
CS692 Report : P systems using worms

Avadhut Sardeshmukh
Roll No 06329905

Under the guidance of Prof. Krishna S.
Computer Science and Engineering

May 5, 2008

Abstract

We study the variant of P systems where the objects are symbols
as well as strings (a.k.a. worms). They deal with multisets of strings
and the result of a computation is the number of strings in the output
membrane, as usual. It has been proved that membrane systems (us-
ing worms) with at most 6 membranes are universal. Also P systems
using worms for some specific languages are constructed and presented
as illustrative examples. Finally a linear-time solution of the the SAT
problem, from [1] is examined and a uniform solution for the same is
obtained.

1 Introduction

Here we consider the type of P systems in which the objects are symbols
as well as strings. The strings are also called as worms. The rules in this
type of systems deal with strings (symbol objects are treated as strings of
unit length). These type of P systems were introduced in [2]. The result of
computation is the number of strings in the output membrane. The strings
are processed by four types of operation, viz. replication, splitting, recombi-
nation and mutation. Replication and splitting can increase the number of
string objects whereas recombination and mutation cannot. These operations
are discussed in detail in the following sections.

1

1.1 Formal Definition

P System with worms:
[Definition] A P system of degree m ≥ 1 with worm-objects is a construct :

Π = (V, µ, A1, . . . , Am, (R1, S1, M1, C1), . . . , (Rm, Sm, Mm, Cm), i0)

where

• V is an alphabet

• µ is a membrane structure consisting of m membranes arranged in an
heirarchical structure

• Ai are finite multisets over V ∗, associated with the corresponding regeions
of the structure µ.

• Ri, Si, Mi, Ci are finite sets of replication, splitting, mutation rules and
the set of objects used as crossing over blocks in the recombination op-
eration. The forms of these rules as well as the operations they do are
explained in the next section.

• i0ε{1, 2, . . . ,m} is the output membrane

1.2 Operations

1. Replication r : (a → u1||u2; tar1, tar2) or (a → u1||u2; tar1, tar2)δ,
where a ε V, u1, u2 ε V +. This type of rule can be applied on a string w
of the form x1ax2. It results in two strings, by replacing the occurrance
of a in w by u1 and u2, respectively. We say that w1 =⇒r (w2, w3), if
w1 = x1ax2, w2 = x1u1x2 and w3 = x1u2x2. After application of
this rule, the strings w2 and w3 are sent to the membranes indicated
by tar1 and tar2, respectively. The optional δ at the end of the rule
specifies the action of dissolving the membrane. If a rule of that form
is used, the membrane is dissolved at the end of that step. (We will
discuss what this means in detail later).

2. Splitting r : (a → u1 : u2; tar1, tar2) or (a → u1 : u2; tar1, tar2)δ where
a ε V, u1, u2 ε V +. Again this type of rule can be applied on a string
w of the form x1ax2. It results in two strings – obtained by cutting

2

w at a, and replacing the a by u1 in one part and by u2 in the other
part. That is, we say w1 =⇒r (w2, w3), if w1 = x1ax2, w2 = x1u1 and
w3 = u2x2. Also, the strings w2 and w3 obtained in this way are sent
to membranes specified by tar1 and tar2, respectively, as before. Again
the optional δ at the end specifies membrane dissolution action.

3. Mutation r : (a → u; tar) or (a → u)δ. This is a context free rule.
That is, for a string containing a, this rule can be applied to obtain a
different string by replacing a by u. We say w1 =⇒r w2, if w1 = x1ax2,
w2 = x1ux2. The string w2 thus obtained, is sent to the membrane
specified by tar, as before. And δ is the membrane dissolution action.

4. Recombination r : (z; tar1, tar2) or (z; tar1, tar2)δ. This type of rule
can be applied to a pair of strings (say w1 and w2) which have z as
their common substring. The operation involvs “splicing” the strings
w1 and w2 at z and recombining their splices in a crossed manner. That
is we say (w1, w2) =⇒r (w3, w4) if w1 = x1zx2, w2 = y1zy2 and
w3 = x1zy2, w4 = y1zx2 As before, the strings w3 and w4 are sent to
membranes specified by tar1 and tar2, respectively. And δ means the
membrane is dissolved after the current step.

