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Abstract

P systems were introduced as a framework for defining distributed, parallel
and non-deterministic computing devices inspired by the structure and func-
tioning of living cells. In this work, we study two variants of P systems –
namely, P systems using worm objects and spiking neural P systems. The
optimality of number of membranes required for a P system with worm ob-
jects to be universal is still an open problem. We prove that four membranes
suffice. Whether this number is optimal or not still remains an open problem.

The second variant we study is the spiking neural P systems (SN P sys-
tems for short). Synchronization plays a central role in proving that these
systems are universal. But considering asynchronous systems is of biolog-
ical as well as mathematical interest, because real biological systems are
asynchronous. We want to discover the loss in power, if any, due to loss of
synchronization. Asynchronous SN P systems using extended rules (spiking
rules that can emit unbounded number of spikes) were proved to be universal,
but whether use of extended rules is unavoidable is unclear. We prove that
extended rules that can emit up to four spikes are enough to get universality.
To compare and contrast the power of synchronous and asynchronous SN P
systems, further, we come up with a hierarchy of asynchronous SN P systems
with bounded number of neurons (1, 2, 3, etc) and compare the power with
corresponding system in synchronous mode.



Chapter 1

Introduction

The area of membrane systems was triggered by a landmark paper by Gheoghe
Paun in 1998 in the Turku Center for Computer Science (TUCS) Report. The
same paper was later circulated in the Journal of Computer and system sci-
ences in 2000. Till this time natural computing models were in vitro. For
example, DNA computing. This was the first time that a cell itself was the
object of research–viz. membranes in a cell and compartmentalization (in
vivo structure of the cell).

1.1 Inspiration from Biology

It is well known that the cell is the smallest thing on earth to be unani-
mously considered as live.The cell has a very exquisite internal structure.
It is composed of compartments created by various membranes. An outer
membrane defines the cell itself from the environment. The membrane is a
semi-permeable barrier between the compartments. Molecules can be trans-
ported from one compartment to other via vesicles enclosed by membranes.
The membrane structure is hierarchical. The compartments are like “pro-
tected reactors” where specific biochemical processes take place.
Our membrane computing model is roughly inspired by these properties of
the cell and its internal membrane structure. The main component of this
model is the membrane structure. Each membrane of this structure defines
a region. Each region has a multiset of objects. And each region has a set
of rules (evolution rules or symport/antiport rules) which operate on the
multiset of objects in that region. Evolution rules are rewriting rules (like
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grammar rules) that represent the biochemical reactions going on in the cell-
compartments and symport/antiport rules are transport rules that represent
the vesicles through which molecules are transported from one compartment
to other. The result of a computation can be the number of objects of a
particular kind in a region (called output region), though there are other
possibilities, too.

1.2 Formal Definition

We here define the most basic model of membrane systems–those with symbol-
objects. Although there exists a large panoply of models of membrane sys-
tems, we believe that they can be derived/understood from these basic con-
cepts.

P System with symbol objects:
[Definition] A P system of degree m ≥ 1 with symbol-objects is a tuple :

Π = (O, µ,w1, . . . , wm, R1, . . . , Rm, i0)

where

• O is an alphabet and its elements are called objects

• µ is a membrane structure consisting of m membranes arranged in
an hierarchical structure; the membranes (and hence the regions they
delimit) are labelled with 1,2, . . . ,m of µ.

• Ri are finite sets of evolution rules over O; Ri is associated with region
i. An evolution rule is of the form u→ v, u is a string over O and v is
a string over {ahere, aout | aεO} ∪ {ainj

| aεO, 1 ≤ j ≤ m}.

• i0ε{0, 1, 2, . . . ,m} is the output region. In case i0 ≥ 1, it is the region
enclosed by membrane i0 and if i0 = 0, it is the environment.

Evolution
A membrane system evolves in the following way : It starts with the multisets
of objects specified by the strings w1, . . . , wm in the corresponding regions.
There is a global clock that ticks at every time step. At each step, in each
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region, a multiset of objects and a multiset of rules is chosen and assignment
of objects to rules is made. This is done in a nondeterministic maximally
parallel manner. That is to say, no more rule can be added to the multiset
of rules, because of the lack of objects and if there is a conflict of two rules
for same (copy of an) object, then they are chosen non-deterministically.
For example, if wi = a5b6c and the rules in Ri are aab → ahereboutcin2 and
aa → aoutbhere, then 2 copies of a can be assigned to one copy of first rule.
Next two copies could be either assigned to another copy of first rule or to
the second rule. And this choice is non-deterministic. Maximally parallel
means that once four a’s are consumed, no other rule can be applied to
remaining objects. Thus non-deterministically, the result would be either
a3b6c or a2b6c. It is important to remember that a5b6c represents the multiset
{a, a, a, a, a, b, b, b, b, b, b, c}.

The output of a successful computation is the number of objects present in
the output region in a configration such that no further evolution is possible.
(i.e. no rule applicable in any membrane). Such a configuration is called
halting configuration. A vector of the number of objects of each kind (e.g,
no. of a’s, no. of b’s, etc) can also be taken as the output.

1.3 Illustrative Example

We here give the example of a membrane system to generate the Parikh
image of the language {a2n | n ≥ 0}. This system uses some ideas not
defined above. Its actually called an evolution-communication P system.
Consider the system :

Π = (O, µ,w1, w2, R1, R2)

where
µ = [1[2]2]1,
O = {a},
w1 = λ and w2 = a,
R1 = {a→ aout} and R2 = {a→ aa, (a→ aa)δ},
Here, δ at the end of a rule stands for “dissolution” of a membrane. This
means, if a rule with δ at the end is used in a particular membrane, then
that membrane will be dissolved after all the objects in that membrane evolve
according to other (non-deterministically chosen) rules. The output of the
system is the number of objects sent out to the environment.
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As can be observed, we can either double the number of a’s or dissolve
the membrane 2 and stop; for, even if we apply a → aa on some a’s and ,
(a → aa)δ on some, the total number of a’s is still doubled (objects evolve
with the possible rules before the membrane is dissolved). So at some step,
we get 2n a’s in membrane 1, from where they are sent to the environment
(and hence contribute directly to the output). Only difference is that the
computation halts there. So there is a non-deterministic choice of continuing
or halting the computation. When we take the number of objects sent to
environment as result, we naturally get the Parikh image of the language
{a2n | n ≥ 0}.

1.4 Variants of P systems

We here introduce two variants of P systems, which are of interest to us. We
do not present here their formal definitions, but rather explain the intuition
or central idea behind each of them, in order to avoid unnecessary jargon.
These two models of our interest, which are P systems with worm objects and
spiking neural P systems will be explained in detail in the following chapters.

1.4.1 P systems with worm objects

This model is inspired from the structure of DNA molecules (called as worms)
present in the cell. They can be represented by a string. So our object of
operation here, is a string, rather than a single symbol. A little formatting of
the objects gives us this variant. Instead of operating on multisets of symbol
objects, we operate on sets of string objects. This change in the format of
objects makes it necessary to change the format of rules also. The kind of
operations one deals with is a bit different here.

Basically we have four types of operations here, namely, replication, split-
ting, recombination and mutation. Strings can be split and recombined just
like the splicing operation on DNA molecules. Replication and mutation are
essentially the same operations as in DNA computing. For example, a simple
rule like a → ahereaout replicates the symbol object a. The only difference
here is that this operation is done on string objects. Mutation rules are
context free rules of type a → u. Note that the rules are still defined with
a being a single symbol. A string object containing this symbol can evolve
using this rule. But if the string has more than one occurrence of a, only one
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a will be affected, and not all as in the basic model. Because here, its the
string on which we operate, not the symbols. (The strings in basic model
represent multisets of symbol objects). More about this in chapter 2.

1.4.2 Spiking Neural P systems

This model is inspired from the cell interconnection network and not the
structure of a cell itself. In all other models, we consider the compartments
of a single cell (separated by membranes) as “reactors”. But here, the com-
partments are characterized by cells themselves.

There is only one kind of object in spiking neural P systems – its called
a spike. The system is represented by a graph whose vertices represent the
cells (neurons) and edges represent the synapses that join two cells. Each
neuron contains certain number of spikes initially. The evolution rules specify
for each neuron, the number of spikes it is required to contain, in order to
“fire’, and also the number of spikes it produces once it fires. When a neuron
fires, it sends a single/multiple spikes to all the other neurons to which it has
an edge. A computation stops when no neuron can spike any more (either
all are empty or the number of spikes they have is not enough for them
to spike). The result of a successful computation is measured either as the
number of spikes in the output neuron, or as the number of spikes sent to
the environment, or the distance (in time) between consecutive spikes. More
about this in chapter 3.

