Even cycle problem for directed graphs Avadhut M. Sardeshmukh Computer Science and Engineering IIT Bombay avadhut@iitb.ac.in ### Overview I will discuss the following in this presentaion: - Problem Description - Terminology - The central proof - this will comprise of various parts-viz parts (1) (18) - Proofs of lemmas used - Conclusion # The problem #### Definition The even cycle problem is "Does a given directed graph D contain an even cycle?" Why is the problem hard? - Harder than the 'undirected' case - Harder than the 'odd' case • Digraphs, etc. Splitting and subdivision - Splitting and subdivision - Strongly k-connected digraph - Splitting and subdivision - Strongly k-connected digraph - Initial and terminal components - Splitting and subdivision - Strongly k-connected digraph - Initial and terminal components - Weak k-double cycle A weak odd double cycle obtained from 3-double cycle # Characterization of the problem #### Definition A digraph D is even, if and only if *every* subdivision of D contains a cycle of even length. Characterization on the basis of even digraphs - Equivalence of even-length and even-total-weight based definitions - Characterization - A digraph is even if and only if it contains a weak-odd-double cyle # Lemmas used in the proof We use the following four lemmas in the proof - Lemma 1 If we contract an arc such that either its initial vertex has outdegree one or its terminal vertex has in-degree one, then the resulting digraph contains a weak k-double cycle if and only if the original one does - Lemma 2 If the digraph obtained by terminal-component-reduction of a digraph contains a weak 3-double cycle, then original graph also contains one. ### Lemmas contd... Lemma 3 If a strongly 2-connected digraph contains a dominating/dominated cycle then it contains a weak 3-double cycle ### Lemmas contd... Lemma 4 If a strongly 2-connected digraph contains vertices v_1, v_2, v_3, v_4 and the arcs v_1v_3 , v_1v_4 , v_2v_3 , v_2v_4 and v_3v_4 . Then D contains a weak 3-double cycle. #### **Theorem** If a strong digraph has minimum outdegree at least 3, except possibly for three vertices and, if we remove any vertex all the remaining vertices are still reachable from a vertex v_1 of outdegree 2, Then D contains a weak 3-double cycle. The proof proceeds as follows: #### **Theorem** If a strong digraph has minimum outdegree at least 3, except possibly for three vertices and, if we remove any vertex all the remaining vertices are still reachable from a vertex v_1 of outdegree 2, Then D contains a weak 3-double cycle. The proof proceeds as follows: i. Assume that the theorem is false–D be minimal counterexample #### **Theorem** If a strong digraph has minimum outdegree at least 3, except possibly for three vertices and, if we remove any vertex all the remaining vertices are still reachable from a vertex v_1 of outdegree 2, Then D contains a weak 3-double cycle. ### The proof proceeds as follows: - i. Assume that the theorem is false–D be minimal counterexample - ii. Using the lemmas (1)-(4), obtain smaller graph G than D #### **Theorem** If a strong digraph has minimum outdegree at least 3, except possibly for three vertices and, if we remove any vertex all the remaining vertices are still reachable from a vertex v_1 of outdegree 2, Then D contains a weak 3-double cycle. ### The proof proceeds as follows: - i. Assume that the theorem is false–D be minimal counterexample - ii. Using the lemmas (1)-(4), obtain smaller graph G than D - iii. Prove G to be a