respectively. Algorithm 2 uses the value of α
that minimises the upper bound in Theorem 5.1. However,
for empirical efficiency, we keep α = 0.347 as done in
QRM2 (Roy Chaudhuri and Kalyanakrishnan 2018).

We compare the regret of each of these algorithms with
that of the algorithms by Herschkorn, Peköz, and Ross (1996)
and Berry et al. (1997), and present the results in Table 1. We
use the same four Bernoulli instances used by Roy Chaud-
huri and Kalyanakrishnan (2018)—instances I1 and I2 have
µ∗ = 1, and the probability distributions on µ induced by PA
are given by β(0.5, 2), and β(1, 1), respectively. Similarly,
instances I3 and I4 have µ∗ = 0.6, and the probability dis-
tributions on µ induced by PA are given by scaled β(0.5, 2),
and β(1, 1), respectively. The rows of the table are labeled
by the corresponding probability density function of encoun-
tering the mean rewards. As Table 1 shows, the existing
algorithms incur a significantly higher regret in most of the
cases. We put the comparison for α = 0.205 in Table 2 in
Appendix D.

Table 1: Comparison of cumulative regret (/105) of QUCB-M,
QTS-M, QMOSS-M (for α = 0.347) with Non-Stationary algo-
rithm (NS) proposed by Herschkorn, Peköz, and Ross (1996), and√
T -run (STR),

√
T lnT -learning (STLT), and Non-recalling

√
T -

run (NST) algorithms of Berry et al. (1997) after 106 pulls, on
instances I1, I2, I3 and I4. Each result is the average of 20 runs,
showing one standard error.

Algorithms M I1: β(0.5, 2)
µ∗ = 1

I2: β(1, 1)
µ∗ = 1

I3: β(0.5, 2)
µ∗ = 0.6

I4: β(1, 1)
µ∗ = 0.6

NS
(1996) 1 3.58 ±0.4 1.11 ±0.2 1.64 ± 0.2 0.79 ± 0.1

STR
(1997) 2 6.18±0.5 1.11±0.4 4.18±0.3 2.03±0.3

STLT
(1997) 2 6.32±0.4 0.69±0.3 4.38±0.2 2.15±0.3

NST
(1997) 1 5.35 ±0.5 0.03 ±0.004 4.56 ± 0.001 2.55 ± 0.001

QUCB-M 2 1.84±0.17 0.41±0.02 1.29±0.10 0.49±0.02

10 1.98±0.16 0.59±0.02 1.49±0.09 0.63±0.01

QUCB-M 2 2.00±0.20 0.32±0.05 1.41±0.10 0.69±0.04

(η = 0.2) 10 1.71±0.16 0.16±0.02 1.16±0.09 0.30±0.02

QTS-M 2 1.77±0.17 0.32±0.04 1.23±0.09 0.40±0.02

10 1.91±0.16 0.18±0.03 1.14±0.10 0.30±0.02

QMOSS-M 2 1.74±0.17 0.31±0.02 1.20±0.10 0.39±0.02

10 1.69±0.15 0.25±0.02 1.13±0.09 0.30±0.010

It is interesting to note that like the finite instances, in-
creasing arm memory leads to a lower regret. Specifically, the
scaled version of QUCB-M (using UCB-M with η = 0.2),
along with QTS-M and QMOSS-M, show an improvement
with larger arm memory. However, with η = 1 in the under-
lying UCB-M, QUCB-M fails to take the advantage of the
larger arm memory.

6 Conclusion
We address the problem of regret minimisation in stochastic
bandits using a bounded arm memory. This problem is rel-
evant in applications where the number of arms is too large
to store in memory, and there is no recourse to generalisa-
tion over the arms to reduce the number of parameters to
learn. Most previous approaches have relied on additional as-
sumptions such as a particular family of distributions for the
mean reward, and the rewards being 0-1 (Herschkorn, Peköz,
and Ross 1996; Berry et al. 1997). Liau et al. (2018) present
an “explore-then-commit” algorithm that escapes such as-
sumptions and still enjoys sub-linear regret. Yet, its “pure
exploration” subroutine makes it inefficient in practice. The
algorithm depends on eventually sampling every arm in the
bandit instance, and so cannot be used on large or infinite
instances—which are, in fact, the more relevant targets for
the use of a bounded memory.

