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Chapter 1

Linear and Logistic Regression

Regression is the statistical process to find the relationship between a depen-
dent variable and an independent variable that minimizes some cost function,
given a set of datapoints.

The above graph shows an example of Linear Regression with one de-
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pendent and one independent variable, where a set of datapoints is given,
and we try to find the line that best represents the relationship between the
dependent variable and the independent variable.

The notion of what we mean by ”best representation” is formalized by the
cost function. This is a function of the dataset given to us and the approx-
imate relationship we use to model the relationship between the dependent
and independent variables. The best representation of this relation is the
one that has the least cost (minimizes the value of the cost function).

1.1 Linear Regression

1

In linear regression, we impose the constraint that approximate relation-
ship between the dependent and independent variables should be a linear
function. The cost function usually chosen for regression problems is the
sum of squares function (leading the method itself to be called the method
of least squares).

If there are N datapoints of the form (xi, yi) and the relation function is
f , then the cost of f is then defined as:

C(f) =
n∑

i=1

||yi − f(xi)||2 (1.1)

Here, if there are more than 1 dependent/independent variable, x and y
become vectors.

Assuming f is linear and there are only 1 dependent and 1 independent
variable, we get f(x) = Ax+B. Now we must find constants A and B such
that C(f) = C(A,B) is minimized. Now,

C(A,B) =
n∑

i=1

(yi − Axi −B)2 (1.2)

Imposing the conditions that ∂C
∂A

= ∂C
∂B

= 0, we get

n∑
i=1

(Axi +B − yi)xi = 0 (1.3)

1Primary Source: Wikipedia
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and
n∑

i=1

(Axi +B − yi) = 0 (1.4)

Simplifying, we get a system of Linear equations in A and B:

A(
n∑

i=1

x2i ) +B(
n∑

i=1

xi) =
n∑

i=1

xiyi (1.5)

A(
n∑

i=1

xi) +Bn =
n∑

i=1

yi (1.6)

Note, that since in the RMS-AM inequality (n(
∑n

i=1 x
2
i ) ≥ (

∑n
i=1 xi)

2),
equality occurs only when all xi are equal (which can never happen with a
proper data set), this equation will always have a unique solution, given by:

A =
n(
∑
xiyi)− (

∑
xi)(

∑
yi)

n(
∑
x2i )− (

∑
xi)2

(1.7)

B =
(
∑
yi)(

∑
x2i )− (

∑
xiyi)(

∑
xi)

n(
∑
x2i )− (

∑
xi)2

(1.8)

1.2 Logistic Regression

2 In a logistic regression on the other hand, the dependent variable is con-
strained to be only either 0 or 1. In this case, the best approximation to
the relation between the dependent and independent variables will also be
the Probability Function of the dependent variable (this is a function of the
independent variables that gives the probability that the dependent variable
will be 1 for a particular choice of independent variables).

2Primary Source: Wikipedia
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The above graph shows an example of a Probability function obtained by
Logistic Regression.

The cost function for Logistic Regression is given by:

C(p) = −
n∑

i=1

[yi ln(p(xi)) + (1− yi) ln(1− p(xi))] (1.9)

and we model the relation between the dependent and independent vari-
ables by a logistic function, given by:

p(x) =
1

1 + exp(−(Ax+B))
(1.10)

Now, expressing C in terms of A and B and then imposing the condition
that ∂C

∂A
= ∂C

∂B
= 0, we get the values of A and B. Note that the equations

involved may not always have exact solutions and may have to be solved
numerically.

1.3 Use of Regression in Machine Learning

A system implementing Machine Learning techniques must be trained with
a large amount of data and it must use the data it has been trained with
in order to find ways of handling data that it has not come across before.
This can be done effectively using regression techniques. The Machine can
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use regression analysis on the training data to get a relation between the
data and the desired outcome. If the outcome is a binary decision, Logistic
regression may be used, and if it is a continuous outcome, Linear regression
may be used. The relation obtained is applied on the new data to get the
outcome required.
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Chapter 2

Support Vector Machines

1 In Machine Learning, we often need to classify data into multiple groups.
If the data can be represented as an n-dimensional vector, then the dataset
becomes a set of points in Rn. The easiest way to classify data into different
groups is to find a n-dimensional hyperplane dividing the Rn into two parts,
one containing one set of points and another containing the remaining points.