Note that in all four type of rules above, the strings x1, x2, y1, y2 εV ∗. Note
also that mutation rules can delete symbols because the string u ε V ∗. Also,
replication and splitting rules can increase the total numbers of worms/strings,
but recombination and mutation cannot.

We will now see what the membrane dissolution operation means and
how does a P system with worms evolve.

1.3 Principles for evolution

The (m+1)-tuple (µ, A1, . . . , Am) constitutes the initial configuration of the
system. Starting with this, the system can pass from one configuration to
another according the following principles :

• The work of the system is synchronized. That is, in each step, in each
region, all strings that can be processed by a rule in that region are
processed. This is called maximal parallel approach. Also, if more than
one rules are applicable to a particular string (or a rule is applicable to
more than one string) then the choice is done non-deterministically. So,

3

the strings in all membranes are assigned to rules in their respective
membranes in a non-deterministic, maximally parallel manner. And
after the assignment is complete, the system evolves one step.

• A particular object (i.e. a particular copy of a string) can be processed
by only one rule at any time, although different copies of the same
string can be assigned to different rules, if possible.

• The strings resulting from the various operations are sent to the mem-
branes specified by the targets in that rule. here means the string is
not moved anywhere. out means that the resulting string is to be sent
to the region surrounding the one in which this rule is applied. Simil-
larly, inj means the string is sent inside, to the membrane numbered j,
provided, that membrane is adjacent to the present membrane. That
is, we can only send strings between adjacent regions.

• When a rule containing the symbol δ is applied, the current membrane
is dissolved. This means that the objects in this membrane are left
free in the membrane surrounding it, and the rules of this membrane
will be lost. The skin membrane can never be dissolved. In the event
of a membrane dissolution, first all objects evolve according to the
rules assigned to them (and may be are sent to other membranes also)
and then the membrane is dissolved. For example, if during a step, a
membrane i has objects {(a, 1), (bb, 2), (c, 1)} and rules (a → f ; out)
and (b; here, inj)δ then a evolves to f , is sent out of membrane i; the
two copies of bb are recombined using the second rule, one is kept here
and the other sent to membrane j, and then membrane i is dissolved.

2 Examples

2.1 Example 1 : Generating numbers of the form m∗n

This is a simple P system for computing multiplication of two numbers. The
P system is independent of the two numbers to be multiplied. The set of
numbers generated by it is the set of numbers of the form m ∗ n. Consider
the P system defined as follows :

Π = (V, µ, A1, . . . , A6, (R1, S1, M1, C1), . . . , (R6, S6, M6, C6), 3)

4

Where
µ = [1[2[3]3[4]4[5]5[6]6]2]1,
V = {a, b, c},
A5 = {(a, 1)}, A6 = {(b, 1)} and Ai = φ, 1 ≤ i ≤ 4,

R1 = {(a → a||a; here, here)}, S1 = M1 = C1 = φ

R2 = {(c → c||c; here, in3)}, M2 = {(a → λ; here)δ},
C2 = {(a; here, in4)}, S2 = φ

R3 = S3 = M3 = C3 = R4 = S4 = M4 = C4 = φ

R5 = {(a → a||a; here, here), (a → a||a; here, here)δ}, S5 = M5 = C5 = φ
R6 = {(b → b||c; here, here), (b → b||c; here, here)δ}, S6 = M6 = C6 = φ

Evolution. The work of this system is very straight forward. In membrane
5 and membrane 6, it generates the input numbers (i.e. the multiplicand and
the multiplier) by using replication rules. At any point, there membranes can
be dissolved. Note that the two membranes can be dissolved independantly,
so the final result may not be the multiplication of these numbers. We shall
see how.

Once the membranes 5 and 6 are dissolved (assume, for the time being,
that they dissolve at the same time), we have 2n a’s and m c’s in membrane
2. Now the recombination of pairs of a’s starts happening in membrane
2. Everytime, half of the a’s are thrown in membrane 4. So in n steps,
there remains only one a. Till this time, in each step, m c’s are copied in
membrane 3 – the output membrane. This last a is now consumed by the
operation (a → λ)δ and the membrane dissolves. The computation halts
at this time and we get m ∗ n number of c’s in output membrane. Now, in
membrane 2, if the rule (a → λ)δ is used at any other time than the last
(i.e. other than what is intended), then at least two copies of a arrive in
membrane 1 and the system loops forever by the recombination rule there.