We propose UCB-M, an algorithm based on UCB1 (Auer,
Cesa-Bianchi, and Fischer 2002) for finite bandit instances,
which enjoys a sub-linear upper bound on regret, and is signif-
icantly more efficient in practice. Unlike previous algorithms,
UCB-M offers the flexibility of using an arbitrary arm mem-

ory size, facilitating the experimenter to use as much memory
as is available. In fact the unique design of UCB-M gives us
the freedom of varying the arm memory size M : a clear con-
trast with UCBCONSTANTSPACE (Liau et al. 2018) which
is designed specifically for M = 4. Experiments validate
our choice of using UCB1 in multiple phases instead of
using an explore-then-commit approach: Figure 2(a) shows
that UCB-M with a memory size of 2, exactly half that of
UCBCONSTANTSPACE, already incurs less than a tenth of
the regret on the instances and horizons tested. Additionally
UCB-M can flexibly use other regret-minimisation routines
other than UCB1 (Auer, Cesa-Bianchi, and Fischer 2002)
(such as Thompson Sampling (Agrawal and Goyal 2012)
and MOSS (Audibert and Bubeck 2009)) while achieving a
smaller regret, and retaining its theoretical guarantee. To the
best of our knowledge the idea and the analysis of UCB-M
are novel and do not resemble that of any existing algorithm.

We extend the algorithm UCB-M to QUCB-M, which
uses QRM2 (Roy Chaudhuri and Kalyanakrishnan 2018) as
a subroutine, and achieves sub-linear quantile regret under
the bounded arm memory constraint. We empirically verify
that QUCB-M incurs a lower conventional cumulative regret
than existing constrained-memory algorithms (Herschkorn,
Peköz, and Ross 1996; Berry et al. 1997) on a wide range of
infinite bandit instances.

It would be interesting from a theoretical standpoint to
take even the simpler among our problems—CR-M in finite
bandits—and derive a non-trivial lower bound on the regret
(note that Ω(

√
KT) carries over from the unconstrained set-

ting (Auer et al. 2003)). The main technical challenge in so
doing is to handle the arm memory—a random variable that
limits algorithm’s choices, while also being manipulated by
the algorithm. To the best of our knowledge, related lower
bounds have only been shown in special settings. For in-
stance, Berry et al. (1997) show a lower bound on the failure-
proportion for infinitely-armed Bernoulli bandits under the
uniform sampling distribution, while Peköz (2003) shows
that non-recalling algorithms (M = 1) can have a linear
lower bound unless the reward distributions of the arms are
stochastically ordered. Liau et al. (2018) provide a conjecture
on the lower bound for their problem, but a formal proof does
not appear forthcoming. There is another line of work in the
memory-restricted bandit setting by Lu and Lu (2011), who
produce both upper and lower bounds on the regret. They re-
strict the number of rewards that can be remembered for each
arm, rather than—as we restrict—the number of arms for
which statistics can be maintained. Due to this fundamental
difference, their techniques and bounds do not apply in our
setting. Hence, establishing a lower bound for CR-M is an
interesting challenge, which we leave for future work—while
noting that such a bound would also be a prerequisite for a
lower bound for QR-M.

7 Acknowledgement

SK was partially supported by grants from SERB
(ECR/2017/002479) and Ubisoft India.

References
Agrawal, S., and Goyal, N. 2012. Analysis of Thompson
sampling for the multi-armed bandit problem. In Proc. of
the 25th Annual Conf. on Learning Theory, volume 23, 39.1–
39.26. Edinburgh, Scotland: PMLR.
Agrawal, S., and Goyal, N. 2013. Further optimal regret
bounds for thompson sampling. In Proc. AISTATS 2013,
volume 31, 99–107. PMLR.
Aho, A. V.; Hopcroft, J. E.; and Ullman, J. D. 1974. The
Design and Analysis of Computer Algorithms. Addison-
Wesley.
Armitage, P. 1960. Sequential Medical Trials. Blackwell
Scientific Publications.
Audibert, J.-Y., and Bubeck, S. 2009. Minimax policies
for adversarial and stochastic bandits. In Proc. COLT 2009,
217–226.
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E.
2003. The nonstochastic multiarmed bandit problem. SIAM
J. Comput. 32(1):48–77.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2-3):235–256.
Berry, D., and Fristedt, B. 1985. Bandit Problems: Sequential
Allocation of Experiments. Chapman & Hall.
Berry, D. A.; Chen, R. W.; Zame, A.; Heath, D. C.; and Shepp,
L. A. 1997. Bandit problems with infinitely many arms. The
Annals of Statistics 25(5):2103–2116.
Bubeck, S.; Munos, R.; and Stoltz, G. 2009. Pure exploration
in multi-armed bandits problems. In Algorithmic Learning
Theory, 23–37. Springer Berlin Heidelberg.
Colton, T. 1963. A model for selecting one of two medical
treatments. Journal of the American Statistical Association
58(302):388–400.
Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; and Stein, C.
2009. Introduction to Algorithms, Third Edition. The MIT
Press.
Cover, T. M.; Freedman, M. A.; and Hellman, M. E. 1976.
Optimal finite memory learning algorithms for the finite sam-
ple problem. Information and Control 30(1):49 – 85.
Cover, T. M. 1968. A note on the two-armed bandit problem
with finite memory. Information and Control 12(5):371 –
377.
Dani, V.; Hayes, T. P.; and Kakade, S. M. 2008. Stochastic
linear optimization under bandit feedback. In Proc. COLT
2008, 355–366. Omnipress.
Herschkorn, S. J.; Peköz, E.; and Ross, S. M. 1996. Policies
without memory for the infinite-armed Bernoulli bandit under
the average-reward criterion. Prob. in the Engg. and Info. Sc.
10(1):21–28.
Isbell, J. R. 1959. On a problem of robbins. Ann. Math. Stat.
30(2):606–610.
Jamieson, K. G., and Nowak, R. D. 2014. Best-arm iden-
tification algorithms for multi-armed bandits in the fixed
confidence setting. 2014 48th Annual Conf. on Information
Sciences and Systems (CISS) 1–6.

