CS691 Report : Membrane Computing

Avadhut Sardeshmukh
Roll No 06329905
Under the guidance of Prof. Krishna S.
Computer Science and Engineering

December 5, 2007

Abstract

The main aim of this project is to survey the current state of art
of the P systems (a.k.a. membrane systems) area. To this aim, a
couple of introductory papers ([1], [2]) and a doctoral thesis (by Mat-
teo Cavaliere [3]) were studied. Two main directions of research have
been towards creating new models inspired from biological systems
and modelling biological systems using existing models. Some of the
main results obtained in both directions till now are explained and
also the current open problems in this area are listed.

1 Introduction

The area of membrane systems was triggered by a landmark paper by Gheoghe
Paun in 1998 in the Turku Centre for Computer Science (TUCS) Report. The
same paper was later circulated in the Journal of Computer and system sci-
ences in 2000. Till this time natural computing models were in wvitro. For
example, DNA computing. This was the first time that a cell itself was the
object of research-viz. membranes in a cell and compartmentalization (in
vivo structure of the cell).

1.1 Inspiration from Biology

It is well known that the cell is the smallest thing on earth to be unani-
mously considered as live.The cell has a very exquisite internal structure.

It is composed of compartments created by various membranes. An outer
membrane defines the cell itself from the environment. The membrane is a
semi-permeable barrier between the compartments. Molecules can be trans-
ported from one compartment to other via vesicles enclosed by membranes.
The membrane structure is hierarchical. The compartments are like “pro-
tected reactors” where specific biochemical processes take place.

Our membrane computing model is roughly inspired by these properties of
the cell and its internal membrane structure. The main component of this
model is the membrane structure. Each membrane of this structure defines
a region. Each region has a multiset of objects. And each region has a set
of rules (evolution rules or symport/antiport rules) which operate on the
multiset of objects in that region. Evolution rules are rewriting rules (like
grammar rules) that represent the biochemical reactions going on in the cell-
compartments and symport/antiport rules are transport rules that represent
the vesicles through which molecules are transported from one compartment
to other. The result of a computation can be the number of objects of a
particular kind in a region (called output region), though there are other
possibilities, too.

1.2 Formal Definition

We here define two basic models of membrane systems-those with symbol-
objects and those with symport/antiport rules. Although there exists a large
panoply of models of membrane systems, we believe that they can be de-
rived /understood from these basic models.

P System with symbol objects:
[Definition] A P system of degree m > 1 with symbol-objects is a tuple :

1= (0, p,wy, ..., Wy, R1,..., R, io)

where

e O is an alphabet and its elements are called objects

e ;, is a membrane structure consisting of m membranes arranged in
an hierarchical structure; the membranes (and hence the regions they
delimit) are labelled with 1,2, ... m of u.

e R; are finite sets of evolution rules over O; R; is associated with region
i. An evolution rule is of the form u — v, u is a string over O and v is
a string over {@nere, Gout | €O} U {aiy,; | acO,1 < j < mj}.

e ipe{0,1,2,...,m} is the output region. In case i, > 1, it is the region
enclosed by membrane iy and if ig = 0, it is the environment.

Evolution
A membrane system evolves in the following way : It starts with the multisets
of objects specified by the strings wy,...,w,, in the corresponding regions.

There is a global clock that ticks at every time step. At each step, in each
region, a multiset of objects and a multiset of rules is chosen and assignment
of objects to rules is made. This is done in a nondeterministic maximally
parallel manner. That is to say, no more rule can be added to the multiset
of rules, because of the lack of objects and if there is a conflict of two rules
for same (copy of an) object, then they are chosen non-deterministically.
For example, if w; = a’b%c and the rules in R; are aab — QhereDoutCin, and
aa — Aoutbpere, then 2 copies of a can be assigned to one copy of first rule.
Next two copies could be either assigned to another copy of first rule or to
the second rule. And this choice is non-deterministic. Maximally parallel
means that once four a’s are consumed, no other rule can be applied to
remaining objects. Thus non-deteministically, the result would be either
a’blc or a?bc. Tt is important to remember that a®0°c represents the multiset
{a,a,a,a,a,b,b,b,b,b,b,c}.

