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Abstract

Non-negative matrix factorization [5] (NMF) is a
well known tool for unsupervised machine learning. It
can be viewed as a generalization of the K-means clus-
tering, Expectation Maximization based clustering and
aspect modeling by Probabilistic Latent Semantic Anal-
ysis (PLSA). Specifically PLSA is related to NMF with
KL-divergence objective function. Further it is shown
that K-means clustering is a special case of NMF with
matrix L2 norm based error function. In this paper our
objective is to analyze the relation between K-means
clustering and PLSA by examining the KL-divergence
function and matrix L2 norm based error function.

1 Comparison between K-means and
PLSA

There are several differences and common properties
between K-means and PLSA. The basic difference is
that K-means(hard or soft) is solved by minimizing the
squared euclidean error and PLSA is solved by mini-
mizing the KL-divergence. On the other handK-means
is a center based algorithm while PLSA is a generative
model, it tries to solve the problem using the “aspect
model” [3]. But there are several important properties
shared by K-means and PLSA. K-means also uses Ex-
pectation Maximization and suffers from local minima
problem. Another good commonality is that both of
them can be generalized to NMF.

One thing that is clear from the theory is that both the
squared euclidean norm and KL-divergence try to mini-
mize entry wise error. But it is also clear that in the first
case precision of accuracy for all the entries are equally
treated where as the second one treats each entry with
different weights or importance. As our objective is to

set up a relation between these two let’s have a closer
look at the KL-divergence.

2 K-means and NMF

Let us have a closer look at bridging between two ap-
parently different tools. As NMF acts as a platform for
generalization of different tools we will look at differ-
ent tools in the light of NMF. There are already brilliant
works proving relation between NMF and K-means
clustering[2], here we provide a brief discussion about
this.

Let us consider a collection of m dimensional
non-negative data as A = {a1,a2, ...,an} ∈ <+

m×n,
we can consider it as collection of n documents rep-
resenting a word-document association between word
i and document j; ∀i = 1, ...,m and ∀j = 1, ..., n.
The NMF factorizes X into two non negative
matrices F = {f1, f2, ..., fk} ∈ <+

m×k and
G = {g1,g2, ...,gk} ∈ <+

n×k such that :

A ≈ FGT (1)

where F andG are indicator vectors for row cluster and
column cluster respectively. With out loss of generality
the jth element (i.e the jth column) of F looks like :

fj = (0, · · · , 0,
nk︷ ︸︸ ︷

1, · · · , 1, 0, · · · , 0)T /n
1
2

k (2)

Here nj = |Cj | = Cardinality of the jth row cluster.
For column cluster G analogously we can define each
of its elements .
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Now let s(Rk, Cl) =
∑
i∈Rk

∑
j∈Cl bij be the

total similarity value between row cluster Rk and
column cluster Cl. K-means maximizes within cluster
similarities s(Rk, Ck),

max
FTF=I;

GTG=I;
F,G≥0

J1 =
∑
k

s(Rk, Ck)

(|Rk||Ck|)1/2
= Tr(FTAG)

⇒ min
FTF=I;

GTG=I;
F,G≥0

J1 = min
FTF=I;

GTG=I;
F,G≥0

−2Tr(FTAG)

= min
FTF=I;

GTG=I;
F,G≥0

||A||2 − 2Tr(FTAG)

+Tr(FTFGTG)

= min
FTF=I;

GTG=I;
F,G≥0

||A− FGT ||2

(3)

Very clearly orthogonality is playing an important
role. When FTF = I and GTG = I columns of F
and G are orthogonal among themselves. This leads
to hard K-means. But if we relax the orthogonality as
FTF ≈ I and GTG ≈ I we will land-up on NMF
which can be viewed as soft clustering. There[2] is a
detailed discussion about how a column normalized A
matrix (say Y ) can be approximately factored into two
non-negative matrices[2]

C = (c1, · · · , ck), B = (b1, · · · ,bk)

such that

Y ≈ CBT (4)

with the normalization
m∑
j=1

Cjk =

k∑
r=1

Bir = 1

and how it can be approximated by hard and fuzzy K-
means clustering by solving the following:

min
C,B≥0

JNMF = ||Y − CBT ||2 (5)

It is shown[2] that this reduces to hard K-means when
BTB = I and fuzzy K-means if we relax this condi-
tion.

3 A Closer Look At KL-divergence

For any p, q ∈ <m+ with p = (p1, p2, · · · , pm)T

and q = (q1, q2, · · · , qm)T the generalized Kullback-
Leibler divergence[1] [4] is defined as:

DKL(p||q) =
m∑
i=1

(pi log
pi

qi
− pi + qi) (6)

Let ρmax > ρmin > 0 and p, q ∈ [ρmin, ρmax]
m. Con-

sider the strictly convex, C2 (i.e. continuously twice
differentiable) function φKL : <m 7→ < defined as:

φKL(t) =

m∑
i=1

ti log(ti)− ti (7)

Now come to the following lemma

Lemma 1. DKL(p||q) can be shown as the tail of the
first-order Taylor expansion of φKL(p) at q.

Proof. The kth-order Taylor expansion of φKL(p) at q
is given by

φKL(p) =

k∑
α=0

Dαφ(q)

α!
(p−q)α+

∑
β=k+1

Rβ(p)(p−q)β

(8)
where the remainder Rβ is given by

|Rβ(p)| =
|β|
β!