Lai, T., and Robbins, H. 1985. Asymptotically efficient
adaptive allocation rules. Adv. in Applied Mathematics 6(1):4
– 22.
Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010.
A contextual-bandit approach to personalized news article
recommendation. In Proc. WWW, 661–670. ACM.
Liau, D.; Price, E.; Song, Z.; and Yang, G. 2018. Stochastic
multi-armed bandits in constant space. In Proc. AISTATS
2018, volume 84, 386–394. PMLR.
Lu, C.-J., and Lu, W.-F. 2011. Making online decisions with
bounded memory. In ALT 2011, 249–261. Springer Berlin
Heidelberg.
Peköz, E. A. 2003. Some memoryless bandit policies. Jour-
nal of Applied Probability 40(1):250–256.
Robbins, H. 1952. Some aspects of the sequential design of
experiments. Bulletin of the AMS 58(5):527–535.
Robbins, H. 1956. A sequential decision problem with a
finite memory. PNAS 42(12):920–923.
Roy Chaudhuri, A., and Kalyanakrishnan, S. 2018. Quantile-
regret minimisation in infinitely many-armed bandits. In
Proc. UAI 2018, 425–434. AUAI Press.
Schwartz, E. M.; Bradlow, E. T.; and Fader, P. S. 2017.
Customer acquisition via display advertising using multi-
armed bandit experiments. Marketing Science 36(4):500–
522.
Tran-Thanh, L.; Stein, S.; Rogers, A.; and Jennings, N. R.
2014. Efficient crowdsourcing of unknown experts using
bounded multi-armed bandits. Artif. Intl. 214:89 – 111.

A Proof of Theorem 4.1 from Section 4.1
We shall use log and ln to denote base 2 and natural logarithm
respectively. Also, for any positive integer Z we shall denote
the set {1, 2, · · · , Z} by [Z].

Lemma A.1. For a givenK-sized set of armsA, and an arm
memory size M < K, the number of sub-phases required to
ensure that each arm in A has been chosen into arm memory
at least once is not more than h0.

Proof. We notice that at the beginning of each sub-phase
there are exactly M −1 arms except the arm â recommended
from the previous step. Let, h be the maximum number of
sub-phases possible in a phase. We realise that each phase
w ends as soon as for every arm a ∈ A, there exists a sub-
phase j, such that Sw,j 3 a. Therefore, h = min{y : A ⊆
∪yj=1S

w,j} =
⌈
K−1
M−1

⌉
= h0.

Lemma A.2. For a given K-sized set of arms A, and an
arm memory size M < K, the number of phases UCB-M
executes is upper bounded by x0

def
=
⌈
log 2T

MK

⌉
.

Proof. Let x be the total number of phases executed by UCB-
M. It should be noted that the value of M , K, and T might
be such that the total horizon (T) runs out before finishing
the last phase. Now, for any given phase w (w ≥ 1), the
horizon spent on each sub-phase is the same, that is bw =

2w−1b1. Therefore, we can write T =
∑x
w=1

∑h0

j=1 bw =

h0b1
∑x
w=1 2w−1 = h0b1(2x − 1). Hence, the number of

phases (say x) can be upper bounded as

x = log

(
T

h0b1
+ 1

)
≤ log

 T⌈
K−1
M−1

⌉
b1

+ 1

 ,

[
because, h0 =

⌈K − 1

M − 1

⌉]
,

≤ log

 T⌈
K−1
M−1

⌉
M(M + 2)

+ 1


[because, b1 = M(M + 2)],

≤ log

(
T

K−1
M−1M(M + 2)

+ 1

)
< log

(
T

KM
+ 1

)
,

≤ log

(
2T

KM

)
[because, T > 2MK],

≤
⌈
log

2T

MK

⌉
= x0.