The output of a successful computation is the number of objects present
in the output region in a configration such that no further evolution is possi-
ble. (i.e. no rule applicable in any membrane). Such a configuration is called
halting configuration. A vector of the number of objects of each kind (e.g,
no. of a’s, no. of b’s, etc) can also be taken as the output.

P System with symport/antiport rules:

A P system with symport/antiport rules is similar to one with symbol-
objects, except that the rules are symport/antiport rules, which represent
the transport of molecules through the vesicles (in the biological cell). Here,
the symport/antiport rules in the set R; are associated to the membrane i,
instead of the region . Additionally, here we have a subset E of the set of ob-
jects, whose members are supposed to exist in the environment in arbitrarily
large number of copies.

The symport rules are of the form (x,in) or (z,out) and antiport rules
are of the form (z,in;y, out) where x, y are strings representing multisets of
objects from the set O.For a symport/antiport rule, we say that the weight
of the rule is mazx(|z|, |y|) (i.e. the maximum number of objects that can be
transported by the rule. Application of rule (z,in) on the membrane ¢ means
to move the objects represented by x from the region surrounding region ¢,
into the region 4. (i.e. “in” as regards the membrane 7). The same is true of
antiport rules also.

The output of a successful computation is defined as the number of objects
present in the output region in the halting configuration. i.e. no rule should
be applicable to any object in any membrane, as before.

1.3 Illustrative Example

We here give the example of a membrane system to generate the Parikh
image of the language {a®" | n > 0}. This system actually combines both of
the two kinds defined above. Its actually called an evolution-communication
P system (section 3.1). Consider the system :

II= (O>,uaw17w27 R17R27 R;a Rl2720)

where
H= [1[2]2]1,
O = {a, A, #},

w; = # and wy = A,

Ri=¢and Ry ={A — AA A — a,# — #},

R, = ¢ and R, = {(aA, out; #,in)} and iy = 2

As can be observed, we can either double the number of A’s or replace them
all with a’s; for, if we apply A — AA on some A’s and , A — a on some, then
we end up with both a and A present in region 2. But then the antiport rule
(aA, out; #,in) there immediately brings in the trap symbol # and the rule
— # hangs the system forever. So the only successful computations will
be those that produce a string of the form a?" in region 2. When we take
the number of objects in region 2 as the output, we naturally get the Parikh
image of this language.

2 Modelling Power of Membrane systems

As already mentioned, there have been two main directions for research in
this area : viz. i) Propose and investigate models inspired from biological
systems—from biology to mathematics and i) Use the mathematical mod-
els to model/simulate biological systems and infer knowledge about their
evolution—from mathematics to biology. We try to explain here what has
been happening in both of these directions. In this section, we present a
software simulator for membrane systems-Cyto-Sim, using which biological
systems can be modelled as P-systems and their evolution observed. We give
some such examples also.

2.1 The software

There are quiet a few softwares today for simulating P-systems. But we
are particularly interested in showing the modelling power of P-systems, as
applied to biological systems. Cyto-Sim is best to prove the point. It has
been designed to implement the evolution-communication model, enriched
with some probabilistic parameters inspired by cell biology.

The software simulates the standard evolution communication model of P
systems. It takes as input the whole definition of a P system. Moreover, for
each rule r of the system, we must specify the probability to be available.
This probability is used by the software to construct a list of rules which are
applicable (available) at each step.

Once this list is constructed, the assignment of objects to rules must be
made, and conflicts must be solved if they arise during this assignment. As
we have seen, this is done non-deterministically in our model. But while
modelling biological systems, we are often aware of certain parameters which
help us make this choice. These parameters can be, for example, more affinity
of a certain molecule to other, or effect of concentration of enzymes on the
rate of reaction, etc. So using this knowledge, we specify one more quantity
for each rule r — Cypn, (How exactly we calculate this, is not clear at this
time, though). Now, to solve the conflicts the following is done. Lets say rules
ri,...,7, are competing for some symbol-object. For each r;, the probability
to win, Pwm” is calculated as :

k
Pwinri - Cwinri/Ejzlowinrj

When the conflicts are resolved in this way, application of the chosen rules is

done in parallel in each region. This is done at each step during the evolution
of the system.

