On some classes of P systems

Avadhut M Sardeshmukh
Roll No 06329905

Guide: Prof S N Krishna
Department of Computer Science and Engineering
IIT Bombay

June 30, 2009
Outline

1. Introduction
 - P systems: The basic model
 - Two Variants

2. Summary of work done in past
 - Universality of P systems with worm objects
 - Reliability of Stochastic SN P systems

3. Present work: Asynchronous SN P systems
 - Computational Power
 - A Hierarchy: Synchronous v/s Asynchronous
 - A bound on the complexity
 - A decision problem

4. Summary and future work
A membrane system (or P system) consists of:

- A hierarchical membrane structure (string of balanced parentheses).
- A multiset of objects in each region of this structure.
- Evolution rules.
P systems with symbol objects

Evolution:
- Initially, only membrane 2 has objects.
- There is a nondeterministic choice of rules.
- But, all objects must evolve, so they double.
- If one or more evolve using second rule, the membrane dissolves.
- All 2^n objects are sent to environment.
Motivation

Membrane systems have been typically studied with following objectives in mind:

- From Biology to Mathematics – defining models
- From Mathematics to biology – modelling biological systems
- Efficiently solving computationally hard problems
- Simulation/Implementation
P systems with worm objects

- String objects (called as worms) inspired from the structure of DNA molecules.
- Operate on **multisets of strings** instead of multisets of symbols.
- Four types of operations – replication, splitting, recombination and mutation.
 - Replication - Rewrite a symbol by a string and replicate.
 - Recombination and splitting as in DNA computing.
 - Mutation rules - context free rewriting rules.
Spiking Neural (SN) P systems

- Inspired by *in silico* structure of neuron cells.
- Represented by a graph (Neurons ⇒ vertices, Synapses ⇒ edges).
- Neurons act as the compartments containing spikes—the only type of objects.
- At each clock tick, all enabled neurons send a spike to all the neighbors.
- Halting configuration: All neurons “open”, none firable.
- Various possibilities for defining the output.
Synchronous v/s Asynchronous mode of Operation

- Synchronous operation – system loops forever.
- Asynchronous operation – system can stop at any moment.

An SN P where synchronization matters

\[a \rightarrow a \]
\[a \rightarrow a \]
\[\sigma_1 \]
\[\sigma_{out} \]
Universality of P systems with worm objects

- Best Known result: $NCP_m = NRE$ for all $m \geq 6$.
- Obtained result: $NCP_m = NRE$ for all $m \geq 4$.
Introduction

Summary of work done in past

Present work: Asynchronous SN P systems

Summary and future work

Universality of P systems with worm objects

Reliability of Stochastic SN P systems

Stochastic SN P systems

- Extension of SN P – Probabilistic asynchronism.
- After a rule is enabled, it does not fire immediately.
- The amount of time required for the rule to fire is determined by a probability distribution.
- The neuron is “open” for this time interval, unlike in the SN P systems.
- In between synchronous and asynchronous SN P systems.
- Asynchronous behavior controlled by probability distribution.
Experiments with Reliability of SSN P systems

- SSN P systems proved to be universal in [1] by simulating Register machines.
- Probability of correct simulation (of synchronous behavior) is called reliability.
- Reliability falls with increasing variance. How to improve it?
The Approach and results

- Redefine the ADD and SUB modules using suggestions from [1].
- Simulate using Mobius to measure the results.
The Approach and results

- Redefine the ADD and SUB modules using suggestions from [1].
- Simulate using Mobius to measure the results.
- Redundancy - number of neurons.

Figure: Reliability of SUB module for increasing redundancy
The Approach and results

- Redefine the ADD and SUB modules using suggestions from [1].
- Simulate using Mobius to measure the results.
- Redundancy - number of neurons.
- Reducing probability of incorrect simulation - Modification of rules in neurons.