For the rest of the analysis of UCB-M, we shall assume
that the total number of phases executed by UCB-M is x0.
As UCB-M ensures inclusion of the optimal arm at least
once in every phase, we note the following.

Corollary A.3. Let us denote, the sequence of sub-phase-
wise arm memory as S def

= {S1,1, S1,2, · · · , S1,h0 , S2,1, S2,2,
· · · , S2,h0 , · · · , Sx0,1, Sx0,2, · · · , Sx0,h0}. Then, for d ≥
h0, at least one of any d consecutive elements of S contains
a∗.

In any given phase, we need to upper-bound the differ-
ence of mean of the best in memory arm between two
successive sub-phase. Considering S as defined in Corol-
lary A.3, let ay,j∗ ∈ Sy,j ∈ S be the arm recommended
by the sub-phase j − 1 to j. It is important to note that
maxa∈Sy,j µa ≥ µay,j∗ . Therefore, in the interest of find-
ing an upper bound on the regret, it is safe to consider
µay,j∗ = maxa∈Sy,j µa as a pessimistic estimate of the best
mean in Sy,j . In any given sub-phase j ≤ h0 − 1 in phase y,
we let E[ry,j+1]

def
= E[µay,j∗ −µay,j+1

∗
]. Also, for any phase y,

let E[ry] be a quantitiy such that, for all j ∈ {1, · · · , h0 − 1},
E[ry,j+1] ≤ E[ry]. Now, noticing that on each sub-phase in a
phase y UCB-M spends exactly by pulls, we explicitly define
E[ry] as follows.

Corollary A.4. In any phase y, at the end of each sub-phase
j, the expected simple regret with respect to µay,j∗ is upper-
bounded by E[ry]. Hence, using Theorem 3.1, it is sufficient
to define E[ry]

def
= C

√
(M log by)/by .

We notice that the arm forwarded from each sub-phase to
the next one, not necessarily be the optimal arm. Hence, in
the worst case, the expected difference between the mean of
the optimal arm, and the highest mean reward in the current
arm memory grows linearly with the number of sub-phase in
a given phase. We upper bound it as follows.

Lemma A.5. Suppose, we are given a K-sized set of arms
A, and an arm memory size M . Also, let at any phase y ≥ 2,
in the sub-phase j, µy,j∗ be the maximum of the mean of the
arms in the arm-memory. Then max1≤j≤h0 E[µ∗ − µy,j∗] ≤
2h0 E[ry].

Proof. Letting, E[ry,j∗]
def
= E[µ∗ − µy,j∗]. We break the proof

into two steps.
Step 1 upper bounds E[ry,h0

∗], which is an upper bound
on E[ry,j∗], for all j ∈ [h0] ; while Step 2 upper bounds
E[ry+1,j
∗]. Both the steps are based on Corollary A.3, that

ensures at least one of the h0 consecutive sub-phases (not
necessarily from the same phase) must contain the optimal
arm a∗ in the arm-memory.

Step 1. Let, 1 ≤ k0 ≤ h0−1 be the first sub-phase in phase
y, to have a∗ in the arm-memory. Therefore, k0

def
= min{i ∈

[h0] : a∗ ∈ Sy,i}, and hence, by definition, E[ry,k0+1
∗] =

E[ry,k0+1]. Therefore, for any subsequent sub-phase j ∈
{k0 + 1, · · · , h0} in phase y, E[ry,j∗] = E[µ∗ − µy,j∗] =

E[µ∗− µy,k0+1
∗] +

∑j−1
v=k0+2 E[µy,v∗ − µy,v+1

∗]. As there are
h0 sub-phases in any phase, hence, for all k0 + 1 ≤ j ≤ h0,
E[ry,j∗] ≤ E[ry,h0

∗] ≤ (h0 − k0 + 1)E[ry] ≤ h0 E[ry].

Step 2. Let, j0 be the last sub-phase in phase y − 1, such
that a∗ ∈ Sy−1,j0 . From Step 1, E[ry−1,h0

∗] ≤ (h0 − j0 +
1)E[ry−1]. Now, considering sub-phase i in phase y, we
realise that if i ≥ j0, then there exists a sub-phase w ∈
{1, · · · , i} such that a∗ ∈ Sy,w. Now, for i ≤ j0 − 1,

E[ry,i∗] ≤ max
2≤j0≤[h0]

max
1≤i≤j0−1

E[ry−1,h0
∗] + i · E[ry],

≤ max
2≤j0[h0]

max
1≤i≤j0−1

≤ (h0 − j0 + 1)E[ry−1] + i · E[ry],

≤ (h0 − 1)E[ry−1] + E[ry] < 2h0 E[ry],[
because E[ry] ≤ E[ry−1] ≤ 2E[ry]

]
.

