
In Proc. UAI 2018, Monterrey, CA, USA, 2018. To appear.

Quantile-Regret Minimisation in Infinitely Many-Armed Bandits

Arghya Roy Chaudhuri and Shivaram Kalyanakrishnan

Department of Computer Science and Engineering

Indian Institute of Technology Bombay, Mumbai 400076, India

{arghya, shivaram}@cse.iitb.ac.in

Abstract

The stochastic multi-armed bandit is a well-

studied abstraction of decision making in the face

of uncertainty. We consider the setting in which

the number of bandit arms is much larger than the

possible number of pulls, and can even be infinite.

With the aim of minimising regret with respect

to an optimal arm, existing methods for this set-

ting either assume some structure over the set

of arms (Kleinberg et al., 2008, Ray Chowdhury

and Gopalan, 2017), or some property of the re-

ward distribution (Wang et al., 2008). Invariably,

the validity of such assumptions—and therefore

the performance of the corresponding methods—

depends on instance-specific parameters, which

might not be known beforehand.

We propose a conceptually simple, parameter-free,

and practically effective alternative. Specifically

we introduce a notion of regret with respect to the

top quantile of a probability distribution over the

expected reward of randomly drawn arms. Our

main contribution is an algorithm that achieves

sublinear “quantile-regret”, both (1) when it is

specified a quantile, and (2) when the quantile can

be any (unknown) positive value. The algorithm

needs no side information about the arms or about

the structure of their reward distributions: it re-

lies on random sampling to reach arms in the top

quantile. Experiments show that our algorithm

outperforms several previous methods (in terms of

conventional regret) when the latter are not tuned

well, and often even when they are.

1 INTRODUCTION

The stochastic multi-armed bandit (Berry and Fristedt, 1985)

is a well-studied abstraction of on-line learning. Each bandit

arm represents a slot-machine with a fixed (but unknown)

real-valued reward distribution. An experimenter is allowed

to pull an arm at every time instant and observe its reward.

The experimenter aims to maximise the total expected re-

ward obtained over a horizon, or equivalently, to minimise

the regret with respect to a strategy that always plays an

optimal arm. Side information regarding the bandit instance

may or may not be available to the experimenter.

Regret minimisation algorithms have to achieve a bal-

ance between exploration (gathering information about

the reward distributions of arms) and exploitation (pulling

seemingly-good arms). For a K-armed bandit, the optimal

regret that can be achieved after T pulls is Ω(
√
KT) (Auer

et al., 2003). To achieve a regret of O(
√
KT) (Audibert

and Bubeck, 2009), algorithms invariably have to maintain

separate statistics for the pulls coming from each arm (since

any of them could be the sole optimal arm).

In many modern applications of bandits, the set of arms that

can be pulled is very large, often even infinite. Examples

include (1) sensor networks, in which a central controller

must learn to deploy the most accurate sensor from among a

large number of noisy sensors (Kadono and Fukuta, 2014);

(2) crowd-sourcing tasks, in which a periodic task should

ideally be assigned to the most skilled worker in a large

pool (Tran-Thanh et al., 2014); (3) on-line advertising, in

which a layout for an ad should be chosen from among a

large set so as to maximise the click-through rate (Tang

et al., 2013). Clearly, the Θ(
√
KT) bound on the regret

is not helpful when K ≫ T or K = ∞. Perhaps the

most common apprach to deal with infinitely-many armed

bandits is to utilise some sort of side information about the

arms: for example, to assume that the arms are embedded

in a metric space in which the reward function is Lipschitz

continuous (Kleinberg, 2005) or even linear (Auer, 2003,

Chu et al., 2011). Unfortunately such side information

is not always available; even if available, it is often not

accurate (Ghosh et al., 2017).

In this paper, we propose an approach for exploring the arms

of infinitely many-armed bandits with no recourse to side

information. Naturally, we cannot always guarantee sublin-

ear regret with respect to optimal arms (which may never

get pulled in any finite horizon). Instead, assuming that the

set of arms A is being accessed through a given sampling

distribution PA, we benchmark regret against quantiles of

the reward distribution induced by PA. By fixing the quan-

tile, PA will eventually sample “good enough” arms. Using

a doubling trick, we can also ensure that our algorithm

will eventually sample every arm whose expected reward is

bounded away from the optimal reward. Below we formalise

the notion of quantile regret and outline our contributions.

Problem Definition. A bandit instance B = (A,M) com-

prises a (possibly infinite) set of arms A, and a reward

function M that gives a bounded, real-valued, reward dis-

tribution M(a) for each arm a ∈ A. When pulled, arm a
produces a reward drawn i.i.d. from M(a). We denote the

expected reward from arm a as µa
def
= E[M(a)]. Without

loss of generality, we assume that all rewards lie in [0, 1].

An algorithm is a mapping from the set of histories (of

arms pulled and rewards obtained) to the set of probability

distributions over A: thus, given a history, an algorithm

specifies a probability for sampling each arm. Let µ∗ def
=

min{y ∈ [0, 1] : ∀a ∈ A, µa ≤ y}. Then, for a given

horizon of pulls T , the regret of an algorithm is

R
∗
T = Tµ∗ −

T
∑

t=1

E[µat
], (1)

where at denotes the arm pulled by the algorithm at time t.
The expectation is taken over the random outcomes of pulls,

as well as random choices (if any) made by the algorithm.

For us, a problem instance I = (B, PA) contains a bandit

instance B with arms A, and a sampling distribution PA
to choose arms from A. We apply the concept of “(ǫ, ρ)-
optimality” introduced by Roy Chaudhuri and Kalyanakr-

ishnan (2017). For a quantile fraction ρ ∈ [0, 1] and a

tolerance ǫ ∈ [0, 1], an arm a ∈ A is said to be (ǫ, ρ)-
optimal if Pra′∼PA

{µa ≥ µa′ − ǫ} ≥ 1 − ρ. Let T OPρ

be the set of all (0, ρ)-optimal arms. Also let µρ ∈ [0, 1]
be a quantity such that, ∀a′ ∈ A \ T OPρ, µρ > µa′ and

∀a ∈ T OPρ, µa ≥ µρ. In other words, if µ denotes the

mean of an arm drawn according to PA, then µρ is the

(1− ρ)-th quantile of the distribution of µ.

Figure 1 shows the example of an infinite set of arms A
whose means lie between 0.15 and 0.95. When sampled

according to P 1
A, the resulting probability density function

of the mean µ is D1(µ). If an algorithm is constrained to

access arms using P 1
A, it is only natural for us to evaluate

it against a baseline that is also constrained by P 1
A. For ex-

ample, we could aim for the algorithm to eventually surpass

q1, which is the 94-th percentile of the distribution induced

by P 1
A. Without additional information, such an algorithm

cannot hope to surpass q2, the 94-th percentile of a different

sampling distribution P 2
A. In general we expect that there

is some “natural” way to sample the unknown set of arms—

and this is given to us as PA. For example, if A is finite,

it is a reasonable choice to assign an equal probability to

0 0.2 0.4 0.6 0.8 1
0

1

2

0 0.2 0.4 0.479 0.6 0.8 0.902 1
0

1

2

3

Figure 1: Two problem instances that share the same set

of arms A, varying continuously in [0, 1]. The top panel

shows the expected rewards µa of each arm a ∈ A, as well

as probability density functions P 1
A and P 2

A for sampling A.