Now, what happens if both membranes do not dissolve at the same time?
Suppose that membrane 5 dissolves first. Then by the time membrane 6
dissolves, membrane 2 would have lost some of the 2n a’s that it got. Lets say
the number of a’s becomes 2n−n′

, then we will end up calculating (n−n′)∗m.
A similar argument applies to the case of membrane 6 getting dissolved first.
Finally, we calculate a number of the form m ∗ n.

5

2.2 Example 2 : Generating the length set of the lan-
guage {an!}

Here we give a nonuniform solution. That is, the number of membranes in
this P system will be dependent on the factorial number that you want to
generate. Suppose we want to compute n!. Consider the following P system
with n + 2 membranes.

Π = (V, µ, A1, . . . , An+1, (R1, S1, M1, C1), . . . , (Rn+1, Sn+1, Mn+1, Cn+1), n+2)

Where
V = {bi|0 ≤ i ≤ n} ∪ {xi|1 ≤ i ≤ n},
µ = [n+1[n. . . [1]1 . . .]n[n+2]n+2]n+1},
A1 = {(b0, 1)}, Ai = φ, 2 ≤ i ≤ n + 2,

For all i such that, 1 ≤ i ≤ n, the sets of rules for membrane i are as
follows :
Ri = {(bi−1 → bi1||bi; here, out)} and
Mi = {(x1 → x2; here), (x2 → x3; here) . . . (xn−i → xn−i+1; here),
(xn−i+1 → λ)δ}

Finally, the rules for membrane n + 1 are :
Mn+1 = {(bn → bn; inn+2)}
There are no other rules in the system.
Evolution. How does this P system work? It has initially 1 b0 in membrane
1. From membrane i, it sends out as many bi’s as n− i+1 times the number
of bi−1’s that it has. This is because, in membrane i we count from 1 to
n− i + 1 by using the objects xi and till then, we keep sending as many bi’s
out, as the number of bi−1’s we have. Hence, n b1’s are sent out of membrane
1. Then that is multimplied by n− 1 (put i = 2 in n− i + 1) in membrane
2. This quantity is multiplied by n− 3 in membrane 3 (similarly) and so on.

Finally, in membrane n + 1 we get number of bn’s equal to n!, which are
then sent to the output membrane by the rule (bn → bn; inn+2).

2.3 Example 3 : Generating the Fibonacci numbers

Consider the P system Π defined as follows :

Π = (V, µ, A1, A2, A3, (R1, S1, M1, C1), (R2, S2, M2, C2), 1)

6

Where,
V = {f1, f2, f, x, y},
µ = [1[2]2[3]3]1,
A1 = φ, A2 = {(f1, 1)}, A3 = {(f2, 1), (x, 1)}
R1 = {(f2 → f ||f1; here, in1)}, M1 = {(f1 → f ; here), (f → f2; in2), x →
y; in1},

R2 = φ, M2 = {(f1 → f1; out), (y → λ; out)δ},

R3 = φ, M3 = {(f2 → f2; out), (f2 → f2; out)δ},

S2 = S3 = C2 = C3 = φ.
Evolution. Lets examine the evolution of this system. Its based on the sim-
ple recurrence to calculate fibonacci numbers : fn = fn−1 + fn−2. Membrane
2 stores objects of type f1 and membrane 3 stores objects of type f2 (initialy
one each). Both of them send their objects as such to membrane 1 i.e. out.
Membrane 1 is our output membrane. If the computaion halts at a step, it
has number of f ’s equal to some nth fibonacci number.

Initially membrane 2 and membrane 3 have one f1 and one f2 respectively.
They send them to membrane 1, where the f1’s are mutated to f ’s straight
away, whereas the f2’s are replicated as f ’s here (membrane 1) and as f1’s
in membrane 2. All the f ’s in membrane 1 are now sent back to membrane
2, as f2’s. And the addition can continue. This is nothing but following the
recurrence. In short if n(x) denotes the current number of objects of type
x in membrane 1, and n′(x) denotes the new number (i.e. after this step),
then n(f) = n(f1) + n(f2), and then we put the new values as n′(f1) =
n(f2), n

′(f2) = n(f), so that we always add the most recent two numbers in
the sequence.