Together, Step 1 and Step 2 prove the lemma.

Next, we use Lemma A.5 to upper bound the cumulative
regret R∗T .

Bifurcation of R∗T . For any given phasew, and a sub-phase
j, let µw,j∗

def
= maxµa : a ∈ Sw,j , and Rw,j be the incurred

regret. Then,

R∗w,j = bwµ
∗ −

bw∑
t=1

E[µat]

= bw E[µ∗ − µw,j∗] +

bw∑
t=1

(E[µw,j∗]− E[µat]). (4)

Where the expectation is taken over all possible sources
of randomisation. Now, letting R(1)

w,j = bw(µ∗ − µw,j∗), and

R
(2)
w,j =

∑bw
t=1(E[µw,j∗]− E[µat]), we can write,

R∗T =

x0∑
w=1

h0∑
j=1

R∗w,j =

x0∑
w=1

h0∑
j=1

(R
(1)
w,j +R

(2)
w,j). (5)

Now, using Lemma A.5 we upper bound R(1)
w,j as follows.

Lemma A.6. For 2 ≤ M < K, and for T > KM2(M +

2), and for some constant C ′,
∑x0

w=1

∑h0

j=1R
(1)
w,j ≤ C ′(

KM + (K3/2/M)
√
T log(T/MK)

)
.

Proof.

x0∑
w=1

h0∑
j=1

R
(1)
w,j =

h0∑
j=1

R
(1)
1,j +

x0∑
w=2

h0∑
j=1

R
(1)
w,j

≤ h0b1 +

x0∑
w=2

h0∑
j=1

R
(1)
w,j ≤ h0b1 +

x0∑
w=2

h0∑
j=1

bw E[µ∗ − µw,j∗]

≤ h0b1 +

x0∑
w=2

h0∑
j=1

bw(2h0 E[rw])

[using Lemma A.5]

≤ h0b1 + 2C1h
2
0

x0∑
w=2

bw

√
M log bw

bw
[using Corollary A.4]

≤ h0b1 + 2C1h
2
0

x0∑
w=2

√
bwM log bw

≤ h0b1 + 2C2h
2
0

√
Mb1

x0∑
w=2

(
2w−1 log

(
2w−1b1

)) 1
2

[because, bw = 2w−1b1]

= h0b1 + 2C2h
2
0

√
Mb1

x0∑
w=2

(
(w − 1 + log b1) 2w−1

) 1
2

≤ h0b1 + C3h
2
0

√
Mb1

x0∑
w=2

(
(w − 1)2w−1

) 1
2

[
because, T > KM2(M + 2), and b1 = M(M + 2),

therefore, x0 − 1 ≥ log b1 = logM(M + 2)]

≤ h0b1 + C4h
2
0

√
Mb1 (x0 · 2x0)

1
2

≤ C5

(⌈
K − 1

M − 1

⌉
M(M + 2)+

⌈
K − 1

M − 1

⌉2√
M2(M + 2)

(
T

MK
log

T

MK

) 1
2


[substituting for b1, h0 and x0]

≤ C6

(
K

M
M2 +

(
K

M

)2√
M3

(
T

MK
log

T

MK

) 1
2

)

≤ C7

(
KM +

K3/2

M

√
T log

T

MK

)
,

wherein, C1, C2, · · · , C7 are appropriate constants.

We note, that
∑x0

w=1

∑h0

j=1R
(2)
w,j , can be upper-bounded

using the problem independent upper-bound on the cumula-
tive regret of UCB1 (Auer, Cesa-Bianchi, and Fischer 2002),
as we restate below.

Lemma A.7 (Problem-Independent Upper Bound on Cu-
mulative Regret of UCB1 Auer, Cesa-Bianchi, and Fis-
cher (2002)). Given a set of K-arms as the input, for
any horizon T , the cumulative regret incurred by UCB1

R∗T ≤ 12
√
TK log T + 6K. Further, if T ≥ K/2, then

R∗T ≤ 18
√
TK log T .

Next, using Lemma A.7, we upper bound∑x0

w=1

∑h0

j=1R
(2)
w,j .

Lemma A.8. For 2 ≤ M < K, and T > KM2(M +

2), and for some constant C ′′ > 0,
∑x0

w=1

∑h0

j=1R
(2)
w,j ≤

C ′′
(
KM +

√
TK log(T/MK)

)
.