2.2 Examples

Example 1 : Life is unpredictable

We here model the system which consists only of the rules a — aa and
aa — a, with a as the initial multiset in its only region (only one membrane).
These rules can be looked upon as the ability of molecules to associate and
dis-associate. The probability of availability is 1 for both the rules (always
available) and wainri for + = 1,2 is 100. That is, probability to win for both
the rules is 0.5 always. It may seem that this simple system reflecting life
and growth is quiet stable. But as it turns out from the simulation output
shown below, the system is actually unstable.

o
105]
FU
95 |
EI
85 |
I
75
7
65 |

55 |
5

AR RR

§W. V\' M‘w” Y]M I “th il % u

By unstable we mean the very high spikes and variations in the number of
a’s in the system at any given time. Thus, we have used P systems to model
and conclude about a simple system that represents life.

Other semantics : An illustrative example
As already discussed, Cyto-Sim uses a probabilistic approach. The proba-
bilities more often depend upon the rates and other kinetics of the chemical
reactions. But there are other softwares which allow other semantics also,
such as the standard maximal parallel approach. In fact we here demonstrate
the difference in the output caused by the difference in the semantics of the
model. The evolution of a bacteria respiratory system using the standard

maximal parallel approach can be found in [3]. And we here model the same
system in Cyto-Sim (stochastic approach) and contrast the plot of evolution
of the system.

The respiration in Escherichia coli is represented by a P system with only
one membrane, two objects—one enzyme E (represents cytochrome bd) and
the other being oxygen B. The P system has only one membrane and the
only rule is EB** — E which represents consumption of Oxygen (B) by the
enzyme (E). That it also consumes Hydrogen and produces water is not our
concern here. We are only interested in oxygen consumption (i.e. respira-
tion). In short the system looks like follows :

II = (Oa,u7w17Rl)

where :

O ={FE,B}
p=hh
w1 = (E)kBJ

R, ={FEB*2 — E}
The Cyto-Sim code for this system is straight-forward. We do not recall it
here. We directly present the output, as before.

210 [\
200 | ‘\,
190 \
150 \
170 \\
160 \
150 | N

140

130 \

120 \
110 \
100]
a0

80 \

i \
60 ~
s0 .
a0
30
20
10

0 —_m

We particularly want to highlight that this curve (using Cyto-Sim) is an
exponential curve whereas the plot corresponding to the standard maximal
parallel approach is a straight line with slope very close to our curve. So one
possible conclusion could be, due to the kinetic rates taken into consideration,
the Cyto-Sim model is more realistic whereas the maximal parallelism has
abstracted out these details, making the curve a straight line.

7

2.3 Conclusion

P systems can be used to model various real biological systems and the
software can be enhanced to produce more meaningful results which can
help biologists. We also observe that investigating the difference in output
due to the difference in semantics of the models is an open problem. To this
aim, Cyto-Sim can be further modified/enhanced to allow other semantics
such as the maximal parallelism.

3 Computational Power of Membrane systems

3.1 Evolution communication P systems
3.1.1 Introduction

The evolution communication model is a composite of the two basic models
defined in section 1.2 : P system with symbol-objects and P system with
symport/antiport rules. But here the evolution rules on symbol-objects do
not have target indications such as {here, out, in}, because the transportation
is done by symport /antiport rules here. We have already seen an example of
such a system in section 1.3.