1.5 Organization of the report

This thesis is organized as follows. In the next chapter we formally define P
systems with worm objects and discuss their universality. We conclude this
chapter with an important result regarding the universality (of P systems
with worm objects), obtained by us. The next two chapters are dedicated to
the investigation of the role of synchronization in the universality of SN P
systems. In chapter 3, we define a variant of SN P systems which introduces
a probabilistic asynchronism into the standard (synchronized) model, and
discuss its reliability. We describe improvements in reliability obtained by
experimentation, only to conclude that asynchronous systems may not be as
powerfull as synchronous ones. Here, we come across the question - what
is the compensation for this loss in power due to loss of synchronization?
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We try to answer this question in the fourth chapter. We find out that
asynchronous SN P systems can be made universal if the rules can emit up
to four spikes at a time. We also come up with a hierarchy of asynchronous
SN P systems with bounded number of neurons (1, 2, 3, etc.) and compare
the power with corresponding system in synchronous mode.
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Chapter 2

Universality of P systems with
worm objects

One of the two main variants of P systems which are the topic of this project,
is P systems with worm objects, introduced in [1] and further investigated
in [2].

2.1 Introduction

Here we consider the type of P systems in which the objects are symbols as
well as strings. The strings are also called as worms. The rules in this type
of systems deal with strings (symbol objects are treated as strings of unit
length). These type of P systems were introduced in [1]. The result of a
computation is the number of strings in the output membrane. The strings
are processed by four types of operation, viz. replication, splitting, recombi-
nation and mutation. Replication and splitting can increase the number of
string objects whereas recombination and mutation cannot. These operations
are discussed in detail in the following sections.

2.1.1 Formal Definition

P System with worms:
[Definition] A P system of degree m ≥ 1 with worm-objects is a construct :

Π = (V, µ,A1, . . . , Am, (R1, S1,M1, C1), . . . , (Rm, Sm,Mm, Cm), i0)
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where

• V is an alphabet

• µ is a membrane structure consisting of m membranes arranged in an
hierarchical structure

• Ai are finite multisets over V ∗, associated with the corresponding re-
gions of the structure µ.

• Ri, Si,Mi, Ci are finite sets of replication, splitting, mutation rules and
the set of objects used as crossing over blocks in the recombination op-
eration. (These rules are explained in detail in the next section).

• i0ε{1, 2, . . . ,m} is the output membrane

2.1.2 Operations

1. Replication r : (a → u1||u2; tar1, tar2) or (a → u1||u2; tar1, tar2)δ,
where a ε V, u1, u2 ε V

+. This type of rule can be applied on a string w
of the form x1ax2. It results in two strings, by replacing the occurrence
of a in w by u1 and u2, respectively. We say that w1 =⇒r (w2, w3), if
w1 = x1ax2, w2 = x1u1x2 and w3 = x1u2x2. After application of
this rule, the strings w2 and w3 are sent to the membranes indicated
by tar1 and tar2, respectively. The optional δ at the end of the rule
specifies the action of dissolving the membrane. If a rule of that form
is used, the membrane is dissolved at the end of that step. (We will
discuss what this means in detail later).

2. Splitting r : (a→ u1 : u2; tar1, tar2) or (a→ u1 : u2; tar1, tar2)δ where
a ε V, u1, u2 ε V

+. Again this type of rule can be applied on a string
w of the form x1ax2. It results in two strings – obtained by cutting
w at a, and replacing the a by u1 in one part and by u2 in the other
part. That is, we say w1 =⇒r (w2, w3), if w1 = x1ax2, w2 = x1u1 and
w3 = u2x2. Also, the strings w2 and w3 obtained in this way are sent
to membranes specified by tar1 and tar2, respectively, as before. Again
the optional δ at the end specifies membrane dissolution action.
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3. Mutation r : (a → u; tar) or (a → u)δ. This is a context free rule.
That is, for a string containing a, this rule can be applied to obtain a
different string by replacing a by u. We say w1 =⇒r w2, if w1 = x1ax2,
w2 = x1ux2. The string w2 thus obtained, is sent to the membrane
specified by tar, as before. And δ is the membrane dissolution action.

4. Recombination r : (z; tar1, tar2) or (z; tar1, tar2)δ. This type of rule
can be applied to a pair of strings (say w1 and w2) which have z as
their common substring. The operation involves “splicing” the strings
w1 and w2 at z and recombining their splices in a crossed manner. That
is we say (w1, w2) =⇒r (w3, w4) if w1 = x1zx2, w2 = y1zy2 and
w3 = x1zy2, w4 = y1zx2 As before, the strings w3 and w4 are sent to
membranes specified by tar1 and tar2, respectively. And δ means the
membrane is dissolved after the current step.

Note that in all four type of rules above, the strings x1, x2, y1, y2 εV
∗. Note

also that mutation rules can delete symbols because the string u ε V ∗. Also,
replication and splitting rules can increase the total numbers of worms/strings,
but recombination and mutation cannot.

We will now see what the membrane dissolution operation means and
how does a P system with worms evolve.

2.1.3 Principles for evolution

The (m+ 1)-tuple (µ,A1, . . . , Am) constitutes the initial configuration of the
system. Starting with this, the system can pass from one configuration to
another according the following principles :

• The work of the system is synchronized. That is, in each step, in each
region, all strings that can be processed by a rule in that region are
processed. This is called maximal parallel approach. Also, if more than
one rules are applicable to a particular string (or a rule is applicable to
more than one string) then the choice is done non-deterministically. So,
the strings in all membranes are assigned to rules in their respective
membranes in a non-deterministic, maximally parallel manner. And
after the assignment is complete, the system evolves one step.

• A particular object (i.e. a particular copy of a string) can be processed
by only one rule at any time, although different copies of the same
string can be assigned to different rules, if possible.
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• The strings resulting from the various operations are sent to the mem-
branes specified by the targets in that rule. here means the string is
not moved anywhere. out means that the resulting string is to be sent
to the region surrounding the one in which this rule is applied. Simi-
larly, inj means the string is sent inside, to the membrane numbered j,
provided, that membrane is adjacent to the present membrane. That
is, we can only send strings between adjacent regions.

• When a rule containing the symbol δ is applied, the current membrane
is dissolved. This means that the objects in this membrane are left
free in the membrane surrounding it, and the rules of this membrane
will be lost. The skin membrane can never be dissolved. In the event
of a membrane dissolution, first all objects evolve according to the
rules assigned to them (and may be are sent to other membranes also)
and then the membrane is dissolved. For example, if during a step, a
membrane i has objects {(a, 1), (bb, 2), (c, 1)} and rules (a → f ; out)
and (b;here, inj)δ then a evolves to f , is sent out of membrane i; the
two copies of bb are recombined using the second rule, one is kept here
and the other sent to membrane j, and then membrane i is dissolved.

2.2 Examples

2.2.1 Example 1 : Generating the length set of the
language {an!}

Here we give a nonuniform solution. That is, the number of membranes in
this P system will be dependent on the factorial number that you want to
generate. Suppose we want to compute n!. Consider the following P system
with n+ 2 membranes.

Π = (V, µ,A1, . . . , An+1, (R1, S1,M1, C1), . . . , (Rn+1, Sn+1,Mn+1, Cn+1), n+2)

Where
V = {bi|0 ≤ i ≤ n} ∪ {xi|1 ≤ i ≤ n},
µ = [n+1[n. . . [1]1 . . .]n[n+2]n+2]n+1,
A1 = {(b0, 1)}, Ai = φ, 2 ≤ i ≤ n+ 2,

For all i such that, 1 ≤ i ≤ n, the sets of rules for membrane i are as
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follows :
Ri = {(bi−1 → bi−1||bi;here, out)} and
Mi = {(x1 → x2;here), (x2 → x3;here) . . . (xn−i → xn−i+1;here),
(xn−i+1 → λ)δ}

Finally, the rules for membrane n+ 1 are :
Mn+1 = {(bn → bn; inn+2)}
There are no other rules in the system.
Evolution. How does this P system work? It has initially 1 b0 in membrane
1. From membrane i, it sends out as many bi’s as n− i+ 1 times the number
of bi−1’s that it has. This is because, in membrane i we count from 1 to
n− i+ 1 by using the objects xi and till then, we keep sending as many bi’s
out, as the number of bi−1’s we have. Hence, n b1’s are sent out of membrane
1. Then that is multiplied by n− 1 (put i = 2 in n− i+ 1) in membrane 2.
This quantity is multiplied by n− 3 in membrane 3 (similarly) and so on.