Proof. We notice that at any sub-phase j of any phase w ≥
2, due to Lemma A.7, there exists a constant C, such that
R

(2)
w,j ≤ C

√
bwM log bw. Therefore,

x0∑
w=1

h0∑
j=1

R
(2)
w,j =

h0∑
j=1

R
(2)
1,j +

x0∑
w=2

h0∑
j=1

R
(2)
w,j ,

≤ h0b1 +

x0∑
w=1

h0∑
j=1

C
√
bwM log bw [using Lemma A.7],

= h0b1 + h0C

x0∑
w=1

√
2w−1b1M log (2w−1b1),

[substituting for bw]

≤

⌈
K − 1

M − 1

⌉
M(M + 2)+

C1

⌈
K − 1

M − 1

⌉√
M2(M + 2)·(

x0∑
w=1

2w−1 ((w − 1) + log(M(M + 2)))

)
[substituting for h0 and b1],

≤ C2

(
K − 1

M − 1
M(M + 2)+

K − 1

M − 1

√
M2(M + 2)

x0∑
w=1

√
(w − 1)2w−1

)
[
because, T > KM2(M + 2)

]
≤ C3

(
K

M
M2 +

K

M
M3/2

√
x02x0

)
= C3

(
KM +K

√
M

√
T

MK
log

T

MK

)

≤ C4

(
KM +

√
TK log

T

MK

)
,

wherein, C1, C2, C3, C4 are appropriate constants.

Proof of Theorem 4.1 We prove the theorem by plugging
Lemma A.6 and Lemma A.8 in Equation 5.

B Additional Experimental Results from
Section 4.2

(a)

Figure 4: Comparison of incurred regret on the instance B100
0.3 .

Each bar represents regret incurred after 106 pulls, averaged
over 100 iterations, and with one standard error. For details
about the instances and the algorithms we refer to Section 4.2.

(a)

Figure 5: Comparison of incurred regret on the instance B100
0.6 .

Each bar represents regret incurred after 106 pulls, averaged
over 100 iterations, and with one standard error. For details
about the instances and the algorithms we refer to Section 4.2.

100 101 102 103 104 105 106100

101

102

103

104

105

106

Instance: B100
L

UCBConstantSpace
Liau etal. (2018)
UCB-M
UCB-M (η=0.2)
TS-M
Moss-M

(a)

100 101 102 103 104 105 106100

101

102

103

104

105

106

Instance: B100
0.3

UCBConstantSpace
Liau etal. (2018)
UCB-M
UCB-M (η=0.2)
TS-M
Moss-M

(b)

100 101 102 103 104 105 106100

101

102

103

104

105

106

Instance: B100
0.6

UCBConstantSpace
Liau etal. (2018)
UCB-M
UCB-M (η=0.2)
TS-M
Moss-M

(c)

Figure 6: Comparison of incurred regret (along y-axis) on the
instances B100

L (6(a)), B100
0.3 (6(b)), and B100

0.6 (6(c)), plotted
over the number of pulls up to a horizon 106, averaged over
100 runs. Both x and y axis are in log10 scale. While the
algorithm UCBCONSTANTSPACE (Liau et al. 2018) uses
M = 4, all the other algorithms are run with M = 2. For
details about the instances and the algorithms we refer to
Section 4.2.

C Proofs from Section 5.1
In this appendix we provide the materials to complete the
proof of Theorem 5.1. To prove the theorem we follow
the steps of proof for Theorem 3.3 in Roy Chaudhuri and
Kalyanakrishnan (2018). For any fixed ρ ∈ (0, 1), we break
the analysis for upper bound on RT (ρ) in cases—first, the
algorithm never encounters an arm from T OPρ; second, it
picks at least one arm from T OPρ. The key step in the anal-
ysis of the first part is showing that there exists r∗ ≥ 1 such
that for all r ≥ r∗, the set of arms Kr is sufficiently large to
contain an arm from T OPρ with high probability. Below, for
any given ρ ∈ (0, 1), Lemma C.1 gives us an explicit form
r∗ and lower bounds Kr in in terms of ρ.

Lemma C.1. Let, r∗ =
⌈

1
α log

(
1
ρ log 1

ρ

)
− logB

⌉
. Then,

for every phase r ≥ r∗, the size of Kr can be lower bounded
as nr =

⌈
tαr

⌉
≥
⌈
α log e
(1+γ)ρ · ln tr

⌉
, wherein, 0.53 < γ

def
=

maxx
log log x

log x < 0.531.