Another variant : Symport/Antiport of rules

In biological cell, due to movement of molecules, the reactions taking place
in a compartment change over time. Symport/antiport of rules is inspired by
this biological reality. We actually define a P system in which the rules can
be moved by symport/antiport and objects evolve only through evolution
rules. The formal definition follows :

[Definition/ A P system with symport/antiport of rules or CR P system
(Communication of Rules) is defined as a tuple

/

II=(0,R, 1, jt,wy,...wp,Ry,...,Ron, Ry,..., R, i0)

) m?

where

e (O is the set of objects
e R is a set of simple evolution rules (i.e. no target indications)

e [is an injective labelling of rules in R; let L be the set of all labels

8

e w;, 1 < i < mis the initial multiset of objects present in region ¢

e R, C R, 1 < 1 < mis the set of simple evolution rules associated to
each region ¢

e R, 1 < i < m, is the set of symport/antiport rules associated to
region . The strings in symport/antiport rules (i.e. x or y in (x,in) or
(x,in;y,out)) are over the set L. That is they represent a list of rules
to be moved.

e 7 is the output region

Note that here the symport/antiport is applied on the rules themselves,
so x in (x,0ut) is a string of labels of rules, representing set of rules, not a
multiset, because rules cannot exist in multiple copies, like the objects.
Now, an evolution step consists of a mixed application of evolution and
symport/antiport rules. There may be conflicts such as a rule u — v (with
label, say, [;) is applicable to a multiset of objects u in its current region, as
well as it is a candidate for transport as in, a rule such as (I;, out). These
two rules have the same “priority”, meaning this choice is again done in non-
deterministic maximally parallel way.
Illustrative Example
We present a P system with symport/antiport of rules to generate again the
language {a*"|n > 0}. Consider the system pictured below :

1:4 —3m =

wl={}

W2 =5
R1' = {(IL.imn:|2 out)}

1

2: A — AR

Observe that in region 2 the rules A — AA and (ly,in; (s, out) conflict and
there is a non-deterministic choice to either continue doubling the number of
A’s or stop and convert them into a’s (by using the rule A — a which comes
in by the antiport rule above). Clearly, this generates the Parikh image of
the language a®>'". Note the difference between the membrane system for the
same language given in section 1.3 and this one.

9

3.1.2 Universality Results

The Evolution-Communication P systems become universal with 3 mem-
branes allowed. The corresponding result is :

PsECPs(1,1,nco0) = PsRE

The meaning is, EC P systems with maximum of 3 membranes, symport and
antiport rules of maximum weight 1 and only noncooperative rules (i.e. the
left side is of length one) can generate the family of Parikh images of RE
languages. Here,the output of the system is defined as the vector of multi-
plicities of objects of each kind from the set O present in the output region
in a halting configuration.

This is proved by constructing a P system of given size to simulate a
programmed grammar. That class of programmed grammars characterises
the RE languages is known already.

P systems with symport/antiport of rules:

As we have seen with an example, a P system with symport/antiport “of”
rules was able to generate a language such as a®", with only antiport rule of
weight one and two membranes. Indeed, they become universal with three
membranes and antiports of length 2. The result is :

PsCRP;5(0,2,cat,) = PsRE

This means CR P systems with at most 3 membranes, no symport rules,
antiport rules of weight at most 2 and using only 1 catalyst generate the
family of Parikh images of RE languages.

This has been proved by simulating a matrix grammar with appearance
checking (in Z-binary normal form) with a membrane system of given size.

3.2 Time-free P systems
3.2.1 Introduction

Till now we have been assuming that their is a global clock that ticks at
each time unit and time required to complete one step is same for all the
rules. All of them start at the start of the unit, and finish when the clock
ticks, and then the next step starts. This is not the case usually, in biological
systems. In reality, different biochemical reactions take different time to
complete depending upon factors that are often unpredictable.

So we need a model of the membrane system which assumes nothing
about the completion times of different rules (i.e. associates with each rule
a completion time to each rule) and produces the same result in spite of

10

changes in this assignment. That is, whatever may be the assignment, the
system generates the same language, always. We call such systems as Time
free P systems.

