
Synopsis

Telecom networks are the backbone of global communication, enabling voice, data, and
multimedia services for billions of users. Traditionally reliant on proprietary hardware, the latest
generation (5G) adopted Network Functions Virtualization (NFV) to enhance flexibility,
scalability, and cost efficiency. The 5G packet core forms the core of the telecom network and
comprises of multiple complex software based network functions (NFs). Each NF plays a
specific role in facilitating data transfer between a mobile subscriber and the internet. Even
though software based NFs have various advantages, they give rise to an interesting host of
research problems, some of which this thesis tackles in the context of the 5G packet core.
 With the advent of software based NFs, researchers have introduced various
abstractions to ease the process of building an NF. These efforts have been focused on
providing abstractions for either building a specific NF, e.g., router, middleware, etc., or a part of
an NF, e.g., an L7 protocol parser that could be part of an intrusion detection system. The
proposed abstractions are not enough to completely specify a complex NF that is part of a
multi-tier system, e.g., the 5G packet core. Due to a lack of suitable options, the 5G packet core
is specified in text based documents written in English. These documents are verbose, making
them hard to maintain. Further, they are riddled with ambiguities, wherein the domain experts
responsible for specifying the NFs miss out on key details while writing the specifications,
leading to issues with interoperability between vendors responsible for building the NF from
specifications.
 This thesis presents Pyramis, a DSL, to ease the specification and development of large
multi-tier systems. Domain experts write the system specification using the high-level
abstractions and language constructs provided by Pyramis. These specifications can then be
used to auto-generate optimized C++ reference implementations of the various components by
the Pyramis translator. Specifications written using Pyramis are more concise and easier for
non-programmers to work with as compared to a reference implementation in a general purpose
language. Specifications in Pyramis are also precise and unambiguous by construction. We
show that reference implementations auto-generated from Pyramis perform at least as well as
hand-optimized implementations.
 Further, running software based NFs on commercial hardware requires intelligent
systems engineering to ensure a certain base level of performance, which is achievable with
proprietary hardware. Previous work has focused increasingly on network stacks because of it
being a significant bottleneck in an NF’s performance. Researchers have suggested
improvements to the kernel network stack or explored novel network stack designs based on
kernel bypass mechanisms like DPDK. This thesis discovers that novel network stack designs
built over DPDK do not perform significantly better than the Linux network stack in the context of
5G packet core NFs, because of their compute intensive nature. Instead, this thesis observes
that these NFs spend most of their time accessing and updating mobile subscriber state while
processing incoming requests. Every NF is multithreaded, employing locks to access and
update said state to maintain serial access. These locks act as a roadblock to the multicore
scalability of these NFs.

 This thesis develops AppSteer, which considers the problem of improving the multicore
scalability of software network functions via application-aware packet steering. Prior work has
dealt extensively with the problem of eliminating lock contention within the network stack by
splitting kernel data structures into per-core slices and using RSS to maintain flow level affinity
to a core. These network stacks were mainly developed on top of kernel bypass mechanisms
like DPDK, and they lead to multicore scalability of the NF only if it maintains state at the
granularity of a transport layer flow. AppSteer extends the scope of this problem by considering
NFs running on top of the Linux kernel and NFs, which store state at the granularity of an
application key that does not map to a transport layer flow. AppSteer exposes APIs that let an
NF steer network traffic to application threads based on application identifiers in the packets and
implements these APIs over the Linux kernel via eBPF programs and kernel changes. We
modify the NFs of a production-grade 5G packet core implementation to maintain per-core state
and operate in a lockfree manner running on top of AppSteer. We then compare the saturation
throughput of our lockfree NFs with their optimized locking-based baselines running on vanilla
kernel and find that the lockfree NFs have up to 15--18\% higher throughput on 16 cores.
 Finally, network operators are responsible for sourcing NFs from vendors and deploying
them. Operators are interested in monitoring metrics (queueing delay at switch ports), which
could help them identify potential issues with the network (TCP incast or load imbalance).
Researchers have made use of in-network compute to help the operator get access to such
metrics. Operators in the 5G packet core are interested in application layer telemetry and
monitoring application layer metrics (number of users serviced by an AMF instance) to improve
packet core deployment. Operators tracking application layer metrics have traditionally not used
in-network resources because of their limited compute capability and have relied on the NF to
drive telemetry. Hence, operators in the 5G packet core, who receive black box NF binaries from
vendors, are hamstrung in their ability to modify NF code and depend on the vendor to expose
the necessary metrics. Operators could also procure NFs that log on every incoming application
message, exposing a superset of metrics and trading NF performance for flexibility. Instead, this
thesis explores telemetry techniques employed outside the application to allow the operator to
perform application telemetry without being dependent on the vendor and without hurting NF
performance. This thesis identifies that an on-path application telemetry solution is more viable
than an off-path solution, which is plagued with packet copies and hinders NF performance.
 To this end, this thesis develops DeepSight, which allows users to express queries to
extract application-layer metrics and automatically compiles these to eBPF code via our novel
intermediate representation. DeepSight allows network operators to gain insights about
application performance by parsing application messages inside endhost kernels without any
logging support from the application. Our evaluation of DeepSight shows that extracting
application metrics in eBPF programs, where feasible, incurs lower performance overheads than
logging all application messages while delivering the same level of flexibility. DeepSight paves
the way for expressive and efficient in-network application telemetry for usecases like 5G
analytics.