The bottom panel shows the reward distributions D1
A and

D2
A induced by each of the sampling distributions, along

with 94-th percentiles q1 and q2, respectively.

sampling each arm. If A corresponds to a parameterised set,

PA could implement some distribution over the parameters.

We are now ready to define quantile-regret with respect to

a given quantile fraction ρ. If at is the arm drawn by an

algorithm in its tth pull, we define the (cumulative) quantile-

regret (or the “ρ-regret”) after T pulls as

RT (ρ) = Tµρ −
T
∑

t=1

E[µat
]. (2)

Our aim is to devise algorithms to minimise RT (ρ) for a

given problem instance I . The quantile fraction ρ can either

be given as an input to the algorithm, or left unspecified, as

we describe next.

Contributions. We show that without any knowledge of

the reward distributions of the arms, or of side information

such as a distance metric over arms, it is still possible to

have strategies to maximise reward over time. We articulate

the problem as that of achieving sub-linear ρ-regret.

1. In Section 3.1, we present our first algorithm, QRM1,

which is given a quantile fraction ρ as input. We show

that for a sufficiently large horizon T , the algorithm

incurs RT (ρ) ∈ O(ρ−1 +
√

(T/ρ) log(ρT)). We also

provide a lower bound of Ω(
√

T/ρ), establishing tight-

ness up to a logarithmic factor with respect to T.

2. In Section 3.2, we present our second algorithm,

QRM2, which does not take ρ as an input. Re-

gardless, the algorithm achieves sub-linear ρ-reget

for every ρ > 0. Specifically, for every ρ > 0
and a sufficiently large horizon T , QRM2 achieves

RT (ρ) ∈ o((1ρ log
1
ρ)

2.89 + T 0.674).

3. In Section 3.3, we establish a connection between (con-

ventional) regret R
∗
T and RT (ρ). Interestingly, we

find that when run on instances satisfying a common

assumption made in the literature about reward distri-

butions (Herschkorn et al., 1996, Wang et al., 2017),

QRM2 also achieves sub-linear regret R
∗
T .

4. In Section 4, we present extensive experimental results

comparing QRM2 with three separate categories of

algorithms: (1) those assuming that the arms lie in a

continuum (Kleinberg et al., 2008, Ray Chowdhury

and Gopalan, 2017); (2) those assuming that the mean

rewards come from a reservoir distribution (Wang et al.,

2008); and (3) algorithms that only retain a constant

number of arms in memory (Herschkorn et al., 1996,

Berry et al., 1997). In the first two cases we find ex-

isting approaches to be sensitive to parameter-tuning,

while our parameter-free approach shows robust perfor-

mance across a variety of problem instances. Except

when the arms’ means indeed come from a uniform

distribution (as assumed by some constant-memory al-

gorithms), QRM2 also outperforms algorithms from

the third category.

We survey the literature on regret minimisation in infinite-

armed bandits before presenting our algorithms.

2 RELATED WORK

There is a vast body of literature considering regret-

minimisation for infinitely many-armed bandits. Based on

the assumptions they make, we classify research efforts in

the area into three broad categories. We also provide brief

mentions of other related work.

1. Lipschitz-continuity of mean rewards over A. Ini-

tiated by Agrawal (1995), the “continuum-armed bandit”

models a bandit whose arms come from a segment of the

real line, and the rewards are a continuous function of the

arms. Generalising this setting, Kleinberg (2005) and Auer

et al. (2007) proposed algorithms assuming that the mean re-

ward function E[M(·)] = µ(·) is Lipschitz-continuous over

the set of arms A. Their approaches partition A into a finite

number of intervals, treating each interval (say pulled at its

middle arm (Kleinberg, 2005)) as an arm in a finite-armed

bandit. The partition is progressively refined at a rate that

ensures sub-linear regret. The ZOOMING algorithm pro-

posed by Kleinberg et al. (2008), which assumes that the

arms are embedded in a metric space with (known) covering

dimension d, achieves a regret of O(T
d+1
d+2), for a horizon

T . Their algorithm utilises the metric property to focus

exploration on intervals potentially containing optimal arms.

Understandably, the regret incurred by ZOOMING is sensi-

tive to the definition of metric in the arms’ space, and can

degrade with small misspecifications of d.

A contrasting line of work follows from the work of Srinivas

et al. (2010), who introduce a Gaussian Process-based algo-

rithm, GP-UCB, for regret minimisation on infinitely many-

armed bandits. Later Valko et al. (2013) proposed KER-

NELUCB, showing GP-UCB to be a special case. More

recently, Ray Chowdhury and Gopalan (2017) have pro-

posed two algorithms: Improved GP-UCB (IGP-UCB) and

GP-Thompson sampling (GP-TS). They assume Gaussian

likelihood models for the observed rewards, and Gaussian

Process models for the uncertainty over reward functions.

Although Ray Chowdhury and Gopalan (2017) show im-

proved regret bounds over previous work, their algorithms

are not easy to apply in practice. Foremost, the algorithms

themselves give no guidance on the number of arms to ex-

plore. Also, the algorithms need several parameters to be

tuned, including a confidence parameter δ, a free parameter

λ, and a schedule γt related to information gain.

2. Particular families of reward distributions. There is

a relatively large body of work that does not assume any

embedding of the arms (that is, no side information), but

still assumes that the distribution of mean rewards (induced

by PA) comes from a particular family. Among the earliest

efforts in this direction is that of Berry et al. (1997), who

propose several algorithms for infinitely-many armed ban-

dits in which the mean rewards of the arms are uniformly

distributed in [0, µ∗] for some 0 < µ∗ ≤ 1. An additional as-

sumption underlying their work is that for each arm a ∈ A,

the reward distribution M(a) is Bernoulli.

Wang et al. (2008) assume that a randomly-sampled arm’s

mean reward µ comes from a reservoir distribution L;

that is, ∃µ∗ ∈ (0, 1] and ν > 0, for which Prµ∼L{µ >
µ∗ − ǫ} = Θ(ǫν), for ǫ → 0. Under this assumption,

they present an algorithm that incurs (1) R∗
T = Õ(T 1/2) if

µ∗ < 1 and ν ≤ 1, and (2) R∗
T = Õ(T ν/(1+ν)) otherwise.

They have also derived lower bounds that match up to a

logarithmic factor. When each arm generates Bernoulli re-

wards and µ∗ = 1, Bonald and Proutiere (2013) provide an

algorithm that is optimal with the exact constant. In more

recent work, Li and Xia (2017) consider a related setting

in which the probability of a newly-pulled arm being near-

optimal arm depends on the ratio of its expected reward to

its expected cost, with arms having different random costs.

3. Constant-memory policies. A particular novelty of the

family of algorithms studied by Berry et al. (1997) is that

the algorithms maintain the reward statistics of at most one

or two arms at a time. When the arms’ reward distribution

is uniformly distributed in (0, 1), their algorithms are shown

to achieve sub-linear regret. No closed-form upper bounds

are provided when this condition does not hold. Also in the

constant-memory category, Herschkorn et al. (1996) present

two approaches for the problem of maximising the almost

sure average reward over an infinite horizon. Although they

assume that each arm generates i.i.d. Bernoulli rewards, they

make no assumption on the distribution of mean rewards.