As can be seen, the main issue here is achieving synchronisation. There
are various ways to do this. The important ones are using signalling rules
bi-stable catalysts, and using only communication (i.e. symport/antiport).
Universality results have been proved for these approaches. The formal def-
initions follow :

[Definition] A P system with signal-promoters and bi-stable catalysts, is a
construct

I=(0,C,D,p,wy,...,wn,Ry,..., Ry, RI, ..., R} i)
where
e (' is the set of bi-stable catalysts
e D is the set of signal-promoters

e The rules in R; are of two types : (i) non co-operative, that is of the
form @ — v and (ii) co-coperative using bi-stable catalysts, that is of
the form ca — cv, ca — ¢v, ¢a — cv or ¢a — ¢v, where a belongs to
O — CUD and v is a string over apere, a,ut, a;n; for all such a’s

e R are sets of signalling rules which are of the form a — v|, or ca — cv|,
where a and v are as before and z is a string over {ppere, Pout, Pin, } for
all signal-promoters, p

e All other components remain the same

Now, a timed P system is a system II defined as above with a time for
completion assigned to each rule r by the mapping

e:RU...UR, UR]...UR; — N(Natural numbers)

We assume that there is a global clock that ticks at each step marking units
of equal length. If execution of rule r starts at step j, then it ends at step
j+e(r). During this time, the objects being used by this rule are unavailable
to other rules in the region.

At each step, all active rules take part in the assignment process. The
assignment, as before, is done in a non-deterministic maximally parallel way.

11

All evolution rules are always active. But a signalling rule u — v|, is active
only when the signalling objects specified by z are present in the region.
After the evolution of u into v, the objects z are moved according to their
target indications. Note that the signalling objects do not exist in multiple
copies and they can only be moved, neither created, nor destroyed.

All said, now we can say what exactly a time-free P system is : Its a P
system such that for any mapping e as discussed above, it generates the same
language (same set of vectors of numbers). We would now like to characterise
which P systems are time free. An observation is as follows:

FEvery P system using only non-cooperative evolution rules is time-free

This is clear if we note that the evolution using only non-cooperative rules
can be visualised by a tree whose nodes are objects and yield is the output.
Basically there are no conflicts arising out of timing issues—all evolutions are
sort of sequential.

Illustrative Example
We again take the same language as an example — {a®"|n > 0}. We define a
time-free P system to generate this language. Consider the system II defined
as below:

I1=(0,C, D, p,wy,wy, Ry, Ry, R}, R, i)

where : O = {a, b, p},

C - ¢’ D = {p}v

p=l1[2]2]1, w1 = bp and wy = a,

=Ry =9,

Ri :2{1) — b|(pin), b = b|(poury} and R5 = {a — aalpow)},
190 —

It is very easy to see that this indeed generates the desired language. The
rule which doubles the number of a’s in region 2 is activated by the signal
promoter p. At each step, in region 1 there is a non-deterministic choice to
send p in or out. In case it is sent in, the process of doubling the number
of a’s is iterated. In the other case, p is sent to the environment, ending the
computation.

A more important observation is that this is a time-free system. Because,
the rules are applied in mutual exclusion (there is only one signal promoter
that activates all the rules), no matter what time they take to complete, the
language generated remains the same. (One more reason is, the only rules
used are non-cooperative).

12

3.2.2 Universality Results

The universality results for time-free P systems, obtained thus far are :

e fPsP(2cat,,0) = PsRE

This means that time-free systems using unbounded number of bistable
catalysts with at most 1 membrane and no signal promoters can gen-
erate the class of Parikh images of RE languages. This is shown by
simulating a matrix grammar with appearance checking in Z-binary
normal form with a time-free P system using bi-stable catalysts, of the
said size. This result is obtained for catalysts which are not bistable,

as follows.

o fPsPy(cat,,*) = PsRE

This is easy to understand. For, we can simulate the behaviour of a bi-
stable catalyst using a simple (mono-stable) catalyst, if we have enough
signal promoters, which we do have in this case. For simulating the
behaviour of a bi-stable catalyst say, ¢;, we need two signal promoters
p; and p; which activate and de-activate the new rule (which has only
monostable catalyst) according as the state of the bistable catalyst (i.e.

cj or Gj).

o fPsPPi(1,2) = PsRE

This is a new class of time-free systems. Namely, the second ap-
proach to achieve the synchronisation — through communication (sym-
port/antiport). It is same to the symport/antiport P system except
the fact that now it has the time parameter taken into consideration.
That is, a symport/antiport rule 7 has a time e(r) associated to it. and
objects being moved by r are not available (cannot be used by other
rules) till this much time after the rule r starts executing, and also that
a subset E;,; of the set of symbol objects is believed to be available in

the environment in arbitrary number of copies.