Figure: Probability of incorrect simulation of ADD
Directions for present work

- Achieving high reliability with asynchronous behavior is difficult.
- Asynchronous SN P systems are probably not as powerful as the synchronous ones.
Directions for present work

- Achieving high reliability with asynchronous behavior is difficult.
- Asynchronous SN P systems are probably not as powerful as the synchronous ones.
- Theoretical questions:
 1. What is the power of asynchronous SN P Systems?
 2. If less than synchronous, which features can make up for this loss?
Known results

- Synchronous SN P are universal. ([2])
- Asynchronous SN P with extended rules \((E/a^r \rightarrow a^p, \ r \geq p)\) are universal. ([3])
- Are Synchronous SN P with standard rules also universal?
- If not, extended rules make up for loss in power.
A Hierarchy

- We define the computing power of asynchronous SN P systems with increasing number of neurons (1, 2, 3..etc).
- Objective is to compare with synchronous SN P system with corresponding number of neurons.
- Ideas from [7] borrowed/modified to define these systems.
1 Neuron can generate FIN

- For synchronous systems, this was argued (using delays) in [2].
- For asynchronous, we need extended rules (no delays here).
- Let $F = \{n_1, n_2, \ldots, n_{\text{max}}\}$ be in FIN.

 1. $a^{n_{\text{max}}} \rightarrow a^{n_{\text{max}}}$
 2. $a^{n_{\text{max}}} / a^{n_i} \rightarrow a^{n_i}$; $a^{n_{\text{max}} - n_i} \rightarrow \lambda$, $\forall n_i \in F$
2 Neurons can generate at most REG

- 2 Neurons in synchronous mode can only generate FIN.
- In asynchronous, the output neuron can spike any number of times (unlike in synchronous).
- But still, number of spikes in the system cannot increase.
- Number of possible different configurations are finite.
- Configurations serve as states of a finite automata.
3 Neurons can generate at least REG

- Regular grammar G, (N, T, S, P), and, N is $\{A_i | 1 \leq i \leq n\}$.
- $S = A_n$.
- For $A_i \rightarrow bA_j \in P$, neuron σ_2 contains rules as shown.

Asynch SN P Π to simulate G

\[
\begin{align*}
\sigma_1 & : a^n \rightarrow a^n \\
\sigma_2 & : a^{n+i}/a^{n+i-j} \rightarrow a^n \\
& \quad a^{n+i} \rightarrow a^n \\
\sigma_{out} &
\end{align*}
\]
Non-Semilinear Sets: beyond context-freeness

Definition (Non-Semilinear set)

A set of integers is linear if it is of the form \(\{ c + pi | i \geq 0 \} \). A set is semilinear if it is a finite union of linear sets. A set which is not semilinear is called non-semilinear.

- Parikh’s Theorem: If \(L \) is context-free, then \(\psi(L) \) is semilinear.
- So, non-semilinear sets are Parikh images of languages beyond context-free.
- For example, the Parikh image of \(\{ a^n b^n | n \geq 1 \} \) is semilinear and Parikh image of the language \(\{ a^p | p \text{ is a prime number} \} \) is non-semilinear.
4 Neurons can generate non-seminilear language

\[a^2(a^4)^+ / a^4 \rightarrow a^4 \]
\[a^2 \rightarrow a \]

\[a^4 \rightarrow a^4 \]
\[a \rightarrow a \]

\[a^4 \rightarrow a \]
\[a^2 \rightarrow \lambda \]

\[a^2(a^4)^+ / a^4 \rightarrow a^4 \]
\[a^2 \rightarrow a^2 \]
4 Neurons can generate non-seminilereal language

\[a^2(a^4)^+/a^4 \rightarrow a^4 \]
\[a^2 \rightarrow a \]

\[a^4 \rightarrow a^4 \]
\[a \rightarrow a \]

\[\sigma_1 \]

\[a^2(a^4)^+/a^4 \rightarrow a^4 \]
\[a^2 \rightarrow a^2 \]

\[\sigma_3 \]

\[a^4 \rightarrow a \]
\[a^2 \rightarrow \lambda \]

\[\sigma_{out} \]
4 Neurons can generate non-semiunlinear language

\[a^2(a^4)^+ / a^4 \rightarrow a^4 \]
\[a^2 \rightarrow a \]
\[a^4 \rightarrow a^4 \]
\[a \rightarrow a \]
\[a^4 \rightarrow a \]
\[a^2 \rightarrow \lambda \]
\[a^2(a^4)^+ / a^4 \rightarrow a^4 \]
\[a^2 \rightarrow a^2 \]

\[\sigma_1 \]
\[\sigma_2 \]
\[\sigma_{out} \]
\[\sigma_3 \]
4 Neurons can generate non-seminillear language

\[
\begin{align*}
\sigma_1 &: \quad a^2(a^4)^+ / a^4 \rightarrow a^4 \\
&\quad a^2 \rightarrow a \\
\sigma_2 &: \quad a^4 \rightarrow a^4 \\
&\quad a \rightarrow a \\
\sigma_3 &: \quad a^2(a^4)^+ / a^4 \rightarrow a^4 \\
&\quad a^2 \rightarrow a^2 \\
\sigma_{out} &: \quad a^4 \rightarrow a \\
&\quad a^2 \rightarrow \lambda
\end{align*}
\]
A summary