They present two approaches, both of which repeatedly

pull an arm until it records a certain number of successive

failures. They do not provide an explicit bound on the regret.

4. Other related work. Recently, Wang et al. (2017) have

proposed CEMAB, a cross-entropy based algorithm for

many-armed bandit instances. Like us, they aim to focus

exploration on a small subset of arms. However, they still

require the entire set of arms to be finite, which limits their

experimentation to instances with a few tens of arms. They

do not present any theoretical upper bounds on the regret.

The work we have discussed thus far in this section is all tar-

geted at minimising regret. By contrast, there has also been

some effort under the “pure exploration” regime to tackle

infinitely-many armed bandits. For example, Carpentier and

Valko (2015) aim to minimise simple regret, under the same

assumption of a mean reservoir distribution assumption as

Wang et al. (2008). Our own conception of quantile-regret

is motivated by the work of Goschin et al. (2012) and Roy

Chaudhuri and Kalyanakrishnan (2017), who study a PAC

formulation of identifying arms above a specified reward

quantile in infinitely many-armed bandits.

The primary motivation behind our work is to eliminate as-

sumptions regarding structure and side information. Such in-

ductive biases become counterproductive when they are not

near-perfect. In Section 4, we show that the algorithms pro-

posed by Kleinberg (2005), Ray Chowdhury and Gopalan

(2017), and Wang et al. (2008), all fare poorly when their

parameters are misspecified. Constant-memory algorithms,

while conceptually elegant, forego the obvious benefit of

retaining the statistics of multiple arms (say a few tens or

hundreds) in memory. Except in tailormade settings (i.i.d.

Bernoulli rewards, uniformly distributed mean rewards),

our approach performs significantly better. We proceed to

describe our algorithms.

3 MINIMISING QUANTILE-REGRET

At the heart of our approach for minimising quantile regret

on infinitely many-armed bandit instances is to first sample

out suitably-sized finite bandit instances and then to apply

conventional regret minimisation algorithms on the latter.

For ease of analysis, we choose the MOSS algorithm (Au-

dibert and Bubeck, 2009) for our inner loop, since it incurs

optimal (distribution-free) regret (up to a constant factor) on

finite bandit instances.

First, we consider the easy case: that is, when ρ is provided

as an input. Then we generalise this setting to one where ρ
is not specified, and the objective is to achieve sub-linear

ρ-regret for all ρ > 0. Our bounds will hold for sufficiently

large (but still finite) horizons T . On the other hand, for a

fixed horizon T , it is impossible to guarantee sub-linear ρ-

regret for all ρ > 0 for all problem instances. For example,

consider a problem instance with a fraction ρ < 1/T of

arms all being optimal, and the rest sub-optimal. T pulls

will not suffice even to stumble upon an optimal arm with

sufficiently high probability, let alone exploit it. The ρ-regret

on such an instance will have to be linear in T .

3.1 With quantile fraction specified

In order to minimise ρ-regret for a given quantile fraction

ρ ∈ (0, 1], our primitive operation is to sample a sufficiently

large number of arms using PA, and to minimise conven-

tional regret on this set of arms by applying MOSS. We

implement an “any time” algorithm by repeating this primi-

tive procedure with progressively larger horizons, as shown

in Algorithm 1.

Algorithm 1 QRM1 (with quantile fraction specified)

Require: I, ρ
for r = 1, 2, 3, · · · do

tr = 2r, nr =
⌈

1
ρ max{1, ln√ρtr}

⌉

.

Form a set Kr by selecting additional nr−|Kr−1| arms

from A using PA, and adding them to Kr−1.

Run MOSS(Kr, tr).

end for

In each phase r, MOSS is called to run on a finite bandit

instance with some Kr arms, over a finite horizon tr. MOSS

is known to incur a regret of at most C
√

|Kr|tr for some

constant C (Audibert and Bubeck, 2009, Theorem 5). The

parameters Kr and tr are specifically chosen such that with

sufficiently high probability, at least one arm from T OPρ

is selected in Kr, and consequently the overall ρ-regret

remains sub-linear.

Our analysis assumes ρ ∈ (0, 1). The case of ρ = 1 is

trivial; RT (1) cannot exceed 0. For ρ = 0, sub-linear regret

can only be achieved under the additional assumption that

optimal arms have a positive probability under PA. In the

analysis that follows, we use log to denote the logarithm to

the base 2, and ln to denote the natural logarithm. We also

take the horizon T to be a power of 2—which only changes

our bounds by a constant factor.

Lemma 3.1. For ρ ∈ (0, 1) and for sufficiently large T ,

QRM1 achieves RT (ρ) = O
(

1
ρ +

√

T
ρ log(ρT)

)

.

Proof. Let us consider the event during phase r that no

arm from Kr is in T OPρ. Denote this event Er
def
=

{Kr ∩ T OPρ = ∅}. We upper-bound the ρ-regret accumu-

lated during phase r, which we denote Lr, by conditioning

separately on on Er and ¬Er.

In phase r, the probability of occurrence of Er is Pr{Er} =
(1 − ρ)nr . Now, letting r∗ = log(e2/ρ), we notice that

for r ≥ r∗, tr ≥ e2/ρ, and hence we can upper bound

the probability of occurrence of Er as Pr{Er} ≤ (1 −
ρ)ρ

−1 ln(
√
ρtr) <

√

1/(ρtr). We simply take tr as an upper

bound on the phase’s contribution to the regret if Er has

occurred. If Er does not occur, then there exists at least

one arm from T OPρ in Kr. In this case, the regret is

upper-bounded by C
√
nrtr ≤ C

√

tr log(ρtr)/ρ, for some

constant C (Audibert and Bubeck, 2009). Therefore, for

r ≥ r∗, the ρ-regret from phase r is upper-bounded as

Lr ≤ tr ·Pr{Er}+C ·√nrtr ≤
√

tr
ρ +C ·

√

tr
ρ log(ρtr) ≤

C1 ·
√

tr
ρ log(ρtr) for some constant C1.

For phases r < r∗, the ρ-regret is trivially upper-bounded

by tr. Hence summing over all phases, we get RT (ρ) ≤
∑r∗−1

r=1 Lr+
∑log T

r=r∗ Lr ≤ 2r
∗

+
∑log T

r=r∗ C1 ·
√

tr
ρ log(ρtr),

which is ∈ O
(

1
ρ +

√

T
ρ log(ρT)

)

.

We show that this upper bound on the ρ-regret is optimal up

to a logarithmic factor in the horizon. Our proof is based on

a well-known lower bound for finite bandit instances (Auer

et al., 2003, see Theorem 5.1).

Theorem 3.2. [Lower bound] For every algorithm, there

exists a problem instance, along with ρ ∈ (0, 1) and T > 0,

such that RT (ρ) ≥ min
{

1
20

√

T
ρ , T

}

.

Proof. Let ALG be any algorithm for sampling infinitely

many-armed bandits. Naturally, we can also apply ALG
on finite bandit instances. Given any arbitrary K-armed

bandit instance, K < ∞, we can create a corresponding

problem instance ((A,M), PA) wherein (1) A is the finite

set of K arms, (2) M(a) is the reward function for a ∈ A,

and (3) PA samples each arm in A with an equal probability

of 1/K. Now, if we set ρ = 1/K, observe that T OPρ

can only contain optimal arms from A, and hence, the ρ-

regret incurred by ALG on ((A,M), PA) is the same as the

conventional regret on the original finite instance.