counterexample, contradicting minimality of D ## Parts 1 and 2 ### 1 D is strongly 2-connected - Assume its not. D'' be a terminal component reduction of D - Prove D'' is a counterexample smaller than D - D" has minimum outdegree 2 - Some vertex of D'' plays role of v_1 - D" contains no weak 3-double cycle # 2 v_1 has outdegree 2 in D Again, what if this were false : - Remove an arc comming to it, say from z - Now we get a smaller graph satisfying the conditions with $v_2 = z$ - Any v_i can play the role of v_1 ; so contradiction 3 Delete v_1u_2 , contract v_1u_1 ; gets digraph with minimum outdegree 2 Reasons why this might go wrong? - i. Outdegree of u_1 in D was 2 and it dominated v_1 - ii. Some vertex z_1 of outdegree 2 in D dominated both u_1 and v_1 in DOr, if we flip roles of u_1 and u_2 , - iii. Outdegree of u_2 in D was 2 and it dominated v_1 - iv. Some vertex z_2 of outdegree 2 in D dominated both u_2 and v_1 in D So, with v_1u_1 contracted we get D_1 and v_1u_2 contracted we get D_2 ## Part 3 Contd.. D_1 cannot be strongly 2-connected because - It has at most three vertices of outdegree 2 - It does not contain a weak 3-double cycle - It is smaller than D, can't be a counterexample So, $D_1 - z_1$ not strong, find D_1' , terminal component reduction of D_1 at z_1 Terminal component is H_1 and all other vertices in set I_1 ## Parts 4 and 5 - 4 Where do u_2 , u'_1 lie? - $u_2 \in I_1$ and $u'_1 \in H_1 \cup \{z_1\}$ - If v_1 (or u'_1) lies in I_1 , $D-z_1$ will fail to be strong - And if u_2 does not lie in I_1 , $D-z_1$ or $D-u_1$ fail to be strong 5 D_1' is strongly 2-connected To prove this - Prove if any vertex removed, all others can reach z_1 AND, - \bullet z_1 can reach all others - Removal of z₁ itself is trivial - 6 D'_1 has precisely four vertices of outdegree 2 - At least four, because otherwise D_1' becomes smaller counterexample - Who else is candidate other than z_1 , v_2 and v_3 ? - a vertex of outdegree 3 which dominates both v_1 and u_1 in D - u_1 if it has outdegree 3 and dominates v_1 in D - But only one such candidate is possible Some Implications - 6 D'_1 has precisely four vertices of outdegree 2 - At least four, because otherwise D_1' becomes smaller counterexample - Who else is candidate other than z_1 , v_2 and v_3 ? - a vertex of outdegree 3 which dominates both v_1 and u_1 in D - u_1 if it has outdegree 3 and dominates v_1 in D - But only one such candidate is possible ### Some Implications i. We get $v_2, v_3 \in H_1$ So, $u_2 \neq v_2, v_3$ as $u_2 \in I_1$ - 6 D_1' has precisely four vertices of outdegree 2 - At least four, because otherwise D_1' becomes smaller counterexample - Who else is candidate other than z_1 , v_2 and v_3 ? - a vertex of outdegree 3 which dominates both v_1 and u_1 in D - u_1 if it has outdegree 3 and dominates v_1 in D - But only one such candidate is possible ### Some Implications - i. We get $v_2, v_3 \in H_1$ So, $u_2 \neq v_2, v_3$ as $u_2 \in I_1$ - ii. So outdegree of u_2 in D is 3 (Similarly for u_1) ## Parts 8 and 9 - 8 Some vertex of $I_1 \cup \{z_1\}$ dominates v_1 in D - Either u_2 dominates v_1 or some vertex of outdegree 3 dominates v_1 and u_2 - As $u_2 \ \epsilon I_1$, vertex dominating it is not in H_1 - In any case, the dominating vertex is from l_1 or it is z_1 - 9 Either $z_1 \neq u_1'$ or $z_2 \neq u_2'$ - If $z_1 = u_1'$, every path from v_2 to u_2 in $D v_1$ contains u_1 - Likewise, if $z_2 = u_2'$, every path from v_2 to u_1 in $D v_1$ contains u_2 - But D strongly 2-connected, so $D-v_1$ has a v_2 - $\{u_1,u_2\}$ dipath; contradiction # An Intuition for parts (10)-(12) 10 If $$z_2=u_2'$$ or $z_2 \in V(I_1)-\{u_2\}$, then $z_1 \in V(H_2)$ - Less the boundary conditions, it says that if z_2 is in I_1 , then z_1 is in H_2 - Any $v_2 z_1$ dipath in $D v_1$ cannot contain any vertex from I_1 other than u_2 (because v_2 is in H_1), in particular z_2 - This is true even if $z_2 = u_2'$ - But as v_2 is in H_2 , a terminal component, z_1 is also in H_2 11 If $$z_2 = u_2'$$ or $z_2 \in (V(H_1) - \{u_1'\}) \cup \{z_1\}$, then $I_1 - u_2 \subseteq H_2$ - **1** Case $z_2 = u_2'$ - $z_2 = u_2'$ So by (10), z_1 lies in H_2 - A z_1 - l_1 dipath in $D-u_2$ is present in D_2-z_2 also,because it avoids v_1 , u_1 - The start vertex of this path- z_1 is in H_2 , a terminal component - So all possible endpoints (read all of I_1) also lie in H_2 - ② Case $z_2 \in (V(H_1) \text{ or is } \{z_1\}$ - As $z_2 \neq u_2'$, u_2' lies in H_2 - A u_2 - I_1 dipath in $D-z_1$ is present in D_2-z_2 also, because it avoids z_2 , which is in H_1 - The start vertex of this path- u_2' is in H_2 , a terminal component - So all possible endpoints (read all of I_2) also lie in H_2 12 If $$z_2 \in V(I_1) - \{u_2\}$$, then $(V(I_1) - \{u_2, z_2\}) \cup \{z_1, u_2'\} \subseteq V(H_2)$ - Simply said, if z_2 is in I_1 , then all of I_1 , z_1 and u_2 are contained in H_2 - z_1 is in H_2 and u_2' is in H_2 as before - All $\{z_1, u_2\}$ - I_1 shortest dipaths in $D-z_2$ are present in D_2-z_2 also - These start in H_2 , a terminal component of $D_2 z_2$ so also end in H_2 - So all the endpoints(read all of I_1), z_1 and u_2' lie in H_2 13 At most one vertex from $I_1 \cup \{z_1\}$ dominates u_1 in D #### An Intuition 13 At most one vertex from $I_1 \cup \{z_1\}$ dominates u_1 in D #### An Intuition u_1 is in I_2 and H_2 contains almost all of I_1 . And not many arcs from H_2 to I_2 . So only possibilities (who dominate u_1) are z_1, z_2 and u_2 • $z_2 = u_2'$: By (10) and (11), z_1 lies in H_2 So, only possibility is z_2 (= u_2') 13 At most one vertex from $I_1 \cup \{z_1\}$ dominates u_1 in D #### An Intuition - $z_2 = u_2'$: By (10) and (11), z_1 lies in H_2 So, only possibility is z_2 (= u_2') - z_2 is in I_1 : Apply (12) to get $I_1 \subseteq H_2$ and $z_1, u_2' \in H_2$ 13 At most one vertex from $I_1 \cup \{z_1\}$ dominates u_1 in D #### An Intuition - $z_2 = u_2'$: By (10) and (11), z_1 lies in H_2 So, only possibility is z_2 (= u_2') - z_2 is in I_1 : Apply (12) to get $I_1 \subseteq H_2$ and $z_1, u_2' \in H_2$ - z_2 is in H_2 : By (11) we get $I_1 u_2 \subseteq H_2$ 13 At most one vertex from $I_1 \cup \{z_1\}$ dominates u_1 in D #### An Intuition - $z_2 = u_2'$: By (10) and (11), z_1 lies in H_2 So, only possibility is z_2 (= u_2') - z_2 is in I_1 : Apply (12) to get $I_1 \subseteq H_2$ and $z_1, u_2' \in H_2$ - z_2 is in H_2 : By (11) we get $I_1 u_2 \subseteq H_2$ - $z_2 = z_1$: As $z_2 \neq u_2'$, u_2' lies in H_2 #### Obtain G and G' - G obtained from the subdigraph of D induced by $I_1 \cup \{r, v_1, z_1\}$ by adding rv_1 and rz_1 - Outdegree of v_1 here is 1. Contract v_1u_2 into u_2' to get G' - This proves the following fact - 14 G' doesn't contain a weak 3-double cycle ### 15 G' has minimum outdegree at least 2 - Obtained from I_1 so a vertex looses outdegree only if has arcs to H_1 - Outdegree of z_1 in D (i.e.2) indicates number of such vertices ## Who else can loose their outdegree in G'? - A vertex dominating v_1 , u_1 and u_2 in D can have outdegree 1 in G'; but by lemma 4, that's impossible - u_2 , if it dominates both v_1 and u_1 ; but by lemma 3 this is impossible ## Parts 16 and 17 ### 16 r in G' plays the role played by v_1 in D - z_1 and v_1 have direct arcs from r. So removal of any vertex doesn't disconnect them - For all other vertices : $D-u_2$ has paths from r to I_1 ; these paths are present here ### 17 G' is strong - Any vertex in G' is reachable from r, by 16 - $D u_1$ has a path to r from any vertex and outdegree of v_1 in G is one - ullet So, any dipath to r in $D-u_1$ from $I_1\cup\{z_1\}$ is in G' - Hence, any vertex in G' can reach r. And thus, G' is strong ## Part 18 and Conclusion 18 G' has at most three vertices of outdegree 2 - Almost all vertices of I_1 have the same outdegree in G as in D i.e. ≥ 3 - So only r and v_1 in can have outdegree less than 3 - While forming G' from G, u'_2 or a vertex dominateding both v_1 and u_2 loose outdegree - Only one such vertex is possible, as seen above #### Conclusion From parts (13)-(18), we conlcude that we have got a smaller counterexample to the theorem. So we get a complete contradiction. Hence the proof of this theorem. ## References ► Michael Brundage. From the even cycle miystery to the l-matrix problem and beyond, 1996. ► Carsten Thomassen. Even cycles in directed graphs. Europion Journal of combinatorics, 1985. ► Carsten Thomassen. The even cycle problem for directed graphs. Journal of the American Mathematical Society, 5(2), April 1992. Carsten Thomassen. The even cycle problem for planar digraphs. Journal of algorithms, 1993. ► Douglas West. Introduction to Graph Theory. # Proving Lemma 1 #### Lemma 1 Let xy be an arc of D such that either $d^+(x, D) = 1$ or $d^-(y, D) = 1.D'$ be obtained from D by contracting xy into a vertex z. Then D' contains a weak k-double cycle iff D does. - Any cycle in the original graph represents a subdivision of a cycle in the new graph - If any cycle in the new graph is a weak k-double cycle, then so is its subdivision - Conversely, any weak k-double cycle in the original graph is transformed to one in the new graph # Proving Lemma 2 #### Lemma 2 D' be the H-reduction of D at v. If D' has a weak k-double cycle, then so does D (D-v not strong and H the terminal component) - A weak k-double cycle in D' has an arc vz' means D has an arc to z' from some vertex outside H, say z - ullet P is a dipath from v to z - Replace vz' by the dipath P, to get a weak k-double cycle in D ## Lemma 3 #### Lemma 3 D strongly 2-connected. If D has a dicycle which dominates/is dominated by v, then D contains a weak 3-double cycle. - Lets say *C* is a cycle whose vertices all dominate *v* - There are two independent v C dipaths, say P_1 and P_2 - The dicycle C, dipaths P₁ and P₂, and two arcs from C to v form a weak 3-double cycle ## Lemma 4 #### Lemma 4 Let v_1, v_2, v_3, v_4 be vertices in a strongly 2-connected digraph D such that D contains the arcs v_1v_3 , v_1v_4 , v_2v_3 , v_2v_4 and v_3v_4 . Then D contains a weak 3-double cycle. #### Two cases come out here - P_1 and P_2 be two dipaths from v_4 to v_1 and v_2 , resp. - v_3 lies on one of the dipaths P_1 or P_2 - P_1 gets partitioned into two dipaths– R_1 (from v_4 to v_3) and R_2 - P_3 be a $V(R_1) \cup V(P_2) V(R_2)$ dipath in $D v_3$ - $P_1 \cup P_2 \cup P_3 \cup \{v_1v_3, v_3v_4, v_1v_4\}$ contains a weak 3-double cycle - v_3 does not lie on P_1 or P_2 - D- v_4 has a $v_3 V(P_1) \cup V(P_2)$ dipath P_3 - Lets say P_3 intersects P_1 - Now $P_1 \cup P_2 \cup P_3 \cup \{v_1v_3, v_1v_4, v_2v_3, v_2v_4\}$ is a weak 3-double cycle