<table>
<thead>
<tr>
<th>No. of neurons</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronous</td>
<td>FIN</td>
<td>FIN</td>
<td>?</td>
<td>?</td>
<td>RE</td>
</tr>
<tr>
<td>Asynchronous</td>
<td>FIN†</td>
<td>⊆ REG</td>
<td>⊇ REG†</td>
<td>⊇ REG††</td>
<td>RE††</td>
</tr>
</tbody>
</table>

Table: A Hierarchy : Synchronous v/s Asynchronous SN P

†: Extended rules of unbounded length needed.
††: Extended rules of length 4 enough.
Extended rules of length 4 suffice (1/3)

- Earlier, extended rules capable of emitting unbounded no of spikes were used.
- We prove that extended rules of length 4 are enough for universality.
- Simulate a matrix grammar with appearance checking.
Extended rules of length 4 suffice (2/3)

Figure: Module to simulate non-appearance-checking
Extended rules of length 4 suffice (3/3)

Figure: Module to simulate appearance-checking
Simulate using Conditional Grammars (1/2)

- Consider an asynchronous SN P system
 \[\Pi = (O, \sigma_1, \ldots, \sigma_m, \text{syn, out}). \]
- We construct a conditional grammar \(G = (N, T, S, P) \) to simulate \(\Pi \)
 - \(N = \{ S \} \cup \{ A_i | 1 \leq i \leq m \} \).
 - \(T = \{ a, B \} \).
Simulate using Conditional Grammars (2/2)

- \(S \rightarrow A_1^{n_1} A_2^{n_2} \ldots A_m^{n_m} \in P. \)
- Let \(r_j^i \) be the \(j^{th} \) spiking rule in neuron \(\sigma_i \).
Simulate using Conditional Grammars (2/2)

- $S \rightarrow A_1^{n_1} A_2^{n_2} \ldots A_m^{n_m} \in P$.
- Let r^j_i be the j^{th} spiking rule in neuron σ_i.
- $r^j_i : a^x/a^y \rightarrow a$. Then, we add the rule (r, R) where, r is $A_i^y \rightarrow B^y A_{j_1} A_{j_2} \ldots A_{j_n}$ for all neighbors.
- $R = A_1^x A_2^x \ldots A_i^x \ldots A_m^x B^x$.

Avadhut M Sardeshmukh
Roll No 06329905
On some classes of P systems
Simulate using Conditional Grammars (2/2)

- \(S \rightarrow A_1^{n_1} A_2^{n_2} \ldots A_m^{n_m} \in P. \)
- Let \(r_j^i \) be the \(j^{th} \) spiking rule in neuron \(\sigma_i \).
- \(r_j^i : a^x(a^y)^/a^z \rightarrow a. \) Then, we add the rule \((r, R) \) where, \(r \) is \(A_i^z \rightarrow B_z A_{j_1} A_{j_2} \ldots A_{j_n} \) for all neighbors.
 \(R = A_1^* A_2^* \ldots A_i^x (A_i^y)^* \ldots A_m^* B^*. \)
Simulate using Conditional Grammars (2/2)

- \(S \rightarrow A_1^{n_1} A_2^{n_2} \ldots A_m^{n_m} \in P. \)
- Let \(r^i_1, \ldots, r^i_n \) be the \(j^{th} \) spiking rule in neuron \(\sigma_i \).
- \(r^i_j : a^x \rightarrow \lambda. \) Then, we add the rule \((r, R) \) where, \(r \) is \(A_i^x \rightarrow B^x \) and \(R = A_1^* A_2^* \ldots A_i^* \ldots A_m^* B^*. \)
Simulate using Conditional Grammars (2/2)

- \(S \to A_1^n A_2^n \ldots A_m^n \in P. \)
- Let \(r_{ij}^j \) be the \(j^{th} \) spiking rule in neuron \(\sigma_i \).