At any time, we can decide to stop this computation by applying the rule
(f2 → f2; out)δ, which dissolvs membrane 3. When this happens, the object
x waiting there from the first step is set free in membrane 1, where in the
next step itself the rule (x → y; in2) is applied and the object y is produced
in membrane 2. This y now causes membrane 2 to be dissolved by the rule
(y → λ; out)δ and the new number of f1’s – n′(f1) which is equal to n(f2)
also adds to the current number of f ’s to give the next fibonacci number in
sequence and the computation stops.

Observe that there is a choice to dissolve membrane 3 but dissolution of
membrane 3 automatically triggers the dissolution of membrane 2 and stops

7

the computation after calculating one more fibonacci number in sequence.

3 Solving NP Complete problems using P sys-

tems with worms

3.1 A semi-uniform solution to SAT

Here we build upon the solution given in [1], to form a P system with 5
membranes to solve SAT.

Given a formula in CNF, SAT asks whether there exists an assignment
of truth values to the variables which renders the formula to be true. The
given formula is in the following form :

Φ = C1 ∧ C2 ∧ . . . ∧ Cm

where each Ci is of the form x1 ∨ x2 ∨ . . . ∨ xr such that i ≤ r ≤ n.
That is, there are n variables, and m clauses in all, and each clause has

some r number of variables ORed together. All the clauses are ANDed. For
the formula to be true, at least one variable from each of the clauses must
be true. Note that the occurrances of xi’s in the clauses above can be either
in the normal form or in the primed form (complimented), in which case a
false assigned to that variable renders the clause (containing it) to be true.
The problem here is there are 2n possible truth assignments, and we have
to check all of them. In [1], a P system with m + 1 membranes to solve
SAT was constructed. The logic is, generate all possible assignments in the
innermost membrane and then check if each clause is satisfied in every next
surrounding membrane. Send out the string corresponding to an assignment
out of membrane i, if and only if all clauses upto Ci have been made true by
that assignment. Thus a string leaves the outermost membrane if and only if
the formula is satisfiable. The same system can be used here by introducing
an output membrane in the outermost membrane.

We here try to give a semi-uniform solution in that the number of mem-
branes will be constant (namely, 5), irrespective of the size of the instance of
SAT problem given.
Define the P system with worm objects Π of size 5 as follows :

Π = (V, µ, A1, . . . , A5, (R1, S1, M1, C1), . . . (R5, S5, M5, C5), 5)

8

Where,
V = {xi, ti, fi, tij, fij|1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {X, Y, D,D1, D2, Y ES, †},
µ = [1[2]2[3[4[5]5]4]3]1,
A1 = {(X, 1)}, A2 = {(x1, 1)} and , Ai = φ, 3 ≤ i ≤ 5,

R1 = {(Y → D||†; here, here)}, M1 = {(D → X; here)},
C1 = {(X; in3, in3), (Y ; out, out), (†; here, here)}, S1 = φ

R2 = {(xi → tixi+1||fixi+1; here, here)|1 ≤ i ≤ n− 1}
∪{(xn → tnX||fnX; out, out)},
S2 = C2 = M2 = φ,

M3 = {(ti → ti1; here)|1 ≤ i ≤ n}
∪{(fi → fi1; here)|1 ≤ i ≤ n− 1}
∪{(tij → tij+1; here)|1 ≤ i ≤ n}
∪{(fij → fij+1; here)|1 ≤ i ≤ n− 1, 1 ≤ j ≤ m}
∪{(D → D1; here), (D1 → D2; here), (D2 → Y ; out)}
∪{(tim → Y ES; in5), (fim → Y ES; in5)},
R3 = {(fn−1j → fnj||D; in4, here)|1 ≤ j ≤ m},
S3 = C3 = φ,

R4 = {(tij → tij||D2; out)|xiεCj} ∪ {(fij → fij||D2; out)| ¯xi εCj},
M4 = S4 = C4 = φ,

R5 = M5 = S5 = C5 = φ
Lets understand the work of the above system. As said above, the system
first generates all possible truth assignments to the n variables and then
checks if at least one of these assignments satisfies the given formula.

Membrane 2 initially has a single x1 object. From there the replication
rules keep on generating all possible assignments. Presence of ti in the gener-
ated string means xi is assigned the value TRUE and presence of fi means the
opposite. Thus, after n steps, all possible truth assignments are computed
(each corresponds to a string of ti’s and fi’s) and they are sent to membrane
1 (out), by appending an X in the end.