Suppose, contrary to the statement of the theorem, ALG
is such that for all input problem instances, for all ρ ∈
(0, 1) and for all T > 0, its ρ-regret satisfies RT (ρ) <

min
{

1
20

√

T
ρ , T

}

. From the translation described above,

it follows that ALG incurs R
∗
T < min{ 1

20

√
KT, T} for

all finite K-armed bandit instances, K > 0 and horizons

T > 0. However, Auer et al. (2003, see Theorem 5.1) have

shown that no such algorithm exists for finite instances. Our

proof is complete.

3.2 With quantile fraction not specified

We can now drop the requirement that ρ is given to the

algorithm as an input. Rather, we iteratively optimise ρ-

regret for progressively decreasing values of ρ.

Algorithm 2 follows the same template as Algorithm 1,

except that the number of arms to sample in each phase

r is set to be a polynomial function of tr, with the power

α = 0.347 set to minimise the ρ-regret’s dependence on T .

Although QRM2, the algorithm specified above, does not

require any knowledge of ρ, we shall analyse its ρ-regret for

some fixed ρ > 0.

Algorithm 2 QRM2 (with quantile fraction not specified)

Require: I
Set α = 0.347 and K0 = ∅.

for r = 1, 2, 3, · · · do

tr = 2r, nr = ⌈tαr ⌉.

Form a set Kr by selecting additional nr−|Kr−1| arms

from A using PA, and adding to Kr−1.

Run MOSS(Kr, tr).

end for

Theorem 3.3. [Sub-linear quantile-regret of QRM2] For

ρ ∈ (0, 1) and for sufficiently large T , QRM2 incurs

RT (ρ) ∈ o

(

(

1
ρ log

1
ρ

)2.89

+ T 0.674

)

.

Proof. Considering some fixed ρ ∈ (0, 1), we upper-

bound the ρ-regret in two parts: (1) when no arms from

T OPρ are chosen, and (2) when at least one arm is cho-

sen. To analyse the first part, we show that for r∗
def
=

⌈(1/α) log((1/ρ) log(1/ρ))⌉, if r ≥ r∗, then Kr is suffi-

ciently large to contain an arm from T OPρ with high prob-

ability. To show that, like before, we define the event that no

arm from T OPρ is in Kr as Er(ρ)
def
= {Kr ∩ T OPρ = ∅}.

It follows Pr{Er(ρ)} = (1− ρ)nr . Now, for r ≥ r∗, using

Lemma 5.1 (provided in Appendix A1), we get Pr{Er(ρ)}
≤ exp(−⌈(α(1 + γ)−1 · ln tlog e

r ⌉) ≤ tr
−α log e/(1+γ).

Hence, if the algorithm runs for T pulls, then the regret

due to occurrence of Er(ρ) is upper bounded as

log T
∑

r=1

tr Pr{Er(ρ)} ∈ O
(

tr∗ + T 1−α log e

1+γ

)

. (3)

Now we analyse the second part: that is, upper-bounding

the regret incurred if at least one from the T OPρ is in Kr

(the event ¬Er(ρ)). Let us assume that C is a constant such

that the regret incurred by MOSS in phase r (given ¬Er(ρ))

is at most C
√
nrtr = Ct

(1+α)/2
r . Therefore, assuming total

number of pulls as T , the total regret incurred on r∗-th phase

onward is upper bounded as

log T
∑

r=r∗

C
√
nrtr ≤ C ′T (1+α)/2 (4)

for some constant C ′. The intermediate steps to ob-

tain (3) and (4) are shown in Appendix-A. Combining

(3) and (4), and substituting for tr∗ , we get RT (ρ) =

O

(

(

1
ρ log

1
ρ

)
1
α

+ T 1−α log e

1+γ + T (1+α)/2

)

. We conclude

by noticing that α = 0.5/(0.5 + log e/(1 + γ)) ≈ 0.3466
minimises RT (ρ) with respect to T .

1Appearing at the end of the extended version of this paper at
https://www.cse.iitb.ac.in/˜shivaram/papers/rk_uai_2018.pdf.

The upper bound in Theorem 3.3 cannot be directly com-

pared with regret bounds in the literature (Kleinberg, 2005,

Wang et al., 2008) since our bound is on the ρ-regret. As yet,

we do not know if the dependence of ρ-regret on the horizon

T can be improved. Even so, the sub-linear upper bound

we have shown on RT (ρ) assumes a special significance in

the study of infinitely-many armed bandits. Observe that

the upper bound holds for every ρ > 0 and for every ban-

dit instance. By contrast, conventional regret-minimisation

(of R
∗
T) cannot assure sub-linear regret unless the bandit

instance itself satisfies additional assumptions (of which

several have been made in the literature). By taking ρ > 0,

we have chosen to change our objective (albeit slightly),

rather than place demands on the input bandit instance.

Interestingly, we find that on bandit instances that do sat-

isfy a standard assumption made to achieve sub-linear R
∗
T ,

QRM2, too, achieves sub-linear R
∗
T , in spite of being de-

signed to minimise RT (ρ) for ρ > 0. We proceed to discuss

this connection between RT (ρ) and R
∗
T .

3.3 Quantile-regret and conventional regret

Given a problem instance ((A,M), PA), we first show that

minimising R
∗
T is sufficient to minimise RT (ρ) for all ρ > 0,

but the converse is not true.

Lemma 3.4. For any algorithm and input problem instance,

if R
∗
T ∈ o(T), then it must hold that RT (ρ) ∈ o(T), for all

ρ > 0. However, the converse is not true.

Proof. For the first part, (1) is written as R
∗
T = T · (µ∗ −

µρ)+T ·µρ−
∑T

t=1 E[µt] = T ·(µ∗−µρ)+RT (ρ). Hence,

R
∗
T ∈ o(T) =⇒ RT (ρ) ∈ o(T), for all ρ ∈ [0, 1].

The second part is obtained by considering an infinitely-

many armed bandit instance with finitely many optimal

arms. Formally, take |A| = ∞ and PA to be the uniform

distribution over A. Let S ⊂ A, such that ∀a ∈ S, µa = µ∗,

|S| < ∞, and ∀a ∈ A \ S: µa = µ̄ < µ∗. Now, S
being finite, with probability 1, no arm from S will be

picked by PA. Therefore, for ρ > 0, µρ = µ̄, and so

R
∗
T = T · (µ∗ − µ̄) +RT (ρ) ≥ T · (µ∗ − µ̄) ∈ Ω(T).

Although in general, achieving sub-linear ρ-regret does not

imply achieving sub-linear regret, this turns out asymptot-

ically true for QRM2 on the family of bandit instances

considered by Wang et al. (2008), of which the family of in-

stances considered by Berry et al. (1997) is a subset. In these

instances, the distribution of the mean reward µ, denoted

D(µ), has the “reservoir” property, as detailed below.

Proposition 3.5 (Case Study). QRM2 achieves R
∗
T ∈ o(T)

as T → ∞, under the assumption that Prµ∼D(µ){µ >
µ∗− ǫ} = Θ(ǫν), for ǫ → 0, where ν is a positive constant.