They are proved to be universal by simulating the register machine us-
ing a time-free P system. To do this, we represent the value contained
in each register by the multiplicity of a particular kind of object. (i.e.
for each register, we have a symbol-object type). Now there are only
these operations of addition and subtraction by 1 and halting. The

13

addition operation is simulated by bringing in one object of the re-
quired kind (the one that represents the register being implemented)
and subtraction by throwing out one object.

3.3 P/O systems : The Evolution/observation model
3.3.1 Introduction

The Evolution-Observation model is kind of a conclusion to all the material
presented till now. We saw that we can “learn” from biology and we can give
to biology. The P/O model does exactly that. The evolution and observation
model is a pair of two less powerful systems—one is a biological system which
just “lives” its own life and other is a computing device which observes this
evolution of “life” and interprets the behaviour of the biological system to
produce results. Thus, we can on one hand, observe the system and decide if
something “unpleasant” happens in the system, through the observer. And,
on the other hand, we look at the whole thing as a computing device, where,
depending upon the states through which the biological system goes, the
observer produces certain strings.

We can apply this approach to any biological system, by modelling it
(using say, membrane systems, or splicing systems etc), giving an input to
the model and observe the evolution using a finite automaton. When this
approach is applied to membrane systems, the model created is called as a
P/O system. The definition follows :

[Definition] A P/O system is a pair © = [II, A] where II is a P system and
A is an observing multiset finite automaton, with output alphabet . The
language generated by the system is

L(Q2) = {A(s)|s ¢ B(I)}

Where, the behaviour B(II) of the of the P system is the set of all possible
sequences of configurations during any computation (evolution) of the system
I1. In short, the language contains all the words the observer produces when
run on the sequence of configurations of the P system.

Now, the multiset finite automata(MFA) works on a multiset (represented
by a string) of objects and to each final state, a symbol from the output
alphabet X is associated as its label. A successful computation produces
the label of the final state it halts in as the output. All other computations
produce A. We already know that a configuration of a P system is a vector

14

of strings representing multisets of objects in each region of the system. For
example if at some point in a P system (with two membranes), the content
of region 1 is two a’s and three b’s and the content of region 2 is one a
and two b’s, then the configuration is represented by the vector (a?b?, ab?).
But here, for the sake of simplicity we think of it as only one string (or
only one multiset). By subscripting a symbol object with the region it is
in, we remove the need to consider different strings for each region. So, in
the above example, we will represent our configuration as a?a»b3b3. So the
output of the MFA when it is run on the string representing a configuration
¢ as above, is referred to as A(c). And the output generated when it is run
on a sequence of configurations cy,...c,, is the concatenation of the strings
produced when the MFA is run on ¢y, ¢s, etc, separately. That is, the output
is A(c1),... A(ey). It is important to note that the MFA is run afresh on
each of the configurations, i.e., every time, starting from the initial state,
and the output is a pure concatenation of individual, independent outputs.

Illustrative Example

We finally present a P/O system to generate the Parikh image of our favourite
language {a*"|n > 0}. Note that this language is non-context-free while
the P/O system that we use has as its components, a simple P system with
symbol-objects and non-cooperative rules and a deterministic MFA, both of
which are have power less than context-free.

Consider the P/O system 2 = (I, A) where,
IT = (07 M, Wo, W1, R07 Rl)

Such that, O = {a,b} , u = [o[1]1]o , wo = A, w1 = q,

Ry = {b -)‘}7

Ry ={a— aa,a — b,b—b,b— by}

And the MFA A defined over the input alphabet V = {a, by, b1} (because
that all where the objects a and b can belong) is as shown below :

15

The output alphabet of the MFA is {a}. When run on the halting computa-
tions (i.e. sequences of configurations, starting from the initial configuration
and leading to a halting configuration) of the P system, the finite automata
actually generates the language {a*"}.