The function of membrane 1 is to send these strings one by one into mem-
brane 3 for checking if they satisfy the formula. For this, the recombination
with X is used. There is only a single X initially in membrane 1. This
recombines with any one of the strings and moves both X and that string in

9

membrane 5. Once a string is sent inside for checking, next string can only
be sent when an X is produced/brought here, in membrane 1. So lets see
what happens to the truth-assignment string sent inside membrane 3.

In membrane 3, the checking of whether each of the m clauses of the given
formula evaluate to true with this particular assignment of truth values–i.e.
the one represented by this string which has come in. This is done step by
step for each clause. If any clause fails to be true for this assignment, an X
is sent to the outside membrane (i.e. mem. 1) to get the next assignment in
for checking. This is done as follows :
When the string of ti’s and fi’s enters first, all ti’s are mutated to ti1’s, one
by one, then all fi’s mutated to fi1’s, again one by one (One by one because
there is only one string, so at any time, only one operation/rule can process
it). And with the last fi converted to fi1, the string enters into membrane 4.
The subscript 1 attached indicates that clause 1 is being checked for truth.
The string sent inside comes back if and only if this assignment makes clause
1 true (we’ll see why). When it comes back, the subscript is increased and
the string is again sent inside. If the string doesn’t come back, it means
this assignment does not satisfy the formula and we need to check next one.
For this, the D, which was generated when the string was sent in, waits for
two steps for the string to come back. And then, sents a single Y out to
membrane 1, which evolves into X, as required. But if the string comes
back, then 2 Y ’s are sent to membrane 1, instead of 1. In this case both the
Y ’s are destroyed (otherwise if two †’s are produced by two Y ’s, then the
system loops forever).

Lets see why the entered string comes out of membrane 4 if and only if
the current clause is true w.r.t. the current assignment. Membrane 4 has
only rules of the form (tij → tij; out), if literal xi is present in clause Cj

and (fij → fij; out) if literal ¯xi is present in clause Cj. But currently, all
variables in the string have got the subscript p (as in tip) if current clause
being checked is Cp. So, only rules corresponding to Cp will have effect, if any.
And only if at least one of the literals present in the Cp is assigned a value
TRUE, the rules will be applicable. In case two or three are applicable, any
one assigned does the trick. For example if C3 = x1∨ ¯x2 ∨x3 and a string
of the form t13t23t33 can be processed by the rule (t13 → t13; out) or similar
rule with t33. Note that these rules will be present in membrane 4, according
to our definitions, and all other rules will not have any effect, because they
have different values of j than 3.
So if the clause is not satisfied under current assignment, the string can never

10

come out.
If the string never comes out, the Y (single) that is sent to membrane 1,

produces X there and sends the next assignment for checking. Otherwise, the
string that comes out, has a D2 in it. So one single Y and a string containing
Y are sent to membrane 1. There, the 2 Y ’s can either be recombined and
destroyed or the they can produce two X’s, in which case they also produce
two †’s, which trap the system. Hence to continue, we must destroy the Y ’s.

Finally, if all m clauses are rendered true by a certain assignments, then
the symbols t1m or f1m produced in membrane 4, send an object of type Y ES
to the output membrane.
So, if the output of the system is non-zero, then the formula is satisfaible,
otherwise its not.

4 Conclusion and future work

The solutions given here can be improvised in many ways. For example, the
P system given for generating the factorials is dependent on n. A uniform
solution in this case will generate the language {an!}. Also, the universality
of these type of P systems remains to be investigated. Universality has been
obtained with 6 membranes [3]. It is still an open problem to prove a lower
bound on the number of membranes required for computational complete-
ness. Finally, the uniform solution to SAT given here proves that P systems
with worms are a good candidate for solving NP-complete problems. A so-
lution to HPP can be obtained on the similar lines. One such solution from
[2] was studied.

References

[1] S.N.Krishna. Languages of P systems : Computabiliy and Complexity.
PhD thesis, IIT Madras, 2001.

[2] Gheorghe Paun. Computing with membranes: P systems with worm-
objects. 2000.

[3] Gheorghe Paun. Computing with membranes: One more collapsing hier-
archy.

11