Proof. The assumption amounts to the existence ρ0 ∈ (0, 1]
such that for 0 < ρ < ρ0, cl(µ

∗−µρ)
ν ≤ ρ ≤ cu(µ

∗−µρ)
ν ,

where cu, cl are positive constants. Defining h(ρ)
def
= µ∗ −

µρ, we see that for ρ ∈ (0, ρ0]: h(ρ) ≤ (ρ/cl)
1/ν .

We know from Theorem 3.3 that for any given ρ > 0,

and for a sufficiently large horizon T , QRM2 achieves

RT (ρ) ∈ o(T). Equivalently, for every sufficiently large T ,

there exists a ρ(T) ∈ (0, 1] such that, for all ρ ≥ ρ(T),
QRM2 achieves RT (ρ) ∈ o(T) . We also notice that

ρ(T) is a monotonic non-increasing sequence that con-

verges to 0. Hence, there exists a sufficiently large hori-

zon T0 such that for all T ≥ T0, ρ(T) ≤ ρ0. In other

words, for horizon T > T0, h(ρ(T)) ≤ (ρ(T)/cl)
1/ν .

Since limT→∞(ρ(T)/cl)
1/ν = 0 and h(ρ(T)) ≥ 0, we get

limT→∞ h(ρ(T)) = 0. Since R
∗
T = T · h(ρ(T)) + RT (ρ),

we get limT→∞
R

∗

T

T = limT→∞
(

h(ρ(T)) + RT (ρ(T))
T

)

=

0, which means that R
∗
T is asymptotically o(T).

4 EXPERIMENTS AND RESULTS

In this section, we compare QRM2 with competing ap-

proaches for regret minimisation on infinitely many-armed

bandits. We consider representative algorithms from the cat-

egories described in Section 2, and investigate the efect of

their parameters, in tandem with a comparison with QRM2.

Although QRM2 is designed to minimise ρ-regret for pro-

gressively decreasing ρ values, we use conventional regret

as the evaluation metric in all our experiments. This choice

essentially amounts to evaluating the total reward accrued

over a given horizon, which is perhaps the most relevant

measure in practice. In all our experiments, the reward

distributions of arms are Bernoulli. Note that both ZOOM-

ING (Kleinberg et al., 2008) and QRM2 proceed through

phases, progressively doubling the phase length. To improve

sample efficiency, we retain the statistics of pulls from pre-

vious phases and correspondingly adjust the “budget” term

in the confidence bound.

4.1 Comparison with ZOOMING

The ZOOMING algorithm (Kleinberg et al., 2008) works on

a bandit instance comprising a set of arms A = [0, 1], with

the expected mean reward µ(·) being Lipschitz-continuous

over A. The metric defined on A is: for x, y ∈ A,

Ld(x, y) = |x − y|1/d, where d ≥ 1 is a known, user-

specified parameter. For a given horizon T , ZOOMING is

shown to incur a regret of Õ(T (d+1)/(d+2)). The algorithm

proceeds by maintaining confidence bounds on the mean

rewards of contiguous regions of A; a new region is created

whenever the existing ones fail to cover some portion of A.

In our implementation, a new region is created by picking

an uncovered region uniformly at random. Its “centre” is

picked uniformly at random from the points it contains.

We compare QRM2 with ZOOMING on four problem in-

stances, shown in Figure 2 and specified in Appendix-B. On

each instance we compare the cumulative regret of QRM2

with that of ZOOMING for d ∈ {1, 2}. The results at differ-

ent horizons are presented in Figure 3. Foremost, observe

that the performance of ZOOMING is fairly sensitive to d:

on instances I-P and I-S, the variant with d = 1 performs

noticeably better; on instances I-N and I-W, the variant with

d = 2 is superior. On the instance I-N the better of these

two variants performs close to QRM2. On an unknown

problem instance, it is unrealistic to expect that the user will

be able to guess a good value for d beforehand.

0

1
I-P

0.5

1
I-N

0.5

1
I-W

0 0.2 0.4 0.6 0.8 1
0.5

1
I-S

Figure 2: Four problem instances (fully specified in

Appendix-B). In all four cases, A = [0, 1], as shown on

the x axis. The y axis shows the mean reward µa for a ∈ A.

QRM2 takes PA to be the uniform distribution over A.

0

2

4
10

4

I-P

0

1

2
10

5

I-N

0

2

4
10

4

I-W

1 2 3 4 5 6 7 8 9 10
0

5
10

3

I-S

Figure 3: Cumulative regret (y axis) incurred by ZOOMING

and QRM2 on the instances in Figure 2. The x axis shows

the horizon / 105. Each plot is an average of 100 runs.

A second limitation in practice arises from the quality of

the features used to generalise across A, which effectively

determine the Lipschitz constant of the mean reward func-

tion. Instances I-W and I-S have exactly the same mean

distribution D—they only differ in the indexing of the arms,

which, in practice, would depend on the feature representa-

tion. The regret of ZOOMING on these instances (whether

with d = 1 or with d = 2) varies at least three-fold. By

ignoring the arm indices and the metric, QRM2 registers

exactly the same regret on both instances.

4.2 Comparison with Gaussian Process algorithms

In our next set of experiments, we compare QRM2 with

IGP-UCB and GP-TS (Ray Chowdhury and Gopalan,

2017). Our experiments are run on the light sensor data

set2, on which the authors have themselves benchmarked

their methods. We refer the reader to the original paper for

a description of the data set (Ray Chowdhury and Gopalan,

2017, see Section 6), which encodes bandit instances with

arms corresponding to sensors. We run IGP-UCB and

GP-TS with the same parameters used by the authors.

From Table 1, we find that GP-TS outperforms IGP-UCB,

exactly as reported by Ray Chowdhury and Gopalan (2017).

However, QRM2 outperforms both GP-TS and IGP-UCB

by a large margin. We posit as one reason for the efficiency

of QRM2 its use of MOSS as the underlying regret min-

imisation procedure. On the other hand, using Gaussian

Processes to generalise over the space of arms would only

work well if nearby arms indeed have similar mean rewards.

Without good generalisation, the confidence bounds result-

ing from Gaussian Processes are likely to be loose, and

therefore a poor guide for exploration.

Table 1: Cumulative regret after 106 pulls, averaged over

192 test instances, with one standard error.
Algorithm Average cumulative regret

GP-TS 2.58 ×104 ± 36.75 ×102

IGP-UCB 3.86 ×105 ± 18.05 ×104

QRM2 0.14 ×104 ± 0.13 ×102

4.3 Comparison with algorithm of Wang et al. (2008)

We compare QRM2 with the algorithm of Wang et al.

(2008) for unspecified horizons. Recall that the sub-linear

regret bounds shown by Wang et al. (2008) are based

on the assumption that the mean distribution is a “reser-

voir”: that is, Prµa∼PA
{µa > µ∗ − ǫ} = Θ(ǫν), for

ǫ → 0. We notice that for µ∗ ∈ (0, 1] and ν > 0,

f(µ) = ν
µ∗ν (µ

∗ − µ)ν−1 is a density function of some

reservoir distribution. This follows from the fact that CDF

of f(µ) is given by F (µ) = 1− 1
µ∗ν (µ

∗ − µ)ν . Therefore

Prµ∼f(µ){µ > µ∗ − ǫ} = 1 − F (µ) ∈ Θ(ǫν). It is worth

noting that for ν = 1, f(µ) is the uniform distribution.