To find the hyperplane, we use a set of points that have already been
preclassified into two groups and try to find a hyperplane that separates the
two groups into two halves of Rn. If such a hyperplane exists, the dataset
(along with the grouping) is said to be Linearly Separable. If a hyperplane
exists, then (assuming that the number of points is finite), then an infinite
number of such hyperplanes exist. We therefore, choose the hyperplane with
the maximum margin, where the margin is defined as the max(minimum
distance to a point on one side, minimum distance to a point on the other),
as illustrated in the following figure:

1Primary Source: Wikipedia
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For the training set of points x1, x2 · · · , xn, where xi ∈ Rm, consider
the function y defined as:

y(x) =

{
1 ,x ∈ Group 1

−1 ,x ∈ Group 2
(2.1)

We can write the equation of the separating plane with the maximum
margin as wTx = b where w is an arbitrary non-null vector in Rm and b is
an arbitrary real number.

2.1 Linearly Separable Data

If the dataset is linearly separable, then there exist two parallel margin planes
passing through the closest points to the separating plane. The seperating
plane will also be parallel to this plane and will be exactly between the two
planes. Therefore, we can have appropriate a and b such that the two margin
planes are given by aTx− b = 1 for the separating plane passing through the
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closest point in Group 1 and aTx− b = −1 for the separating plane passing
through the closest point in Group 2.

The distance between the margins here is given by d = 2
||a|| , which is

the quantity to be maximized (i.e. ||a|| must be minimized). Imposing the
condition that all the points in group 1 lie on the opposite side of aTx−b = 1
as aTx− b and similiarly for the points in group 2 and aTx− b = −1.

This condition may be expressed as:

y(xi)(a
Txi − b) ≥ 1,∀i ∈ {1 · · ·n} (2.2)

If we know the two closest points to the separating plane (from oppo-
site sides) (say xa and xb), we can reduce these constrained minimization
problem to minimizing ||a|| based on the constraints:

y(x)(aTx− b) = 1,x ∈ {xa,xb} (2.3)

xa and xb are known as support vectors (hence the name Support Vector
Machine). a and b obtained are clearly dependent only on the Support
Vectors.

2.2 Non-Separable Data

For data that is not linearly separable, a separating plane doesn’t exist that
clearly divides space into regions containing only points of the same group.
However, it is still possible for there to exist a plane that roughly divides
space into regions containing points mostly of the same types. We can still
use this plane to make predictions about points not in our data.

Instead of minimizing ||a||, we instead minimize the quantity:

k||a||2 +
1

n

n∑
i=1

[H(aTxi − b, y(xi))] (2.4)

for parameters k and then choose the most appropriate k.
Here H represents the hinge function, defined as:

H(p, q) = max(0, 1− pq) (2.5)

Clearly, if y(xi)(a
Txi−b) ≥ 1 then H = 0, i.e., if the points are on the correct

side of the plane, there is no increase in the quantity to be minimized. If
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they are on the wrong side, then there is an increase, which is proportional
to the degree in which the points are in the wrong side.

The following is a graph of the Hinge function for q = 1
2
:
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Chapter 3

Neural Networks

1 To define a Neural Network, we must first define a Neuron in the context
of Machine Learning. A Neuron is defined as an object that takes in inputs
(usually from other Neurons in the network) between 0 and 1 and produces
an output, also between 0 and 1, according to the rule

y = f(
n∑

i=1

wixi + b) (3.1)

where xi are the inputs to the Neuron, wi are numbers corresponding to each
input known as the weights of the inputs, and b is a number known as the
bias of that input. The function f is known as the activation function of the
neuron. This function must have it’s range as (0, 1). We usually represent the
weights and inputs in vector form, as w and x where the components of w
and x are wi and xi. The activation function used in most Neural Networks
used for Machine Learning is the logistic function described earlier:

σ(x) =
1

1 + e−x
(3.2)

Therefore, the output becomes:

y =
1

1 + exp(−wTx− b)
(3.3)

Neurons with this activation function are known as Sigmoidal Neurons. An-
other common activation function, especially in older Neural Networks, is

1Primary Source: Neural Networks and Deep Learning, Michael Nielsen
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the step function:

H(x) =

{
1 , x > 0

0 , x ≤ 0
(3.4)

Such Neurons are called Perceptrons and Perceptron Networks were histori-
cally the first Neural Networks invented.

A Neural Network is nothing but a network of such Neurons. We can
further divide the Neurons into multiple layers, where each neuron in a layer
takes input from all the neurons in the preceding layer. The first layer is
called the input layer and consists of the input fed into the Neural Network,
and the last layer is called the output layer. The other layers in between
these are known as hidden layers.

A Neural Network can thus be viewed as a graph where each node represents
a neuron and each edge is associated with a weight.

For example, if we consider a Neural Network tasked with learning how to
classify handwritten digits, there would be N2 input neurons, for an N ×N
resolution picture of a handwritten digit, and 10 output neurons, representing
the probability that the digit is 0, 1, 2 . . . 9.
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3.1 Gradient Descent

To use a Neural Network, we must first train it. To do this, we need a large,
labelled data set. Considering the previous example, we would need a large
database of images of handwritten digits, classified according to the digits
that they represent. The MNIST Database of Handwritten Digits comes in
handy here. We can train the neural network using this database.

To do this, we must develop a cost function, describing how much the
prediction of our neural network deviates from the actual answer. The cost
function usually used while building a Neural Network is the mean squared
error.

C(wi, bi) =
1

2n

n∑
i=1

||y(xi)− a(xi)||2 (3.5)

Here, y(x) is the output, represented as a vector whose components are the
activations of the neurons in the output layer, and a(x) is the output if
the neural network were 100% accurate (i.e. if the input was an image of a
handwritten 1, a would be (0, 1, 0, 0, 0, 0, 0, 0, 0, 0)T ).

We therefore must choose wi and bi such that C(wi, bi) is minimized.
To do this analytically would be nearly impossible and would be extremely
computationally intensive. Therefore, we use a technique known as gradient
descent.

Here, instead of calculating the gradient of C at all points and setting it
to 0 to find a minimum, we instead take a random point (i.e. random values
of wi and bi) and find the gradient at that point. Since the gradient points
in the direction in which the function increases the most, we can move our
random point in the opposite direction to decrease C the most. The amount
by which we move must also be proportional to ||∇C|| as when ∇C is small,
it means we are close to the minimum.

If we represent the parameters (wi and bi) by the vector r, the rule:

r ← r − η∇C(r) (3.6)

will eventually lead us to a minimum.
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2 The constant η is related to the learning speed of the Neural Network.
A high value of η means that the minimum of C is reached more quickly,
however, accuracy of the minimum obtained is less (as high values of η can
sometimes lead to overshooting). However, even obtaining the gradient of
C at a point can be difficult analytically. Hence it can be approximated by
methods such as Stochastic Gradient Descent.

Note that,

C =
1

n

n∑
i=1

Ci (3.7)

where

Ci =
1

2
||y(xi)− a(xi)||2 (3.8)

Therefore,

∇C =
1

n

n∑
i=1

∇Ci (3.9)

To reduce the computational cost of calculating ∇C, we divide the inputs
into smaller batches (say of size m each) and use the approximation:

∇C =
1

m

m∑
j=1

∇CXj
(3.10)

2Image Credits: easyai.tech
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and use the calculated ∇C in the gradient descent. After each step of Gra-
dient Descent, we can use a different batch, so that all the batches are used.

To calculate ∇Ci we use techiques such as backpropagation.
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