Finally, in membrane n+ 1 we get number of bn’s equal to n!, which are
then sent to the output membrane by the rule (bn → bn; inn+2).

2.2.2 Example 2 : Generating the Fibonacci numbers

Consider the P system Π defined as follows :

Π = (V, µ,A1, A2, A3, (R1, S1,M1, C1), (R2, S2,M2, C2), 1)

Where,
V = {f1, f2, f, x, y},
µ = [1[2]2[3]3]1,
A1 = φ, A2 = {(f1, 1)}, A3 = {(f2, 1), (x, 1)}
R1 = {(f2 → f ||f1;here, in1)}, M1 = {(f1 → f ;here), (f → f2; in2), x →
y; in1},

R2 = φ, M2 = {(f1 → f1; out), (y → λ; out)δ},

R3 = φ, M3 = {(f2 → f2; out), (f2 → f2; out)δ},

S2 = S3 = C2 = C3 = φ.
Evolution. Lets examine the evolution of this system. Its based on the
simple recurrence to calculate Fibonacci numbers : fn = fn−1 + fn−2. Mem-
brane 2 stores objects of type f1 and membrane 3 stores objects of type f2
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(initially one each). Both of them send their objects as such to membrane 1
i.e. out. Membrane 1 is our output membrane. If the computation halts at
a step, it has number of f ’s equal to some nth Fibonacci number.

Initially membrane 2 and membrane 3 have one f1 and one f2 respectively.
They send them to membrane 1, where the f1’s are mutated to f ’s straight
away, whereas the f2’s are replicated as f ’s here (membrane 1) and as f1’s
in membrane 2. All the f ’s in membrane 1 are now sent back to membrane
2, as f2’s. And the addition can continue. This is nothing but following the
recurrence. In short if n(x) denotes the current number of objects of type
x in membrane 1, and n′(x) denotes the new number (i.e. after this step),
then n(f) = n(f1) + n(f2), and then we put the new values as n′(f1) =
n(f2), n′(f2) = n(f), so that we always add the most recent two numbers in
the sequence.

At any time, we can decide to stop this computation by applying the rule
(f2 → f2; out)δ, which dissolves membrane 3. When this happens, the object
x waiting there from the first step is set free in membrane 1, where in the
next step itself the rule (x→ y; in2) is applied and the object y is produced
in membrane 2. This y now causes membrane 2 to be dissolved by the rule
(y → λ; out)δ and the new number of f1’s – n′(f1) which is equal to n(f2)
also adds to the current number of f ’s to give the next Fibonacci number in
sequence and the computation stops.

Observe that there is a choice to dissolve membrane 3 but dissolution of
membrane 3 automatically triggers the dissolution of membrane 2 and stops
the computation after calculating one more Fibonacci number in sequence.

2.3 Known universality results

One of the best results known thus far in this area, due to Paun, et.al. [2] is
as follows : NCPm = NRE, for all m ≥ 6.
This has been proved by constructing a worm-objects P system with 6 mem-
branes that simulates a type-0 grammar in Kuroda Normal Form. The main
challenge here is to sense the context. That is, for a context sensitive rule
AB → CD, we must check if the A in the input is indeed followed by a B,
to be able to apply this rule. This has been achieved with help of replication
and splitting operations.

Earlier in [1], universality was obtained with n membranes to simulate
an n-matrix grammar in binary normal form. This was done with a straight-
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forward construction. In what follows, we present a proof that four mem-
branes suffice for universality. We have not proved that P systems with less
than 4 membranes have strictly less power than Turing Machines but this
certainly is one step toward the goal of finding/proving the optimality of this
number.

2.4 Obtained Result

As is pointed out in [2], we try to come up with an optimal size P system
(with worm objects) which is universal. Following is a proof that up to 4
membranes suffice for universality.

We consider a type-0 grammar in Kuroda normal form and construct a
P-system using worm objects with four membranes to simulate this grammar.

As is known, the only context-sensitive rules in a grammar in Kuroda
normal form are of the type AB → CD. The context-free rules can be
simulated straight away by the mutation rules in P systems. Our only concern
is the context-sensitive rules.

To sense the context, we cut the string (representing the current sentential
form) at the non-terminal A and send the two pieces inside a membrane, from
where they can come out only if that A was actually followed by B in the
original sentential form. This is the correct simulation of the context-sensitive
rules. We need two membranes for doing this, one outer membrane for all
context-free rules and one output membrane. So we need four membranes in
all. Lets now define our system. Consider a type-0 grammar G = (N, T, S, P )
in Kuroda normal form. Suppose the context-sensitive rules in P are labelled
1, . . . , r. Consider the P system as defined below:
[Definition]

Π = (V, µ,A1, . . . , A4, (R1, S1,M1, C1), . . . , (R4, S4,M4, C4), i0)

where

• µ = [1[2[3]3]2[4]4]1,

• V = N ∪ T ∪ {Γ, †} ∪ {Bi|AB → CD is labelled i},

• A1 = {(S, 1)}, where, S is the initial symbol of G,
A3 = {(CDBi, 1)|AB → CD ε P is labelled i},
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• R1 = {(a→ †||a;here, in4)|aεT},

• S1 = {(A→ CDBiBi : DBi; in2, in2)|AB → CD ε P is labelled i},

• M1 = {(A→ x;here)|A→ x is a context free rule in P} ∪
{Bi → λ|1 ≤ i ≤ r} ,

• M2 = {(B → Bi;here)|AB → CD ε P has label i},
C2 = {(DBiBi; out, in3)|AB → CD ε P is labelled i}

• C3 = {(CDBj;here, here)|AB → CD ε P has label j},

• M4 = {(A→ Γ;here)|A ε N ∪ {Bi|1 ≤ i ≤ r}} ∪ {Γ→ Γ;here}

Evolution
As can be seen, the context-free rules are simulated straight away by mutation
rules in membrane 1. For the context sensitive rules, we cut the current
sentential string at A, to simulate the rule numbered j, AB → CD. But we
indicate the rule number in both the fragmented parts. That is, a string like
w1Aw2 is cut into w1CDBiw2 and DBiBi.

These parts are sent to membrane 2. Where all B’s which can be at
the second place in the left side of a context-sensitive rule can evolve to the
number of their production. Note that if some non-terminal occurs in more
than one rules, multiple such mutations are possible. But that has no effect.
Because only if the B which was just next to the A in question was replaced
by Bj, can the two fragments recombine and come out. Note that even if
somewhere down in the string, by coincidence, D happens to be followed by
B, replacing that B by Bj will not affect our simulation. This is because
we need DBjBj as the recombining block, which is never possible anywhere
else in the string. The coincidence just discussed produces only DBj. So in
all these cases, the fragments just can not come out of membrane 2 and the
computation has no result.

And if in the current sentential form, A was indeed followed by B, then we
recombine the two fragments using the rule (DBjBj; out, in3) in membrane
2, corresponding to this rule. That is if the original sentential form was
w1ABw

′
2 (w2 = Bw

′
2, then the fragments that came in here were w1CDBjBj

and DBjBw
′
2 and they recombine to produce w1CDBjBjw

′
2 and DBjBj. We

intend to send the latter string inside membrane 3, which is used as a storage.
Nothing happens to these strings in membrane 3. But if the recombination is
done the other way, DBjbj could be sent out and the other string could come
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in membrane 3. Should that happen, the computation never halts, because,
the string coming in has CDBj as its substring so it can be recombined
forever with the string CDBj waiting here from the beginning. Hence only
in the case expected, we can continue. Bj is mutated to λ in membrane 1
and we get w1CDw

′
2 in membrane 1 finally, which is the correct simulation

of the rule AB → CD.
Once we get a string of terminals, we use replication rules in membrane

1 and sent as many objects to the output membrane (i.e. membrane 4) as
there are terminals in the string. If these rules are used in between, then a
string containing a non-terminal (or Bi) comes in and it produces the trap
symbol Γ which does not allow the computation to halt.

To conclude, our approach is exactly similar to what Gheorghe Pǎun has
done in [2]. We have just come up with a more polished result that reduces
the number of membranes.

2.5 Future work

Obviously, finding out if a P system with 3 membranes can characterize RE
languages is the main topic of further investigation. However, P systems
with less than 3 membranes are very less likely to have the power of sensing
context. So, we expect a negative answer here.