The any-time algorithm given by Wang et al. (2008) requires

three parameters: (1) an exploration rate ξt, for the t-th pull,

such that 2 ln(10 ln t) ≤ ξt ≤ ln t, (2) the shape param-

eter ν, and (3) whether µ∗ = 1. We refer the reader to

the original paper (Wang et al., 2008, see Section 2) for a

full specification. We test this algorithm along with QRM2

on four problem instances, shown in Table 2. In all cases,

A = [0, 1], and we take PA as the uniform distribution over

A. Each problem instance is such that its optimal mean µ∗

is either 1 or 0.6, and its reward distribution D(µ) is either

β(0.5, 2) or β(1, 1) (scaled to have support in [0, µ∗]). The

algorithm of Wang et al. (2008)’s needs to be supplied ν
such that the complementary cumulative distribution func-

2
www.cs.cmu.edu/˜guestrin/Class/10708-F08/projects/

lightsensor.zip

tion (CCDF) of f(µ) will overestimate that of D(µ) beyond

some µ0 < µ∗. Also, as the algorithm needs to know

whether of not µ∗ = 1, we supply a representative value µ#

for µ∗. Table 2 explicitly shows the parameterisation used

for the different instances, and Figure 4 depicts the CCDF

of the corresponding D(µ), and that of f(µ) for different

values of ν. In practice, an experimenter might not have a

precise estimate of (ν, µ∗), and hence the values supplied

might not meet the above criteria. In Table 2, depending

on whether or not the values of ν, µ# respect the criteria,

the corresponding cells are marked by ✓and ✗, respectively.

Also, the values of ν, µ# (from our set) for which the CCDF

of f(µ) coincides with or fits D(µ) most closely are marked

Exact and Closest, respectively.

Table 2: Summary of problem instances used in Section 4.3,

along with different parameterisations of the algorithm of

Wang et al. (2008). For explanations see Section 4.3.

Instances µ∗ D(µ) = β(a, b) µ# ν
a b 1.0 0.6 0.4 1 2

I-1 1 0.5 2 ✓ ✗ ✓ ✓ ✓Closest

I-2 1 1 1 ✓ ✗ ✓ ✓Exact ✗

I-3 0.6 0.5 2 ✗ ✓ ✓ ✓ ✓Closest

I-4 0.6 1 1 ✗ ✓ ✓ ✓Exact ✗

0 0.2 0.4 0.6 0.8 1
0

0.5

1

(0.5,2)

(1,1)

f() for = 0.4

f() for = 1

f() for = 2

Figure 4: Complementary CDF (CCDF) values (y axis) for

various distributions. The CCDF for β(1, 1) coincides with

that of f(µ) for ν = 1.

For a horizon of 106, QRM2, which is parameter-free, ex-

plores a fixed number of arms (= 94). On the other hand,

Wang et al. ’s algorithm explores 104 arms for ν = 2. For

ν = 0.4 it explores 16 and 52 arms for µ# = 0.6 and

µ# = 1, respectively. Figure 5 shows that in spite of

providing values of (ν, µ#) that closely (or even exactly)

track D(µ), QRM2 outperforms Wang et al. ’s algorithm

by a significant margin. We note that optimistic values of

these parameters helps their result improve, but incorrect

parameterisation severely degrades performance. Another

non-trivial factor in the performance of their algorithm is

the exploration rate ξt. While varying ξt within their pre-

scribed range keeps the regret upper bound unaffected, in

practice it is observed to have a significant effect on regret.

In Algorithm 2, we set the α parameter of QRM2 to 0.347
to optimise a theoretical bound. In practice, tuning α for

different problem instances further improves QRM2’s per-

formance. In line with our intent to not depend on tuning,

we refrain from reporting these optimised results.

I-1

0

1

2

3

4

5

6
10

5

#
=0.6

t
=ln(t)

#
=0.6

t
=2ln(10ln(t))

#
=1

t
=ln(t)

#
=1

t
=2ln(10ln(t))

QRM2

Wang: = 0.4

Wang: = 1

Wang: = 2

QRM2

I-2

0

0.5

1

1.5

2

2.5

3

3.5

4
10

5

#
=0.6

t
=ln(t)

#
=0.6

t
=2ln(10ln(t))

#
=1

t
=ln(t)

#
=1

t
=2ln(10ln(t))

QRM2

Wang: = 0.4

Wang: = 1

Wang: = 2

QRM2

I-3

0

0.5

1

1.5

2

2.5

3

3.5

4
10

5

#
=0.6

t
=ln(t)

#
=0.6

t
=2ln(10ln(t))

#
=1

t
=ln(t)

#
=1

t
=2ln(10ln(t))

QRM2

Wang: = 0.4

Wang: = 1

Wang: = 2

QRM2

I-4

0

0.5

1

1.5

2

2.5
10

5

#
=0.6

t
=ln(t)

#
=0.6

t
=2ln(10ln(t))

#
=1

t
=ln(t)

#
=1

t
=2ln(10ln(t))

QRM2

Wang: = 0.4

Wang: = 1

Wang: = 2

QRM2

Figure 5: Cumulative regret incurred by QRM2 and the

algorithm of Wang et al. (2008) after 106 pulls on the in-

stances in Table 2. Each bar is an average of 20 runs, and

shows one standard error bar. The accompanying parame-

ters are explained in Section 4.3.

4.4 Comparison with constant-memory algorithms

Recall that the algorithms of Herschkorn et al. (1996) and

Berry et al. (1997) keep the statistics of only a single arm (or

two) in memory. They are specifically designed for bandit

instances that yield Bernoulli rewards. The “Non-stationary”

algorithm of Herschkorn et al. (1996) repeatedly pulls the

i-th arm, for i = 1, 2, . . . , until it produces i consecutive

failures—at which point a new arm is pulled. Berry et al.

(1997) propose three strategies for problem instances in

which the distribution of means is uniform over [0, µ∗] for

some µ∗ ∈ [0, 1]. These strategies assume that the horizon

T is given. For example, the “
√
T -run” switches out the

current arm upon a single failure, unless the arm produces√
T successes (in which case it is pulled for the remaining

horizon). If
√
T arms have been pulled and discarded, the

arm with the highest observed empirical mean thus far is

pulled for the remainder of the run. The “
√
T lnT -learning”

strategy and the “Nonrecalling
√
T -run” are variants built

around a similar theme; we refer the reader to the original

paper (Berry et al., 1997) for precise specifications. Ta-

ble 3 presents a comparison of incurred cumulative regret

on the instances I-1, I-2, I-3 and I-4. On I-1, QRM2 outper-

forms all the other strategies by a significant margin. This

result is not surprising, since (1) QRM2 uses additional

memory (94 arms for a horizon of 106), and (2) unlike the

strategies of Berry et al. (1997), it does not assume that

the mean rewards are uniformly distributed. On I-2, which

indeed has uniformly-distributed means, the Nonrecalling√
T -run strategy of Berry et al. performs marginally better

than QRM2. However, this win comes at the expense of in-

curring very high regret on I-1, in which near-optimal arms

are less likely to be encountered. Interestingly, on I-3 and

I-4, the Non-stationary policy of Herschkorn et al. (1996)

policy outperforms all three from Berry et al. (1997). Yet,

all these algorithms are outperformed by QRM2.