Proof. We notice, for every, r ≥ r∗, tr ≥
⌈(

1
ρ log 1

ρ

) 1
α
⌉

.
Then, for each r ≥ r∗, we can lower bound the size of the
set Kr as follows. As, |Kr| = nr =

⌈
tαr

⌉
is an integer, to

ease the calculation let us define su = 2uB, where u ∈ R+,
and therefore, su ∈ R+ does not need to be an integer. Now,

letting u∗ def
= log

(
1
ρ log 1

ρ

) 1
α

, we get

1

ρ
log su∗

=
1

ρ
log

(
1

ρ
log

1

ρ

) 1
α

,

=
1

αρ

(
log

1

ρ
+ log log

1

ρ

)
,

=
1

αρ
log

1

ρ

(
1 +

log log 1
ρ

log 1
ρ

)
,

≤ 1 + γ

αρ
log

1

ρ
,

[
as γ def

= max
x

log log x

log x

]
=

1 + γ

α

(
1

ρ
log

1

ρ

)
,

=
1 + γ

α
sαu∗ .

=⇒ sαu∗ ≥
α

(1 + γ)ρ
log su∗

=⇒ sαu∗ ≥
α log e

(1 + γ)ρ
ln su∗ . (6)

As, sαu grows with u faster than log su, therefore,

∀u ≥ u∗, sαu∗ ≥
α log e

(1 + γ)ρ
ln su∗

Therefore, recalling that r is an integer, for all values of
r ≥ dr∗e, the statement of the lemma follows.

Now, to show that for any phase r ≥ r∗ the probability of
not having at least one arm from the set T OPρ is sufficiently
low. To this end, we define an event that no arm from T OPρ
is in the set Kr as Er(ρ)

def
= {Kr ∩ T OPρ = ∅} and upper

bound its probability in the following Lemma C.2.

Lemma C.2. Assuming r∗ and γ as defined in Lemma C.1,
for any given ρ ∈ (0, 1), and for any r ≥ r∗, Pr{Er(ρ)} ≤
tr
−α log e/(1+γ).

Proof. We note Pr{Er(ρ)} = (1 − ρ)nr . Now, for
some α ∈ (0, 1) that shall be tuned later, let r∗ =
d(1/α) log((1/ρ) log(1/ρ))e. Therefore, in the round r∗,
the number of pulls is given by tr∗ = 2r

∗
=

((1/ρ) log(1/ρ))1/α. Now, for r ≥ r∗, the number of arms
in Kr is given by nr = tαr ≥ d(α/((1 + γ)ρ)) · ln tlog e

r e,
wherein, γ = maxx(log log x)/ log x (0.53 < γ < 0.531).

Therefore, Pr{Er(ρ)} = (1 − ρ)nr ≤ exp(−d(α/((1 +
γ))) · ln tlog e

r e) ≤ tr−α log e/(1+γ).

Lemma C.2 shows that beyond the phase r∗ the set Kr
will contain an arm from T OPρ with high probability. Now,
assuming there exists an arm in Kr from T OPρ, for each
r ≥ r∗, we can upper bound the accumulated regret beyond
the r∗-th phase as follows.

Lemma C.3. Let, for r∗ defined in Lemma C.1, given that
for all r ≥ r∗, algorithm QUCB-M has encountered at
least one arm from T OPρ, that is Kr ∪ T OPρ 6= ∅.
Then, the incurred regret beyond the round r∗ is not more

than C ′
(
MTα +

√
logM
M

√
T 1+3α log T

M

)
; for some con-

stant C ′.

Proof.
log(T/B)∑
r=r∗

C

(
nrM +

1

M

√
n3
rtr log

tr
nrM

)
,

log(T/B)∑
r=r∗

C

(
tαrM +

1

M

√
t1+3α
r log

tr
nrM

)
,

=

log(T/B)∑
r=r∗

C (2αrBαM+

1

M

√
2(1+3α)rB(1+3α) log

(
B

M
2(1−α)r

))
,

=

log(T/B)∑
r=r∗

C (2αrBαM+√
B(1+3α) log(B/M)

M

√
(1− α)r2(1+3α)r

)
,

≤
log(T/B)∑
r=r∗

C1 (2αrBαM+√
B(1+3α) log(B/M)

M

√
r2(1+3α)r

)

≤
log(T/B)∑
r=r∗

C1

((
T

2jB

)α
BαM+

√
B(1+3α) log(B/M)

M

√(
T

B2j

)1+3α

log
T

B


=

log(T/B)−r∗∑
j=0

C2

(
M

(
T

2j

)α
+

√
logM

M

√(
T

2j

)1+3α

log
T

B

 ,

≤ C3

MTα
log(T/B)−r∗∑

j=0

(
1

2α

)j
+

√
logM

M
T (1+3α)/2

√
log

T

B

log(T/B)−r∗∑
j=0

√(
1

2j

)1+3α
 ,

≤ C4

(
MTα +

√
logM

M

√
T 1+3α log

T

B

)
,

≤ C5

(
MTα +

√
logM

M

√
T 1+3α log

T

M

)
[because, B =

(
M2(M + 2)

) 1
1−α]

for some constants C1, C2, C3, C4 and C5.