But a question beyond this is, can we avoid replication rules altogether?
In general replication is a very powerful operation, and it would be interesting
to find a universal system without using replication. This needs further
investigation.
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Chapter 3

Reliability of Spiking Neural P
systems

We intuitively defined spiking neural P systems in section 1.4.2 of chapter 1,
as the model of P systems inspired by the functioning of neural cells. Here,
we define formally the Spiking Neural P systems and explain the roll of syn-
chronization in their evolution. Two variants of SN P systems are defined,
depending upon whether synchronization is present or not. We then move
on to define an extension to this basic model, the Stochastic spiking neu-
ral P systems, obtained by introducing a probabilistic asynchronism. We
define formally the stochastic spiking neural P systems (SSN P systems for
short, [3]) and define their reliability. The SSN P systems allow us to intro-
duce a controlled asynchronism in the system and observe, by way of experi-
mentation (for example, simulation) the effect of increasing asynchronism on
the reliability of the system.

We describe the methodologies we used (and the results we got) to get
more reliable SSN P systems, in a quest to come up with powerfull (or in the
best case, universal) asynchronous systems.
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3.1 Introduction

3.1.1 Formal definition of an SN P system

[Definition]
An SN P system is a quadruple

Π = (O,Σ, syn, io)

Where:

1. O = {a} is the singleton alphabet (a is called a spike)

2. Σ = {σ1, σ2, . . . , σm} are neurons of the form

σi = (ni, Ri), 1 ≤ i ≤ m

where :

• ni ≥ 0 is the initial number of spikes contained by the neuron

• Ri is a finite set of rules of the following two forms :

(a) E/ar → a; d ; E is a regular expression over O, r ≥ 1 and
d ≥ 0;

(b) as → λ for some s ≥ 1, with the restriction that as /∈ L(E)
for any rule of type (a) in Ri;

3. syn ⊆ {1, 2, . . . ,m}× {1, 2, . . . ,m} with (i, i) /∈ syn for 1 ≤ i ≤ m is a
set of synapses among the neurons

4. io ∈ Σ is the output neuron

Evolution
Clearly, the system is represented by a graph whose vertices are the neurons
and edges are the synapses between them. A global clock is assumed to tick
at each step and in each step, all neurons that have at least one enabled rule,
have to fire. Hence the model is synchronous.

The objects (there is only one type of object:a) evolve by means of spiking
rules of type (a) as above. If the number of spikes contained in a neuron is
described by the regular expression E (i.e. the neuron contains c spikes, say,
and ac ∈ L(E)), then the rule E/ar → a; d is enabled in that neuron. Once
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the rule fires, it consumes r spikes (i.e. c − r spikes remain in the neuron)
and sends out one spike to all the neurons it is connected to, after d time
steps. That is, if the rule fires in time step t, then in steps t, t+1, . . . t+d−1,
the neuron is closed, so that it cannot receive new spikes. All spikes sent to
this neuron during these steps are lost. In step t+ d, the neuron spikes, and
becomes open again. Note that, once a neuron fires, the spikes sent out to
its neighbors reach them immediately and the updation of number of spikes
in all open neurons (including itself) happens instantaneously.

A rule of type (b) above is called a forgetting rule. And it is enabled only
when the total number of spikes contained in a neuron is exactly equal to s.
When this rule fires, all the s spikes contained in this neuron are consumed.
Note that the delay plays no significant role here, as only the contents of this
neuron are affected. Hence we omit the delay in these types of rules.

We observe that the working of an SN P system is sequential at a neuron’s
level. That is, in each neuron, at each step, if there are more than one
rules enabled by its current contents, then only one of them (chosen non-
deterministically) can fire. But still, the system as a whole evolves parallely
and synchronously, as in, at each step, all the neurons (that have an enabled
rule) choose a rule and all of them fire at once.

Starting from the initial configuration C0 =< n1/0, . . . nm/0 >, where
ni/ti means that the neuron σi contains ni spikes, and will open after ti
spikes, the system evolves as described above. As suggested in [4], we can
associate a number (or a vector of numbers) with a computation in several
ways. One of the most frequently associated numbers is the distance in time
between two spikes sent to the environment by the output neuron. Note that,
only those computations where the output neuron spikes exactly twice are
successful.

3.1.2 Asynchronous SN P systems

The asynchronous SN P systems differ from the synchronous ones defined
above in a subtle manner. If we remove the assumption of synchronization
from the above definition, we get asynchronous SN P systems. In an asyn-
chronous SN P system, there is no global clock. Each neuron acts on its own
discretion. So, in a given configuration, if a neuron has some rules enabled, it
can choose to fire or remain silent. It is not obligatory for an enabled neuron
to spike. Moreover, during this time (for which a rule is enabled, but not
fired) the neuron is open. It can receive new spikes. And if new spikes are
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deposited, the computation continues in the new scenario. The same rules
may no longer be enabled now. Again, the neuron can choose to fire one of
the newly enabled rules, or remain silent.

Note that the delay parameter d has no meaning in asynchronous sys-
tems, because there is no global clock. So the spiking rules in asynchronous
SN P systems do not have this component. Also, the output of a computa-
tion is the “total” number of spikes sent to the environment by the output
neuron. Hence, the output neuron can spike any number of times, unlike in
the synchronous model.

3.1.3 An Illustrative Example

Consider the SN P system Π = (O,Σ, syn, io) as shown below :

Figure 3.1: An SN P system where synchronization matters

Where :
Σ = {σ1, σout}, syn = {(1, out) , (out, 1)}, io = σout and C0 =< 1, 1 >.
Synchronous Evolution: Under the assumption of synchronization, Π
works forever. Both neurons use a rule in each step. So, output neuron
sends one spike out in each step. We get an infinite spike-train, written 1ω,
as the output.
Asynchronous Evolution: Without the synchronization assumption, the
system can halt at any moment. Each neuron can wait an arbitrary number
of steps before using its rule. If both neurons fire simultaneously, the com-
putation continues, otherwise, one neuron consumes its spikes and the other
gets two, so can never spike. Hence, the system generates the set N .

From the above example, we observe that it is not very clear which of the
systems - synchronous or asynchronous - are more powerful. With two neu-
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rons, synchronous systems can only generate the set FIN , but asynchronous
systems can generate infinite languages also. We continue this comparison
in chapter 4.

3.2 Stochastic Spiking neural P systems

We saw that the synchronization is a rather important assumption while
defining SN P systems. Cavaliere et. al. [3] defined an extension of the
SN P systems, called SSN P systems, which is obtained by introducing a
probabilistic asynchronism into the basic SN P systems. Thus, these systems
lie in between the synchronous and asynchronous systems. We define these
systems here and then discuss the relevance with our problem.

3.2.1 Formal definition

An SSN P system is same as a standard SN P system, with the difference
that, with each spiking rule, a probabilistic delay is associated, instead of
a deterministic delay d as defined in last section. The probabilistic delay is
described by a probability distribution function F

′
(.) (for a spiking rule), or

F
′′
(.) (for a forgetting rule). Once a rule is enabled in a neuron, a random

amount of time decided by the probability distribution function F
′
(.) or F

′′
(.)

associated to that rule elapses before that rule spikes. If two rules get enabled
and fire simultaneously, conflict is resolved non-deterministically, as before.
A computation is said to halt when no rule is enabled in any neuron. We can
again associate a number with the halting computation in several ways, as
described in previous section. The set of numbers generated in such a way
by all halting configurations is the language generated by the SSN P system.

Observe that in SSN P systems, after a rule is enabled, a time interval
(whose value is determined by a probability distribution) ellapses before it
spikes. For this time interval, a neuron can still receive new spikes from other
neurons. Due to these new spikes, the former rule may no longer be enabled.
The computation continues in the new scenario. This is unlike synchronous
SN P systems (and like asynchronous SN P systems).

In a sense, the probability distribution chosen for a rule determines what
time it will take to fire, once enabled. Clearly, the degree of asynchronism
depends upon the distribution. This relation of the probability distribution
with the asynchronous behavior of the system is our topic of interest. Cav-
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aliere et.al. [3] suggested an approach to evaluate the effect of increasing
asynchronism on the system’s ability to perform correctly (i.e. simulate syn-
chronous behavior) by way of simulation using the Mobius modeling frame-
work ([5]). We take this approach further to answer some of the questions
posed there. This experimentation and results are explained in section 3.3.
Before proceeding to see the results, lets understand the probabilistic asyn-
chronism by way of an example.

3.2.2 Example

We modify an example (of an SN P system) from [4] to form an SSN P
system by using ideas from [3] as shown in figure 3.2 below:

Figure 3.2: Probabilistic asynchronism : An SSN P system

Where :

• F1(x) is the Gaussian normal distribution N(µ1, σ
2) with µ1 = σ2 = 0

• F2() = 0.5H(x) + 0.5H(x− 1), i.e. the discrete uniform distribution in
{0, 1}., where H(x) = 1 if x = 0, 0 otherwise.