∫ 1

0

(1−t)|β|−1Dβφ(q+t(p−q))dt (9)

Now simply put k = 1 and hence β = 2 we will get
the value of the remainder same as R.H.S of equation
(6)

By Lagrange remainder form, ∃ν =
(ν1, ν2, · · · , νm)T ∈ <m+ with max(pi, qi) ≥
νi ≥ min(pi, qi) such that

DKL(p||q) =
∑m
i,j=1

∂2

2∂ti∂tj
φKL(νi)dij

= (p− q)T∇2φKL(ν)(p− q) (10)

where dij = (pi − qi)(pj − qj) and the Hessian is
given by

∇2φKL(ν) =


1
ν1

1
ν2

. . .
1
νm


m×m
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4 The Relation Between K-means and
PLSA

Equation (10) is very much similar to squared Ma-
halanobis distance(see Mahalanobis [1936]). But the
basic difference is KL-divergence is not a metric and
hence the diagonal entries in the Hessian matrix will
get changed to some other values for DKL(q||p). But
one interesting thing to notice is that we can bound
DKL(p||q) from both sides with Mahalanobis distance
as follows: The squared Mahalanobis distance between
two points x, y ∈ <m w.r.t. matrix Σ as

DΣ(x, y) = (x− y)TΣ(x− y) (11)

It is obvious that ∃ρmax, ρmin ∈ < s.t
ρmax ≥ νi ≥ ρmin and therefore 1

ρmax
≤ 1

νi
≤ 1

ρmin
.

Now if we define:

Σρmax =


1

ρmax
1

ρmax
. . .

1
ρmax


m×m

,

Σρmin =


1

ρmin
1

ρmin
. . .

1
ρmin


m×m

then using equation (10) and (11) we have

DΣρmax
(p, q) ≤ DKL(p||q) ≤ DΣρmin

(p, q) (12)

implies that

(p− q)TΣρmax(p− q) ≤ DKL(p||q)
≤ (p− q)TΣρmin(p− q)

(13)

⇒ 1

ρmax
DI(p, q) ≤ DKL(p||q) ≤

1

ρmin
DI(p, q)

(14)
where

DI(p, q) = (p− q)T I(p− q)
⇒ Squared Euclidean Distance

Now recall the objective function for K-means
(equation (3)) and taking FGT =M we can write

VA = (A11, A21, · · · , Am1, A12 · · · , Amn)
VM = (M11,M21, · · · ,Mm1,M12 · · · ,Mmn)

as two vectors of length mn each, then from equation
(3) and (5) it follows that solution to K-means problem
is obtained by solving the following:

min
M≥0

J1 = ||A−M ||2

= (VA − VM )T I(VA − VM )

= DI(VA, VM )

(15)

Hence using the relation (14) we see : ∃ηmax, ηmin ∈
<+ s.t VA, VM ∈ [ηmin, ηmax]

mn and

1

ηmax
DI(VA, VM ) ≤ DKL(VA||VM )

≤ 1

ηmin
DI(VA, VM ) (16)

So from the above relation we see that squared
weighted Euclidean is a bad approximation of KL di-
vergence as it does not take any special care about each
of the terms. Obviously one can take that special care
about each term using some weights. But then it is
not guaranteed that those weights would be appropri-
ate w.r.t. KL-divergence for the given context. Only
when VA = VM then both are minimized but that is
also almost impractical due to presence of local min-
ima and numerical errors in computation. Hence in
general NMF with KL-divergence error function (which
is equivalent to PLSA) outperforms the NMF with
squared Euclidean error function.

Now another important point to relate K-means and
PLSA is that K-means works on a metricspace where
as PLSA works on a non-metric space. But if we in-
vestigate further we will see that there is a metric corre-
sponding to KL-divergence so that it gets reduced on re-
ducing the KL-divergence. Firstly we see that it can be
shown[6] that the expected Mutual Information between
two discrete random variablesX,Y can be equivalently
expressed as:

I(X,Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p1(x)p2(y)

)
(17)

where p(x, y) is the joint probability distribution
function of X and Y , and p1(x) and p2(y) are the
marginal probability distribution functions of X and Y
respectively. Mutual Information[6] can also be written
as
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I(X,Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X,Y )−H(X|Y )−H(Y |X)

(18)

where H(X) and H(Y ) are the marginal entropies,
H(X|Y ) and H(Y |X) are the conditional entropies,
and H(X,Y ) is the joint entropy of X and Y . This
relation straightway leads to the following:

H(X,Y )− I(X,Y ) = H(X|Y ) +H(Y |X)

= d(X,Y )(say) (19)

Clearly this d(X,Y ) is non-negative, symmetric and
follows triangular inequality and hence it is a met-
ric. Dividing both sides by H(X,Y ) (as d(X,Y ) ≤
H(X,Y )) we get:

H(X,Y )− I(X,Y )

H(X,Y )
=

d(X,Y )

H(X,Y )
= U(say)

⇒ U = 1− I(X,Y )

H(X,Y )

(20)

which is effectively Jaccard distance.

Again we know that

max{H(X), H(Y )} ≤ H(X,Y ) ≤ H(X) +H(Y )
(21)

When the KL-divergence between P (X) and P (Y ) is
minimized we can assume that P (Y ) ≈ P (X). There-
fore H(Y ) ≈ H(X) and hence from equation (18) we
get that

I(X,Y ) ≈ H(X)

But it is also true that

H(X) = I(X,X) ≥ I(X,Y ) (22)

Therefore reducing the KL-divergence between
P (X) and P (Y ) maximizes the numerator of the sec-
ond term in equation (20) and minimizes the denomina-
tor simultaneously which leads to minimization of U in
equation (20).

5 Conclusion and Future Work

In this paper, for the first time we formally analysed
the relation between PLSA and K-means. Based on the
analysis we come to the conclusion that NMF with KL-
divergence as the error function andK-means are mutu-
ally related andK-means is a relaxed version of this. In
future we plan to take advantage of this generalization
to make PLSA to work faster. We are also interested to
work on generalization among different machine learn-
ing tools for topic based clustering.
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