Table 3: Cumulative regret (/105) of QRM2 and strategies

proposed by Herschkorn et al. (1996) and Berry et al. (1997)

after 106 pulls, on instances I-1, I-2, I-3 and I-4. Each result

is the average of 20 runs, showing one standard error.
Algorithms I-1 I-2 I-3 I-4

Non-stationary Policy

(Herschkorn et al., 1996)
3.58 ±0.4 1.11 ±0.2 1.64 ± 0.2 0.79 ± 0.1

√
T -run

(Berry et al., 1997)
6.18 ±0.5 1.11 ±0.4 4.18 ± 0.3 2.03 ± 0.3

√
T lnT -learning

(Berry et al., 1997)
6.32 ±0.4 0.69 ±0.3 4.38 ± 0.2 2.15 ± 0.3

Nonrecalling
√
T -run

(Berry et al., 1997)
5.35 ±0.5 0.03 ±0.004 4.56 ± 0.001 2.55 ± 0.001

QRM2 1.71 ±0.2 0.15 ±0.02 0.98 ± 0.1 0.12 ± 0.01

5 CONCLUSION

In this paper, we present an approach to manage the explore-

exploit trade-off in bandit instances that contain many more

arms than the possible number of experiments. While most

existing approaches in this setting assume special properties

of the arms’ reward function or some structure over the set

of arms, we make no such assumptions. Rather, we refor-

mulate the problem by introducing the notion of quantile

regret (or ρ-regret), which is defined with respect to the

(1− ρ)-th quantile of the mean reward distribution—unlike

conventional regret, which is defined with respect to the

highest mean. We present sub-linear upper bounds on the

ρ-regret when (1) ρ is specified to the algorithm, and (2)

ρ is not specified to the algorithm. We also prove that our

QRM2 algorithm, although it is designed to minimise ρ-

regret for small ρ, indeed achieves sub-linear regret under

the assumption that the instance’s mean rewards come from

a reservoir distribution (Wang et al., 2008).

We provide extensive empirical justification for quantile-

regret minimisation. Our experiments show that the ZOOM-

ING algorithm (Kleinberg et al., 2008) is sensitive to the

given metric and the Lipschitz-continuity of the reward

function. With slight perturbations to its parameters, the

algorithm incurs a significantly higher regret. The GP-TS,

and IGP-UCB algorithms (Ray Chowdhury and Gopalan,

2017) do not explicitly specify the number of arms to ex-

plore. Both algorithms perform much worse than QRM2 on

the light sensor problem. We find that even when specified

the exact distributional parameter, the algorithm proposed

by Wang et al. (2008) can incur a higher regret than QRM2.

It is infeasible in practice to know the optimal parameter

setting for a given problem instance, and it is undesirable

to have to find the right parameters using techniques such

as cross-validation. The parameter-free approach taken by

QRM2 makes it especially appealing to implement as a

baseline across different domains and problem instances.

The constant-memory policies proposed by Herschkorn et al.

(1996) and Berry et al. (1997) are akin to QRM2 in being

simple and parameter-free. On the theoretical side, it seems

plausible that their dependence on uniformly-distributed re-

wards can be removed in lieu of providing a finite time upper

bound on the quantile-regret (rather than asymptotic guaran-

tees). Practically, it also seems appealing to generalise these

methods to work with larger, even if constant, memory sizes.

In future work, we plan to analyse constant-memory poli-

cies within the framework of quantile-regret minimisation.

We also aim to examine possible improvements to both the

upper and lower bounds presented in this paper.

Acknowledgements

We thank Sayak Ray Chowdhury for sharing code and pro-

viding useful guidance. SK was partially supported by

SERB grant ECR/2017/002479.

References

Rajeev Agrawal. The continuum-armed bandit problem.

SIAM J. Control Optim., 33(6):1926–1951, 1995.

Jean-Yves Audibert and Sébastien Bubeck. Minimax

policies for adversarial and stochastic bandits. In

Proc. COLT 2009, pages 217–226, 2009. URL

https://hal-enpc.archives-ouvertes.

fr/hal-00834882/file/COLT09a.pdf.

Peter Auer. Using confidence bounds for exploitation-

exploration trade-offs. J. Mach. Learn. Res., 3:397–422,

2003.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and

Robert E. Schapire. The nonstochastic multiarmed bandit

problem. SIAM J. Comput., 32(1):48–77, 2003.

Peter Auer, Ronald Ortner, and Csaba Szepesvári. Improved

rates for the stochastic continuum-armed bandit problem.

In Proc. COLT 2007, pages 454–468. Springer, 2007.

D.A. Berry and B. Fristedt. Bandit Problems: Sequential

Allocation of Experiments. Chapman & Hall, 1985.

Donald A. Berry, Robert W. Chen, Alan Zame, David C.

Heath, and Larry A. Shepp. Bandit problems with in-

finitely many arms. The Annals of Stat., 25(5):2103–2116,

1997.

Thomas Bonald and Alexandre Proutiere. Two-target algo-

rithms for infinite-armed bandits with Bernoulli rewards.

In Adv. NIPS 26, pages 2184–2192. Curran Associates,

Inc., 2013.

Alexandra Carpentier and Michal Valko. Simple regret

for infinitely many armed bandits. In Proc. ICML 2015,

pages 1133–1141. JMLR, 2015.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire.

Contextual bandits with linear payoff functions. In Proc.

AISTATS 2011, volume 15, pages 208–214. PMLR, 2011.

David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken

Perlin, and Steven Worley. Texturing and Modeling: A

Procedural Approach. Morgan Kaufmann publishers Inc.,

3rd edition, 2002.

Avishek Ghosh, Sayak Ray Chowdhury, and Aditya

Gopalan. Misspecified linear bandits. In Proc. AAAI

2017, pages 3761–3767. AAAI Press, 2017.

Sergiu Goschin, Ari Weinstein, Michael L. Littman, and

Erick Chastain. Planning in reward-rich domains via

PAC bandits. In Proc. EWRL 2012, volume 24, pages

25–42. JMLR, 2012.

Stephen J. Herschkorn, Erol Pekz, and Sheldon M. Ross.

Policies without memory for the infinite-armed Bernoulli

bandit under the average-reward criterion. Prob. in the

Engg. and Info. Sc., 10(1):21–28, 1996.

Yoshiaki Kadono and Naoki Fukuta. Lakube: An im-

proved multi-armed bandit algorithm for strongly budget-

constrained conditions on collecting large-scale sensor

network data. In PRICAI 2014: Trends in Artificial In-

telligence, pages 1089–1095. Springer International Pub-

lishing, 2014.

Robert Kleinberg. Nearly tight bounds for the continuum-

armed bandit problem. In Adv. NIPS 17, pages 697–704.

MIT Press, 2005.

Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-

armed bandits in metric spaces. In Proc. STOC 2008,

pages 681–690. ACM, 2008.