First lets understand the probability distribution functions F1(x) and F2(x).
The first function is a Gaussian normal distribution with mean and variance
equal to zero. No variance means the probability of mean is 1. Hence, x
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takes value zero with probability one. The second function returns 0.5 for
x = 0 and 0.5 for x = 1, zero for all other values of x. Hence, both the values
0 and 1 are taken with equal probability.

Initially, only neurons 1, 2, 3 and 7 have spikes, two each. So, they fire
in the first step. So one spike is sent to the environment by neuron 7 during
the first step only. And in 1,2 and 3, the first rule a2 → a is enabled and
fires immediately with probability one (thats how F1 is defined). They send
one spike to neuron 4,5,6 respectively. In neurons 5 and 6 the only rule
(which returns the spike received) is enabled and also fired immediately with
probability. But in neuron 4, the only rule which is enabled, fires after either
zero time or one time unit. Each of these two happens with same probability
- 0.5. This is just a simulation of non-deterministic choice. If the rule fires
immediately, each of neurons 1, 2 and 3 receive 2 spikes while neuron 7
receives 3 spikes (one from each 4, 5, 6). Neurons 1, 2 and 3 continue their
execution as before and neuron 7 forgets the three spikes received by the
second rule in it.

In case neuron 4 decides to fire the rule after 1 time unit, neurons 5 and 6
send their spike to neurons 1,2 and 3, where they are forgotten by the second
type of rule. Whereas, neuron 7 receives 2 neurons (one from each of 5 and
6) which it consumes to send out one spike to environment. After one time
unit, the prepared spike from neuron 4 comes and is forgotten in neurons 1,2,
and 3, while remains unattended in neuron 7. Thus the computation halts.
Suppose neuron 4 fired the only rule immediately for n times before deciding
on delaying it. Clearly, at time 2n+ 2, computation halts.

Here, we take as output the distance (in time) between first two spikes
sent to the environment. Remember that the first spike was sent at time
1. Hence the distance between first two spikes is 2n + 2. Also note that
the computation always halts with the second spike. Hence we generate the
numbers of the form 2m.

3.2.3 Reliability

As can be observed, the choice of probability distribution function greatly
helps us in simulating a controlled and synchronous behavior. Had we chosen
a non-zero variance in our example from section 3.2.2, we would not get the
firing time of zero with probability one. And that would certainly have
affected the system behavior. That is, we loose synchronization. But how
much does it affect the language generated?
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Cavaliere et. al. ([3]) proved that SSN P systems become universal if
we can choose the firing time distributions. This was shown by simulating
register machines. If in this proof, we change the variance to some non-
zero value, will the resulting system still be able to simulate the register
machine correctly always? If not always, then what is the probability of
correct simulation?

Correct simulation of an instruction

A register machine has only three types of instructions, namely ADD(r)
(deterministic and non-deterministic), SUB(r), and HALT . An ADD in-
struction is supposed to add one to the contents of register r. So, an SSN
P system Π simulates correctly an ADD instruction if started in the same
configuration as the register machine, Π ends up in a configuration corre-
sponding to this incremented value of register r, keeping the contents of all
other neurons unaffected (except for the ones representing next instruction).

Correct simulation of SUB and HALT can be defined similarly. In [3],
it was shown that as the variance of firing time distributions increases, the
probability of correct simulation of an instruction decreases. In sections 3.3.2
and 3.3.2, we investigate how this probability can be improved.

Formal definition of reliability

Reliability of an SSN P system Π simulating a register machine M , RM
Π (n)

is defined as the probability that Π simulates correctly a sequence of n in-
structions executed by M , when M starts from the initial configuration and
Π starts from the corresponding one [3].

Our aim here is to define/re-define SSN P modules that simulate a given
register machine more reliably, under increasing variance (i.e. increasing
asynchronism).
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3.3 Improvements in reliability of SSN P sys-

tems

3.3.1 Questions

The obvious question we ask is, how do we come up with models that have a
high probability of correct simulation of an instruction with increasing vari-
ance (and hence increasing asynchronism). But there is more to it. Once we
rewrite the modules corresponding to ADD, SUB etc to improve this prob-
ability, how does it affect the reliability of the system as a whole? Basically,
we want to address the following questions:

• Can the topology of the network influence the reliability, or can sug-
gestions from real biological networks of neurons be taken to improve
reliability?

• Can redundancy (number of neurons/connections per module) improve
reliability? How much redundancy? How to make use of it?

• Is there a possibility of associating exponential distributions to firing
times instead of normal, so that the models can be solved analytically
to investigate reliability?

• In general, when is it possible to implement powerful computing devices
with high degree of asynchrony? That is, what is the trade-off for loss
of synchronization?

3.3.2 Methodologies and results obtained

We here address the questions asked in section 3.3.1. We have not been able
to come up with answers for last but one question i.e., possibility of asso-
ciating exponential distributions and solving the models analytically. We
describe here some ways to improve reliability by way of the first two sug-
gestions instead. For each of our suggestions, we re-define the corresponding
SSN P system and simulate using the Mobius modeling tool [5] to calculate
the reliability.
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Suggestions from biology

Cavaliere and Mura asked in [3] if topology of the network could affect the
reliability. That is, without concern to the specific language the system is
generating or the specific purpose of the system, can certain topologies be
found to be more reliable than others? In [6], it was shown that this indeed
is true in case of biological networks. Biological networks are highly reliable
systems composed of asynchronous, unreliable elements. This reliability is
achieved through the abundance of certain subgraphs and suppression of
others. So reliability in these systems strongly depends on the underlying
topology. The three 3-node subgraphs shown in figure 3.3, which allow for
reliable dynamics, were observed to be abundant in nature.

Figure 3.3: Topologies that allow reliable dynamics

But these topologies could not be incorporated into our models of ADD
and SUB instructions preserving all the other assumptions and without chang-
ing the model semantics at large. Defining entirely new models, targeted at
making use of these “reliable” subgraphs as components is one important
future work.

Redundancy

In [3] itself it was conjectured that redundancy could help by showing that
adding one neuron to the ADD module indeed improves the reliability. We
go ahead and take this suggestion for SUB module as well to find out that
this is true for up to four neurons. That is, if we go on adding neurons in the
success branch of SUB module, the reliability goes on increasing, up to four
neurons, there onwards, it remains constant. We link this to one conclusion
drawn in [6] – that “any type of feed-forward wiring yields reliable dynamics
and from any initial condition the system reaches a fixed point after a short
while”. The difference in reliability obtained by adding up to three neurons
in this way appears in the graph shown in figure 3.4.
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Figure 3.4: Reliability of SUB module for increasing redundancy

As can be observed, only the first improvement is significant. All others
can not be counted. So it seems that redundancy helps, but the best way to
use redundancy is to use a feed-forward connection with one extra neuron.
Interestingly, for the ADD module, even the second extra neuron doesnot
yield any improvement. The plot corresponding to this is not included here
to avoid repitition.

Reducing Unreliability

We observed that the reliability calculated largely depends on the method
used by Mobius to arrive at it. What the simulator does is that in each
state, it calculates the set of possible next states and all enabled rules. It
then samples the firing time distributions of these rules and updates the
state of the network according to the spiking times. This generates different
possible trajectories in the state space. Now the reward is calculated for all
the trajectories and then the mean is returned. So if we define an impulse
reward on an activity and that activity never fires in a trajectory, then the
reward collected for this trajectory will be zero.
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We next observe that in the ADD module the problem occurs if the two
neurons adding two spikes in the register neuron fire at different times, then
both of them are consumed one by one and addition does not happen. We
define a new version of ADD module by adding one more neuron (as already
shown in [3] and adding one more rule to it - a → λ. What it does is, if at
all the two spikes are consumed one by one in the register, this neuron also
does the same thing and blocks the computation. So this computation does
not produce any output. So there are less chances of the system producing
wrong output.

Now, this improvement can not be captured by the notion of reliability
because of reasons explained earlier. For this reason, we define the reward in
the reverse way. It now returns one when the activity fires, and still addition
has not happened. Thus, in a way, we are calculating the unreliability of
the system. What is the probability that it proceeds with wrong computa-
tion. Figure 3.5 shows the improved unreliability of ADD module with our
modification.

Figure 3.5: Probability of incorrect simulation of ADD

We also note that the reliability of this new model as calculated with
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mobius appears to be slightly lesser than the model in [3]. But this is because
in our model, there still can be cases where the two spikes are consumed one
by one in the new neuron whereas addition has happened in the register
neuron (the forgetting rule there did not spike until the second spike came).
In such cases, earlier model does not block computation whereas our model
does. But as discussed before, these computations anyway do not produce
any output. So they are in a sense harmless.