Note that the states for which outputs are defined are the final states.
And there is a symbol # that is produced in a “undesired” final state and it
is not a part of the output alphabet so the configuration which generate that
symbol, are not included in the final language. Now, the P system starts
with a in its region 1 and the only applicable rules are a — aa and a — b,
which conflict. But if the second rule is chosen, then the system ends up in a
configuration where there is a b in region 1 and this configuration produces
the trap symbol # on the MFA because of the path towards right-the even-
states-path(remember that the output of a sequence of configurations is the
individual configurations’ outputs concatenated), and thus is discarded. So
the only successful computations do a — aa for some n number of times.
After this, there are 2™ a’s in region 1 and there is a choice to stop. To do
this, all of the a’s have to be converted to b’s, all at once. (Otherwise again,
a configuration like a/b will lead to a trap). When region 1 contains only b’s,
the odd-states-path of the MFA takes over the control(because there are no
a’s in the system). The b’s are taken one by one to region 1, by applying
b — byus on one b and b — b on all others. This is ensured by the MFA
as follows : look at the transitions, a configuration where there are no a’s
(tested by saying @ leads to the state 3. Now, the case where there are more
than one b’s in region 0 (ie. configurations of the form b)b¥) will again lead
us to the trap state 4 (so what through the good accepting state 5!). Only if
there is only 1 b in region 0 and all others in region 1 is the state 5 reached
and it produces one « per consumed b. The b in region 0 is immediately
deleted. A sequence of configurations such that every time one b is moved
from region 0 to region 1, thus produces 2" a’s on the MFA’s outputs. Note
how the observer MFA controls which computations of the P systems are to
be taken into considerations and which of them dumped.

Universality of P/O systems :

It has been proved that P/O systems with very simple components are ca-
pable of being universal. For example the kinds of P/O systems used in the
above example, where the P system is a simple system with symbol-objects
and non-cooperative rules and the observer is a deterministic MFA, both
less powerful than context-free, have been proved to be universal. There are
plenty of other results, but we do not call them here.

16

4 Conclusion

The two main conclusions are :

e We can learn from biology

The time-free systems and the P/O systems are good examples of the
fact that we can develop computationally complete, powerful theoret-
ical models by looking at the biological systems. And not only the
in vitro structure but also the in vivo. The evolution/observation ap-
proach can also be applied to splicing systems to define yet more pow-
erful models. Many of the results achieved till date remain open for
improvement. The number of membranes, weights of symport /antiport
rules, catalysts, etc. can add to the power of a membrane system to a
large extent.

e We can help biology

The Cyto-Sim software shows a pathway towards this. We can not only
model the biological systems using mathematical models, but also infer
knowledge from them using mathematical techniques to observe their
evolution. The Cyto-Sim software can now be enhanced to draw more
specific conclusions about biological systems, or make some predictions
about their real evolution. One important conclusion was that during
this modelling, maximal parallel approach might not help always. It
might abstract out some essential real details. For this, the kinetic
rates (stochastic) model should be used while modelling.

References

[1] Gheorghe Paun. Introduction to membrane computing. 1998.

[2] Gheorghe Paun and Carlos Martin-Vide. Elements of formal language
theory for membrane computing. Reseach group on Matematical Lin-
uguistics, Report GRLMC 21/01.

[3] Matteo Cavaliere. Evolution, communication, observation:from biology
to membrane computing and back. Ph.D thesis, University of Seuville,
November 2005.

17

[4] Arto Salomaa. Formal Languages. Academic Press, NY and London,
University of Turku, Turku, Finland, first edition, 1973.

[5] Matteo Cavaliere and Sean Sedwards. Modelling cellular processes us-
ing membrane systems with peripheral and integral proteins. Technical
Report 07/2006, The Microsoft Research-University of Trento Centre for
Computational and Systems Biology, July 2006.

18