We note that Lemma C.3 is valid only if T OPρ ∪Kr 6= ∅

for every r ≥ r∗. However, there is a positive probability of
never encountering any arm T OPρ, to put formally, T OPρ∪
Kr = ∅, for all r ≥ 1. Below, in Lemma C.4 we upper bound
the accumulated regret in this case.
Lemma C.4. The expected regret due to not encountering
any arm from the set T OPρ is during running of the algo-

rithm, is in O
((

1
ρ log 1

ρ

) 1
α

+ T 1−α log e
1+γ

)
.

Proof. Using Lemma C.1, we obtain the following.

log(T/B)∑
r=1

tr Pr{Er(ρ)}

=

r∗−1∑
r=1

tr Pr{Er(ρ)}+

log(T/B)∑
r=r∗

tr Pr{Er(ρ)}

≤
r∗−1∑
r=1

tr +

log(T/B)∑
r=r∗

tr
1−α log e

1+γ

≤ tr∗ +

log(T/B)∑
r=r∗

tr
1−α log e

1+γ

= tr∗ +

log(T/B)∑
r=r∗

(B2r)
1−α log e

1+γ

≤ tr∗ +B1−α log e
1+γ

log(T/B)−r∗∑
j=1

(
T

B2j

)1−α log e
1+γ

≤ B · 2

⌈
log(1

ρ log 1
ρ)

1
α−logB

⌉
+

T 1−α log e
1+γ

log T−r∗∑
j=0

(
1

2

)j(1−α log e
1+γ)

< 2log(1
ρ log 1

ρ)
1
α+1 + T 1−α log e

1+γ

∞∑
j=0

(
1

2

)j(1−α log e
1+γ)

= O

(
2log(1

ρ log 1
ρ)

1
α

+ T 1−α log e
1+γ

)
= O

((
1

ρ
log

1

ρ

) 1
α

+ T 1−α log e
1+γ

)

= O

((
1

ρ
log

1

ρ

) 1
α

+ T 1−α log e
1+γ

)
.

Proof of Theorem 5.1. Together Lemma C.3 and
Lemma C.3 establish the upper bound on RT (ρ). Now, to
minimise the upper bound we prove the theorem by notic-
ing the upper bound is minimised with respect to T we set
α = 1/(3+2 log e/(1+γ)) ≈ 0.205, and prove the theorem.

D Additional Experimental Results from
Section 5.2

Table 2: Cumulative regret (/105) of QUCB-M, QTS-M,
QMOSS-M and the strategies proposed by (Herschkorn,
Peköz, and Ross 1996) and (Berry et al. 1997) after 106 pulls,
on instances I1, I2, I3 and I4. Each result is the average of
20 runs, showing one standard error.

Algorithms M I1: β(0.5, 2)
µ∗ = 1

I2: β(1, 1)
µ∗ = 1

I3: β(0.5, 2)
µ∗ = 0.6

I4: β(1, 1)
µ∗ = 0.6

Non-stationary Policy
(Herschkorn, Peköz, and Ross 1996) 1 3.58 ±0.4 1.11 ±0.2 1.64 ± 0.2 0.79 ± 0.1
√
T -run

(Berry et al. 1997) 2 6.18±0.5 1.11±0.4 4.18±0.3 2.03±0.3
√
T lnT -learning

(Berry et al. 1997) 2 6.32±0.4 0.69±0.3 4.38±0.2 2.15±0.3

Non-recalling
√
T -run

(Berry et al. 1997) 1 5.35 ±0.5 0.03 ±0.004 4.56 ± 0.001 2.55 ± 0.001

QUCB-M 2 3.69±0.34 0.74±0.11 2.27±0.21 0.51±0.07

10 4.26±0.37 0.91±0.19 2.65±0.22 0.63±0.11

QUCB-M η = 0.2
2 3.67±0.35 0.72±0.12 2.21±0.21 0.55±0.08

10 4.15±0.36 0.79±0.19 2.51±0.22 0.54±0.11

QTS-M 2 3.14±0.39 0.62±0.07 1.97±0.19 0.44±0.07

10 3.88±0.35 0.67±0.13 2.49±0.23 0.45±0.06

QMOSS-M 2 3.64±0.34 0.70±0.11 2.21±0.21 0.46±0.07

10 4.16±0.36 0.80±0.19 2.53±0.22 0.52±0.11

For α = 0.205 the algorithms explore very small number
of arms, that causes incorporating a good arm very unlikely
leading to a high regret.