3.4 Conclusion

In general, it seems that coming up with very reliable and at the same time,
asynchronous SN P systems is a bit difficult. The experimentation hints at
the conclusion that asynchronous SN P systems are probably not as powerful
as the synchronous ones. Then comes the last question from section 3.3.1.
What is it that makes up for this loss in power? We try to find the answer
in the next chapter.
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Chapter 4

Universality and decidability of
asynchronous SN P systems

As concluded in the last chapter, from the experimentation, it looks like
asynchronous SN P systems are probably not as powerful as synchronous
ones. But, as already pointed out, asynchronous SN P systems (like the
synchronous ones) also become universal, when using extended rules ([7]).
Extended rules are spiking rules that can emit more than one spike. That is,
spiking rules of the form E/ar → ap, such that r ≥ p.

So, if we prove that asynchronous SN P systems using only standard rules
are not universal, we can say that the programming ability given by extended
rules makes up for the loss in power due to loss of synchronization. Hence, we
will probably answer the last question in section 3.3.1. On the other hand,
if it turns out that asynchronous SN P systems using standard rules are also
universal, then the whole problem is closed. But it is hard to prove it either
way. We here prove that asynchronous SN P systems using extended rules
of a limited form (i.e. they can emit only up to four spikes) can become
universal, and we also give an intuitive argument that with less than length
four, it is unlikely to happen.

The difference in power between synchronous and asynchronous systems is
still not clear from the above result. We further try to compare the two modes
by comparing corresponding systems with a limited number of neurons. To
this end, we define a hierarchy of asynchronous SN P systems with increasing
number of neurons and compare the results with synchronous systems.
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4.1 Known results

Various models of SN P systems defined till now have been proved to be
universal (or non-universal). We enlist the results known thus far. We denote
by Spik2P

syn
m (rulek, consp, forgq) the family of sets of numbers computed by

synchronous SN P systems with at most m neurons, using at most k rules in
each neuron, consuming at most p spikes in any spiking rule and forgetting
at most q spikes in any forgetting rule.

We denote by SpiktotP
nsyn
m (γ, del0), γ ∈ {gen, unb, boun}, the family of

sets of numbers computed by asynchronous SN P systems using at most
m neurons (replaced by ∗ if there is no bound on this) of type γ (general,
unbounded or bounded) and where the output is defined as “all” (tot means
total) spikes sent out by the output neuron.

• Spik2P
syn
2 (rule∗, cons∗, forg∗) = NFIN . [4]

• Spik2P
syn
∗ (rule2, cons3, forg3) = NRE. [4]

• Spik2P
syn
∗ (rule3, cons3, forg3, bound3) = SLIN (Bounded neurons with

up to 3 spikes). [4]

• SpiktotEP nsyn
∗ (gen, del0) = NRE. [7]

• NµSpiktotEP
nsyn
∗ (unb, del0) = NPBCM . [7]

It is clear that when using only unbounded neurons (and not general)
in asynchronous mode, we get a sub-universal class. The case of interest is
when using general neurons in asynchronous systems.

4.2 Obtained result

We want to prove that asynchronous SN P systems using extended rules of
length up to four (i.e. those that can emit up to four spikes) are universal.
Asynchronous SN P with extended rules of arbitrary length have already
been shown to be universal. So this proof will demonstrate that extended
rules that can emit up to four spikes are sufficient. We also informally argue
that it is not possible to prove this using extended rules of length less than
four. It once again underlines the conjecture that asynchronous SN P systems
with standard rules are not universal, because standard rules are nothing but
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extended rules with length 1. Here, we actually prove that we can simulate
matrix grammars with appearance checking (a Turing-equivalent class of de-
vices) using asynchronous SN P systems with extended rules of length up to
four.

4.2.1 Extended rules of length up to four give univer-
sality

To prove that asynchronous SN P systems can simulate matrix grammars
with appearance checking using λ-rules.

Consider a matrix grammar with appearance checking in binary normal
form, G = (N, T, S,M, F ) such that N = N1 ∪N2 ∪ {S,#} with these three
sets mutually disjoint. We know that the matrices in M can be in one of the
following forms :

1. (S → XA), X ∈ N1, A ∈ N2

2. (X → Y, A→ x), X, Y ∈ N1, A ∈ N2 and x ∈ (N2 ∪ T )∗, |x| ≤ 2

3. (X → Y, A→ #), X, Y ∈ N1, A ∈ N2

4. (X → λ, A→ x), X, Y ∈ N1, A ∈ N2, and x ∈ T ∗

We construct an asynchronous SN P system Π to simulate the above
grammar G. The SN P system Π uses extended rules of length up to four.
The two main challenges involved are : 1) To ensure that either both of
the rules of a matrix are applied or none are and 2) To correctly simulate
the rules in appearance checking mode. We attack both of these by using
extended rules of length up to four.

Construction

Let us formally define the asynchronous SN P system constructed as above.

Π = (O, σ1, . . . , σm, syn, out)

with m neurons. Each non-terminal X is represented by one coordinating
neuron and k other neurons, where k is the number of rules in which the
non-terminal X occurs. These neurons are named σX , σX1 , σX2 . . . σXk

, re-
spectively. So, each σXi

represents the enabler for a rule in which X appears.
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Also, there are sixteen auxiliary neurons per matrix m ∈ M . Apart from
all these, there is a neuron σout, designated as the output neuron. At any
time, it contains number of spikes equal to the length of the terminal string
generated by grammar G.

The output of the system is defined as the number of spikes contained in
σout when the system is in a halting configuration (that is, when all neurons
are open but none is firable).

The initial state of the system is described by nX = 2, nA = 2 and nZ = 0
for all other non-terminals Z ∈ N1 ∪ N2. That means, the coordinating
neurons of non-terminals X and A contain two spikes each, and all other
neurons contain no spikes, where, (S → XA) is the first matrix.

Now, the coordinating neuron for each non-terminal plays an important
role. Whenever a particular non-terminal (say Z) is present in the current
sentential form, the coordinating neuron corresponding to that non-terminal
(i.e. σZ) will have 2 (or multiples of 2, depending upon how many Z’s are
present) spikes. Neuron σZ consumes two of these spikes (representing the
rewriting of one Z) and passes them non-deterministically to one of the sub-
ordinate neurons, each of which represents a rule in which that particular
non-terminal occurs. This simulates the non-deterministic choice among the
rules applicable to the current sentential form. However, it does not check
whether the particular matrices in which these Z-rules appear are applicable
in full or not.

Simulating non-appearance-checking matrices

For matrices of type 2 (non-appearance checking), as discussed above , the
main challenge is ensuring that either both the rules or none are executed.
For this, we use a common neuron to which both the neurons represent-
ing these rules (as discussed above) spike. Consider, for example, a matrix
m = (X → Y, A → BC) of type 2. So here, the neurons σXi

and σAj
will

spike to the common neuron belonging to the matrix m, where X → Y is
the i-th X-rule and A → BC is the j-th A-rule. This common neuron sim-
ulates the action of both the rules, if and only if both of the neurons spike.
If just one of them spikes, then the computation never halts, and if none of
them spike, then the spikes flowing through this part of the system are just
forgotten in this common neuron. For example, the actions of the rules in m
are simulated by adding two spikes to coordinating neurons of Y , B, C, that
is the neurons σY , σB and σC .
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Figure 4.1: Asynchronous SN P module to simulate non-appearance-checking

Note however that we define the “spiking” and “not spiking” of these
neurons (σXi

and σAj
) a bit differently. Namely, a neuron has “spiked” if

it sends out 3 spikes and has “not-spiked” if it sends out 2 spikes. This is
needed because we can’t detect the absence of a signal in the asynchronous
systems due to the unpredictable time delay before the signal actually ar-
rives. We actually argue informally in section 4.2.2 that it is this inability of
asynchronous systems that makes use of extended rules unavoidable.