Also add:

- \(A_i A_j \to A_j A_i, 1 \leq i < j \leq m \) to rearrange \(A_i \)'s in the order.
- \(B A_i \to A_i B \) to move all \(B \)'s at the end.
- \(A_{out} \to a ; A_i \to B \) for all \(i \), such that they are enabled only in halting configuration.
Membership problem : Semidecidable

Given an asynchronous SN P system \(\Pi \) and a number \(n \), can \(\Pi \) generate the number \(n \)?

- Assume, without loss of generality, that number of spikes in \(\sigma_{out} \) can only increase.

- Iteratively compute the set \(\psi \) of sentential forms \(\alpha \) reachable from \(S \), until \(|\alpha|_{A_{out}} \geq n \).

- If \(\psi \) contains any halting configuration with \(|\alpha|_{A_{out}} = n \), accept, otherwise reject.
Membership problem : Semidecidable

Given an asynchronous SN P system \(\Pi \) and a number \(n \), can \(\Pi \) generate the number \(n \)?

- Assume, without loss of generality, that number of spikes in \(\sigma_{out} \) can only increase.
- Iteratively compute the set \(\psi \) of sentential forms \(\alpha \) reachable from \(S \), until \(|\alpha|_{A_{out}} \geq n \).
- If \(\psi \) contains any halting configuration with \(|\alpha|_{A_{out}} = n \), accept, otherwise reject.
- The process may never stop, so the problem is semi-decidable.
Conclusions

- In many cases, adding extended rules to asynchronous systems makes them equal in power to synchronous ones.
- That we can simulate asynchronous SN P using conditional grammars hints at their sub-universality.
- Asynchronous SN P systems using extended rules of length up to four become universal.
- It is less likely to happen with rules of length less than four:
 - In asynchronous mode, we cannot distinguish the absence of a signal from the delay in its arrival.
Conclusions

- In many cases, adding extended rules to asynchronous systems makes them equal in power to synchronous ones.
- That we can simulate asynchronous SN P using conditional grammars hints at their sub-universality.
- Asynchronous SN P systems using extended rules of length up to four become universal.
- It is less likely to happen with rules of length less than four:
 - In asynchronous mode, we can not distinguish the absence of a signal from the delay in its arrival.
 - We have to define each (presence and absence) with a different number of spikes, so extended rules become unavoidable.
Conclusions

- In many cases, adding extended rules to asynchronous systems makes them equal in power to synchronous ones.
- That we can simulate asynchronous SN P using conditional grammars hints at their sub-universality.
- Asynchronous SN P systems using extended rules of length up to four become universal.
- It is less likely to happen with rules of length less than four:
 - With length only 2, we can assign 2 spikes to mean presence and 1 spike to mean absence.
Conclusions

- In many cases, adding extended rules to asynchronous systems makes them equal in power to synchronous ones.
- That we can simulate asynchronous SN P using conditional grammars hints at their sub-universality.
- Asynchronous SN P systems using extended rules of length up to four become universal.
- It is less likely to happen with rules of length less than four:
 - With length only 2, we can assign 2 spikes to mean presence and 1 spike to mean absence.
 - The problem ??
Conclusions

- In many cases, adding extended rules to asynchronous systems makes them equal in power to synchronous ones.
- That we can simulate asynchronous SN P using conditional grammars hints at their sub-universality.
- Asynchronous SN P systems using extended rules of length up to four become universal.
- It is less likely to happen with rules of length less than four:
 - With length 3, again, how to detect presence of one signal and absence of the other?
Future work

- Optimality of number of membranes required for a P system with worm objects to become universal, is unanswered yet.
- The basic question about the (sub)universality of asynchronous SN P systems using standard rules needs to be further investigated.
- We observe that features such as number of neurons, number of rules per neuron, extended rules, etc are intricately related.
- Defining systematic hierarchy changing only one parameter and keeping all others constant will be interesting.
Thank you

Questions?
Introduction
Summary of work done in past
Present work: Asynchronous SN P systems
Summary and future work

References

Avadhut M Sardeshmukh Roll No 06329905 On some classes of P systems