Haifang Li and Yingce Xia. Infinitely many-armed bandits

with budget constraints. In Proc. AAAI 2017, pages 2182–

2188. AAAI Press, 2017.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized

multi-armed bandits. In Proc. ICML 2017, volume 70,

pages 844–853. PMLR, 2017.

Arghya Roy Chaudhuri and Shivaram Kalyanakrishnan.

PAC identification of a bandit arm relative to a reward

quantile. In Proc. AAAI 2017, pages 1977–1985. AAAI

Press, 2017.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and

Matthias W. Seeger. Gaussian process optimization in

the bandit setting: No regret and experimental design. In

Proc. ICML 2010, pages 1015–1022. Omnipress, 2010.

Liang Tang, Romer Rosales, Ajit Singh, and Deepak Agar-

wal. Automatic ad format selection via contextual bandits.

In Proc. CIKM 2013, pages 1587–1594. ACM, 2013.

Long Tran-Thanh, Sebastian Stein, Alex Rogers, and

Nicholas R. Jennings. Efficient crowdsourcing of un-

known experts using bounded multi-armed bandits. Artif.

Intl., 214:89–111, 2014.

Michal Valko, Nathan Korda, Rémi Munos, Ilias Flaounas,

and Nello Cristianini. Finite-time analysis of kernelised

contextual bandits. In Proc. UAI 2013, pages 654–663.

AUAI Press, 2013.

Erli Wang, Hanna Kurniawati, and Dirk P. Kroese. CEMAB:

A cross-entropy-based method for large-scale multi-

armed bandits. In Artif. Life and Computnl. Intl., pages

353–365. Springer Intl. Publishing, 2017.

Yizao Wang, Jean-Yves Audibert, and Rémi Munos. Algo-

rithms for infinitely many-armed bandits. In Adv. NIPS

21, pages 1729–1736. Curran Associates Inc., 2008.

Appendix-A

In this appendix we provide the materials to complete the

proof of Theorem 3.3.

Lemma 5.1. Let, r∗ = ⌈(1/α) log((1/ρ) log(1/ρ))⌉.

Then, for every phase r ≥ r∗, the size of Kr can be lower

bounded as nr = ⌈tαr ⌉ ≥ ⌈ α
(1+γ)ρ · ln tlog e

r ⌉, wherein,

0.53 < γ
def
= maxx

log log x
log x < 0.531.

Proof. We notice, for every, r ≥ r∗, tr ≥
⌈(

1
ρ log

1
ρ

)
1
α
⌉

.

Then, for each r ≥ r∗, we can lower bound the size of the set

Kr as follows. As, nr is an integer, to ease the calculation

let us define su = 2u, where u ∈ R
+, and su does not need

to be an integer. Now, letting u∗ def
= log

(

1
ρ log

1
ρ

)
1
α

, we get

1

ρ
log su∗

=
1

ρ
log

(

1

ρ
log

1

ρ

)
1
α

=
1

αρ

(

log
1

ρ
+ log log

1

ρ

)

=
1

αρ
log

1

ρ

(

1 +
log log 1

ρ

log 1
ρ

)

≤ 1 + γ

αρ
log

1

ρ

[

as γ
def
= max

x

log log x

log x

]

=
1 + γ

α

(

1

ρ
log

1

ρ

)

=
1 + γ

α
sαu∗ .

=⇒ sαu∗ ≥ α

(1 + γ)ρ
log su∗ . (5)

As, sαu grows with u faster than log su, therefore,

∀u ≥ u∗, sαu ≥ α

(1 + γ)ρ
log su. (6)

Therefore, recalling that r is an integer, for all values of

r ≥ ⌈u∗⌉, the statement of the lemma follows.

Assuming r∗ = ⌈r∗⌉, below we present the detailed steps

for obtaining (3) in the proof of Theorem 3.3.

log T
∑

r=1

tr Pr{Er(ρ)}

=

r∗−1
∑

r=1

tr Pr{Er(ρ)}+
log T
∑

r=r∗

tr Pr{Er(ρ)}

≤
r∗−1
∑

r=1

tr +

log T
∑

r=r∗

tr
1−α log e

1+γ ≤ tr∗ +

log T
∑

r=r∗

tr
1−α log e

1+γ

≤ tr∗ +

log T−r∗
∑

j=1

(T/2j)1−
α log e

1+γ

≤ 2

⌈

log(1
ρ
log 1

ρ)
1
α

⌉

+ T 1−α log e

1+γ

log T−r∗
∑

j=0

(

1

2

)j(1−α log e

1+γ
)

< 2log(
1
ρ
log 1

ρ)
1
α +1 + T 1−α log e

1+γ

∞
∑

j=0

(

1

2

)j(1−α log e

1+γ
)

= O

(

2log(
1
ρ
log 1

ρ)
1
α

+ T 1−α log e

1+γ

)

= O

(

(

1

ρ
log

1

ρ

)
1
α

+ T 1−α log e

1+γ

)

.

Below are the detailed steps for obtaining (4) in the proof

of Theorem 3.3.

log T
∑

r=r∗

C
√
nrtr =

log T−r∗
∑

j=0

C

√

T

2j

(

T

2j

)α

= CT (1+α)/2 ·
log T−r∗
∑

j=0

(

1

2(1+α)/2

)j

< CT (1+α)/2 ·
∞
∑

j=0

(

1

2(1+α)/2

)j

≤ C ′T (1+α)/2

for some constant C ′.

Appendix-B

For the experiments in Section 4.1, we have used four prob-

lem instances, namely I-P, I-N, I-W, and I-S. For each in-

stance, the mean reward is a Lipschitz-continuous function

over the set of arms, which is [0, 1]. Figure 2 presents a

visualisation; the precise mathematical specifications are

provided below.

I-P (Parabolic): The mean function is a segment of a

parabola with µ(x) = 1 for x = 0.5, and µ(x) = 0 for

x ∈ {0, 1}. Precisely, µ(x) = 1− 4(x− 0.5)2.

I-N (Notch): The mean function has value 0.5 everywhere

except in the interval [0.25, 0.45], where it forms a notch

and attains the value 1 at 0.35. Precisely,

µ(x) =

{

0.5 if |x− 0.35| > 0.1

1− 5 · |x− 0.35| otherwise.

I-W (Wave): The mean function is a smooth approximation

of a rectangular wave form. The interval [0, 1] is divided

into ten equal sub-intervals, each of length 0.1. Let [a, b]
be a sub-interval, ǫ = 0.01, and f(x, c, a, b) = 6y5 −
15y4 + 10y3 where y = (x − c)/(b − a). Here f(·) is a

SMOOTHSTEP function (Ebert et al., 2002). Then µ(x) on

each sub-interval [a, b] is given by

µ(x) =



















0.5 if x ∈ [a, a+ 2ǫ] ∪ [a+ 8ǫ, b]

0.5 + 0.5f(x, a, a, b) if x ∈ [a+ 2ǫ, a+ 3ǫ]

0.5 + 0.5f(x, b, a, b) if x ∈ [a+ 7ǫ, a+ 8ǫ]

1 otherwise.

I-S (Smooth Step): The mean is a sigmoid function whose

both ends are flat. Borrowing the definition of f(·) from

instance I-W,

µ(x) =











0.5 if x ∈ [0, 0.4]

1 if x ∈ [0.6, 1]

f(x, 0.4, 0.4, 0.6) otherwise.