The module (that is, part of the asynchronous SN P system) that simu-
lates a matrix of type 2 is shown in figure 4.1.
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Simulating appearance-checking matrices

For applying matrices of type 3 (appearance checking), we have to ensure
the “absence” of a certain non-terminal in the current sentential form. For
example, a matrix (X → Y,A → #), if applied when A is present, traps
the computation and if applied when A is absent, just converts X to Y . In
other words, if the coordinating neuron corresponding to A - σA - has (a
multiple of) 2 spikes, we have to scrap the computation, that is, make it loop
forever. And if does not contain (multiple of) 2 spikes, we have to let the
execution continue. So we make a structural change here. We do not use
a sub-ordinate neuron under the neuron σA to represent the rule A → #.
Instead, we take a spike directly from σA. Further, we change the rules in
the common neuron so that, it allows the computation to proceed only if the
neuron σXi

(representing the first rule in the matrix being simulated) spikes.
If both the neurons σXi

and σA spike, then we make the computation loop
forever as before. If the neuron σXi

does not spike, we do not care about the
presence or absence of A and we just forget the spikes flowing through the
system, and let the computation proceed.

Remember again, that “spiking” and “not spiking” of a neuron is defined
a bit differently, as before. Also note that we could directly take a connection
from σA, without conflicting with other A-rules, because we know that the
appearance checking and non-appearance checking rules on a certain non-
terminal do not conflict (either one is used or the other).

Figure 4.2 describes a module (part of the asynchronous SN P system)
that simulates a matrix of type 3.

Simulating terminal matrices

For matrices of type 4, the same module as in figure 1 can be used, with the
only difference that, for each terminal a on the right side of the rule A→ x,
we deposit a spike in the output neuron, to account for the length of the
terminal string generated.

Claim - The grammar G is simulated correctly by Π.
Proof:
From the construction, it is clear that a computation is possible in Π iff it
is possible under rules of G. Also, the output neuron contains one spike
per terminal generated during this computation. Hence, a number n can be
generated using Π, iff a string x with |x| = n can be generated using G.
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Figure 4.2: Asynchronous SN P module to simulate appearance-checking
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Hence, the proof.

4.2.2 Is it possible with less than four?

We have proved that asynchronous SN P systems using extended rules ca-
pable of emitting up to four spikes are universal. We also observe that in
asynchronous systems, we can not distinguish the absence of a signal (spike)
from the delay in its arrival. So, we have to define each (presence and ab-
sence) with a different number of spikes. Hence, use of extended rules is
unavoidable. Now, with extended rules of length only 2, we can assign 2
spikes to mean presence and 1 spike to mean absence. But in this case, when
we want to detect presence of signals coming from two independent sources,
absence of both signals, and presence of only one signal are both represented
by 2 spikes and hence indistinguishable. Adding an independent source does-
not help, since the same argument applies to the signal coming from there.
Hence, one of the two sources has to be able to emit more than 2 spikes, in
which case, we can assign 3 spikes to mean presence and 2 to mean absence.

But even in this case, appearance checking (detecting the presence of
one particular signal and absence of the other) is not possible, by a similar
argument, because we can not differentiate between the scenarios (signal1
present, signal2 absent) and (signal1 absent, signal2 present) with the above
assignment. Hence, we have to be able to emit 4 spikes from a single source
so that we can assign 4 to mean signal1 present, 2 to mean signal1 absent, 4
to mean signal2 present and 3 to mean signal2 absent. One can see that all
four cases are distinguishable with this assignment.

4.3 A hierarchy

We saw that asynchronous SN P systems using extended rules capable of
emitting up to four spikes become universal. But apart from the intuitive
argument in the last section, we could not produce a formal proof that the
systems with standard rules (or extended rules capable of emitting less than
four spikes) are not universal. We instead try to define a hierarchy by re-
stricting the number of neurons, starting with 1 neuron, 2 neurons and so on.
To do this, we borrow ideas from [8], where, a similar argument, although
in a different context (asynchronous systems used as language generators)
was recently made. We realize that the parameters like number of neurons,
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length of extended rules, number of rules per neurons are intricately related
and one can compensate for the power of other in its absence and vice versa.
This was already pointed out (and proved for some of the parameters) in [9].
Following are the results.

4.3.1 One neuron can generate at most FIN

For synchronous SN P systems, it was argued in [4], that with 1 neuron,
any finite set can be generated. Synchronous systems make use of delays for
this. The only neuron spikes at the first step and then, non-deterministically
spikes after ni steps, for all ni in the finite set to be generated. Here, we do
not have delays. For asynchronous systems also, one thing is clear, that with
one neuron, we can not generate more than a finite set of numbers.

To prove that any finite set can be generated, we have to take help of
extended rules. If we can have extended rules that can emit any number of
spikes, we can generate any finite set F with a single neuron, by including
the following rules in the only neuron available :

1. anmax → anmax

2. anmax/ani → ani ; anmax−ni → λ, ∀ni ∈ F

Where, F = {n1, n2, . . . , nmax} is the finite set to be generated and nmax is
the maximum number in the set F . As can be seen, the neuron can non-
deterministically choose either the first rule (in which case it generates nmax,
or one of the first rules of type 2 to generate any ni and consequently forget
the remaining spikes.
Thus we conclude :

SpiktotP
nsyn
1 (gen, del0) ⊆ FIN.

SpiktotEP
nsyn
1 (gen, del0) = FIN.

4.3.2 Two neurons can generate at most REG

The synchronous SN P systems can generate only finite sets, even with two
neurons. This is because, the output neuron can spike at most twice in a
successful computation. So, the number of spikes in the system can not
increase and any computation can last for a finite number of steps only.
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In asynchronous SN P systems, however, the output neuron can spike
any number of times, so there is a possibility of generating infinite sets. But,
with two neurons, replication of spikes is not possible. So the computation
can continue only by means of exchanging spikes in between the two neurons,
which means, the number of possible different configurations is finite. The
configurations serve as the state of an automata. So, passing through a finite
set of states, the system can generate at most regular languages. We extend
it to our model and context. It is not clear if two neurons have the power to
generate any given regular language in the asynchronous mode. We get the
following result.

SpiktotP
nsyn
2 (gen, del0) ⊆ REG.

4.3.3 Three neurons can generate at least REG

We want to prove that any regular language L can be generated by three
neurons working in the asynchronous mode. Consider a regular grammar
G = (N, T, S, P ), where N = {Ai|1 ≤ i ≤ n}, S = An and P contains
rules of the form Ai → bAj, for some b ∈ T and L = L(G). We construct
the asynchronous SN P system Π with 3 neurons as shown in figure 4.3 to
simulate G.

Figure 4.3: Asynchronous SN P of 3 neurons to simulate regular grammars

It can be seen that Π indeed simulates G correctly. The neuron σout
sends out one spike per terminal symbol generated. The neuron σ2 actually
simulates the rules and neuron σ1 is an auxiliary neuron used to temporarily
store the n spikes. Note that we make use of extended rules of arbitrary
length here. We conclude that :

REG ⊆ SpiktotP
nsyn
3 (gen, del0).
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4.3.4 Four neurons can generate a non-semilinear lan-
guage

Consider the following asynchronous SN P system with 4 neurons.

Figure 4.4: Asynchronous SN P of 4 neurons to generate {a2n}

Neuron σ1 initially spikes and sends 4 spikes to σ2 as well as σ3. Thus
replication is used to double the number of 4-spike chunks in the system.
σ3 collects these doubled 4-spike chunks and when the remaining two spikes
come, it fires and sends out all these chunks to σout and back to σ1. σout now
sends one spike to the environment per chunk of 4 spikes received from σ3.
Finally, when σ3 sends out last 2 spikes, the output neuron forgets them, and
the next iteration is triggered in σ1. The doubling can continue any number
of times. But as the system is asynchronous, it can happen that σ2 does
not spike until σ1 spikes for the second time and then it acquires 5 spikes.
In this situation, σ1 can never spike again and the computation stops. The
generated number is of the form 2n+1 − 2, if the computation continues for
n steps. That this set is non-semilinear is obvious.

A summary appears in table 4.1.

No. of neurons → 1 2 3 4 *

Synchronous FIN FIN ? ? RE
Asynchronous FIN † ⊆ REG ⊇ REG† ⊃ REG†† RE††

Table 4.1: A Hierarchy : Synchronous v/s Asynchronous SN P

Remarks :
† : Extended rules (of unbounded capacity) needed.
†† : Extended rules capable of emitting up to 4 spikes needed
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4.4 A Decision Problem for Asynchronous SN

P systems

We first construct a conditional grammar with context-sensitive rules which
simulates the work of an asynchronous SN P system. Although it does not
generate the exact language of the SN P system, it generates this language
modulo a projection. It turns out that this grammar is useful in arguing that
membership problem for asynchronous SN P is semidecidable.

4.4.1 Simulation using Conditional grammars

To prove that conditional grammars with context sensitive rules can simulate
asynchronous SN P systems, consider an asynchronous SN P system

Π = (O, σ1, . . . , σm, syn, out)

with m neurons and one output neuron σout. Each neuron σi contains ni
number of spikes and Ri is the set of standard spiking rules in it. Let’s
label each spiking rule as follows : Rule number j in neuron σi is labeled rij
(Assume, within a neuron, we assign a particular numbering to the rules).

We construct a conditional grammar G = (N, T, S, P ) to simulate Π as
follows :

N = {S} ∪ {Ai|1 ≤ i ≤ m}
T = {a,B}

and the set of context-sensitive (length-increasing) productions is specified
as follows : S → An1

1 A
n2
2 . . . Anm

m ∈ P ,
For each rule rji (i.e. rule number j in neuron σi), we add the following
productions according to the form of the rule :

• Case 1 : rji : ax/ay → a (A special case is when x=y). Then, we add
the rule (r, R) where, r is Ayi → ByAj1Aj2 . . . Ajn , such that, (i, jk) ∈
syn, 1 ≤ k ≤ n and R = A∗1A

∗
2 . . . A

x
i . . . A

∗
mB

∗.

• Case 2 : rji : ax(ay)∗/az → a. Then, we add the rule (r, R) where,
r is Azi → BzAj1Aj2 . . . Ajn , such that, (i, jk) ∈ syn, 1 ≤ k ≤ n and
R = A∗1A

∗
2 . . . A

x
i (A

y
i )
∗ . . . A∗mB

∗.

• Case 3 : rji : ax → λ. Then, we add the rule (r, R) where, r is
Axi → Bx, and R = A∗1A

∗
2 . . . A

x
i . . . A

∗
mB

∗.
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Apart from these, we add to P , the following rules :

• (r1, R1) such that r1 is AiAj → AjAi, 1 ≤ i < j ≤ m and R1 =
(N)∗ − A∗1A∗2 . . . A∗i . . . A∗mB∗.

• (r2, R2) such that r2 = BAi → AiB and R2 = (N ∪ {B})∗.

• Aout → a ; Ai → B for 1 ≤ i ≤ m, all with a common permitting
regular expression: V ∗ − ⋃k

i=1Ri, where Ri’s are permitting regular
expressions of all the other (say k) as above.

This last set of rules is enabled, when none of the above rules are enabled;
this indicates the halting condition of the SN P system in question.
Claim - The grammar G simulates Π.
Proof - The initial state of the system is represented by the first sen-
tential form (derivable using the only rule with S on the left hand side),
An1

1 A
n2
2 . . . Anm

m . So each non-terminal Ai represents the number of spikes
contained in the corresponding neuron σi. Now assume that a neuron σi has
synapses to σj and σk.

For a bounded rule ax/ay → a, we need to enable this rule when there are
x spikes in neuron σi. That is to say, we need to be able to delete y Ai’s and
add one Aj and one Ak, when the current sentential form has x number of
Ai’s. That is exactly what is done by rules added in case 1 above. The only
difference is, we do not have deletion here. So these rules produce a blank
symbol to signify deletion.

For an unbounded rule like ax(ay)∗/az → a, we can extend the same
approach, because we can use the regular expression ax(ay)∗ directly in the
enabling part of the corresponding grammar rule.

For forgetting rules, we don’t need to add a spike to σj and σk. We only
need to produce x blank symbols if the rule is ax → λ.

There is one problem, though. When we use any spiking rule, the Aj
and Ak symbols produced are not in their right place. In fact they are near
the Ai’s. We need to rearrange them. Also, the blank symbols produced to
signify deletion have to be moved to the end of the string. We use the last
two types of productions to do this. The first type is used to rearrange Ai’s.
But this need only be done till all the Ai’s come together (for all i). This
is indicated by the enabling regular expression of this production. Also, the
second production takes B’s to the right end of the string. Once all B’s are
moved to the right end, the rule can not be applied anyway. So its enabling
regular expression is not needed.
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So after applying a spiking rule each time, one has to use these rules
a number of times to once again bring the sentential form into the form
A∗1A

∗
2 . . . A

∗
i . . . A

∗
mB

∗. The execution continues just like the SN P system
except for these intermediate rearrangement steps.

Parallelism and Asynchronous behavior - What do you mean by
parallelism? In an SN P system, if σi and σj both produce spikes into σk,
then parallel execution means that before σk can execute/enable any rule,
both σi and σj should have been done with their execution. But this is true
only in case of synchronous behavior. In the asynchronous case, one of σi and
σj can choose to remain silent, and hence σk can continue without waiting
for both of them. So to simulate this behavior with a sequential grammar, all
we need to do is we need to give both of these choices – execution sequence
where σi and σj are both done before σk starts, and execution sequence where
this is not true. And this is indeed given by the non-deterministic choice of
enabled productions. In a given sentential form, all the productions whose
corresponding spiking rules would have been enabled in the corresponding
state of SN P system, are enabled by virtue of the permitting regular expres-
sions. So, we believe that this grammar indeed captures the asynchronous
parallel behavior of SN P system.

4.4.2 Membership Problem : Semidecidable

The membership problem for asynchronous SN P systems is stated as: Given
an asynchronous SN P system Π and a number n, can Π generate the number
n? We claim that this problem is semidecidable. To prove this, we use the
context-sensitive conditional grammar constructed above. Although it does
not directly generate the language of the simulated SN P system, it generates
the language L, such that a string x of the form B∗anB∗ is in L if and only if
the number n is L(Π) – the actual language of the SN P system. We use this
fact to produce the following algorithm to answer the membership question
for asynchronous SN P systems.

Here we add a neuron σO to the given SN P system Π. This neuron
collects the spikes sent out to the environment by the output neuron of Π.
We construct a conditional grammar G to simulate this new asynchronous
SN P system Π, as described in section 4.4.1. Note that the number of spikes
in this newly added neuron σO can only increase. We are interested in finding
if in any halting configuration of Π, the neuron σO contains n spikes. We
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propose to use the same algorithm as used to decide the membership problem
for context-sensitive grammars, as defined in [10].

[Algorithm]
Compute the sequence of sets Vi, i ≥ 0, iteratively defined by :

V0 = {S},

Vi+1 = Vi ∪ {β|∃α ∈ Vi, α⇒G β and |β|AO
≤ n}.

Where, |β|AO
denotes the number of AO’s in the string β and AO is the

non-terminal which represents the newly added neuron σO.
Note that in an asynchronous SN P system, for any given configuration,

there are a finite number of neurons which are enabled (fireable) in that
configuration. Lets say this number is m. Each of these m neurons can either
spike or remain silent. Each of these 2m spiking combinations can produce a
different configuration. So the maximum number of configurations reachable
from a given configuration is finite. These configurations are represented by
the sentential forms of the grammar G. Hence, from a given sentential form
α of G, we can reach a finite number of configurations β. This implies that
the sets Vi are finite.

Also note that for each i ≥ 0, for any α ∈ Vi, β ∈ Vi+1, |β|AO
≥ |α|AO

.
That is, the number of AO’s can only increase. But what we do not know
is whether this number will increase at each step. So the process of defining
Vi’s may never end. But, if it does end, we can answer the question.

Assuming the process stops at Vk, n ∈ L(Π) if and only if, any of the
strings w ∈ Vk, such that |w|AO

= n represents a halting computation of Π.
In other words, n ∈ L(Π) if and only if the last rules Ai → ai (for all neurons
σi) are applicable to any w ∈ Vk, such that |w|AO

= n. This can easily
be tested. As the condition is both necessary and sufficient, the problem is
decidable, if the process ends. We conclude that the membership problem
for asynchronous SN P systems is semi-decidable.

4.5 Conclusion

We have proved that extended rules capable of emitting up to four spikes
produce universality, and argued informally that it is less likely to happen
with less than four. We have also argued that membership problem for
asynchronous systems is semidecidable. This indicates we have moved at
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least one step ahead toward proving that asynchronous SN P using standard
rules are not universal.
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Chapter 5

Summary and future work

We have investigated two variants of P systems – P systems with worm ob-
jects and spiking neural P systems. Below we summarize the results obtained
and future work in both the cases.

• We have proved that P systems with worm objects with 4 membranes
are universal. The problem of finding optimal value of number of mem-
branes required for universality remains open for future work. Also one
needs to investigate if replication rules can be avoided altogether.

• Although we have proved an upper bound on the capability of extended
rules required to get universality, we do not yet know what is the lower
bound. Thus, one possible direction for future work in this regard is to
write an asynchronous SN P system (using standard rules) to simulate
a universal class of computing devices, which at the moment seems to
be difficult. On the other hand it would be interesting to prove that a
subuniversal class can simulate asynchronous SN P systems. The work
in section 4.4.1 might be useful in this regard.
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