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Overview

I will discuss the following in this presentaion:

Problem Description

Terminology

The central proof

this will comprise of various parts–viz parts (1) - (18)

Proofs of lemmas used

Conclusion
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The problem

Definition

The even cycle problem is “Does a given directed graph D contain
an even cycle?”

Why is the problem hard?

Harder than the ‘undirected’ case

Harder than the ‘odd’ case
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Terminology

Digraphs, etc.

Splitting and subdivision

Strongly k-connected
digraph

Initial and terminal
components

Weak k-double cycle
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Characterization of the problem

Definition

A digraph D is even, if and only if every subdivision of D contains
a cycle of even length.

Characterization on the basis of even digraphs

Equivalence of even-length and even-total-weight based
definitions

Characterization

A digraph is even if and only if it contains a weak-odd-double
cyle
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Lemmas used in the proof

We use the following four lemmas in the proof

Lemma 1
If we contract an arc such that either its initial vertex has
outdegree one or its terminal vertex has in-degree one, then
the resulting digraph contains a weak k-double cycle if and
only if the original one does

Lemma 2
If the digraph obtained by terminal-component-reduction of a
digraph contains a weak 3-double cycle, then original graph
also contains one.
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Lemmas contd..

Lemma 3
If a strongly 2-connected digraph
contains a
dominating/dominated cycle then
it contains a weak 3-double cycle

v1 v2

v3 v4

v
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Lemmas contd..

Lemma 4
If a strongly 2-connected digraph
contains vertices v1, v2, v3, v4 and
the arcs v1v3, v1v4, v2v3, v2v4

and v3v4. Then D contains a
weak 3-double cycle. v1 v3

v2 v4
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Outline of the proof

Theorem

If a strong digraph has minimum outdegree at least 3, except
possibly for three vertices and, if we remove any vertex all the
remaining vertices are still reachable from a vertex v1 of outdegree
2, Then D contains a weak 3-double cycle.

The proof proceeds as follows:

i. Assume that the theorem is false–D be minimal
counterexample

ii. Using the lemmas (1)-(4), obtain smaller graph G than D

iii. Prove G to be a counterexample, contradicting minimality of D
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Parts 1 and 2

1 D is strongly 2-connected

Assume its not. D ′′ be a terminal component reduction of D

Prove D ′′ is a counterexample smaller than D

D ′′ has minimum outdegree 2
Some vertex of D ′′ plays role of v1

D ′′ contains no weak 3-double cycle

2 v1 has outdegree 2 in D
Again, what if this were false :

Remove an arc comming to it, say from z

Now we get a smaller graph satisfying the conditions with
v2 = z

Any vi can play the role of v1 ; so contradiction
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Part 3

3 Delete v1u2, contract v1u1 ; gets digraph with minimum
outdegree 2
Reasons why this might go wrong?

i. Outdegree of u1 in D was 2 and it dominated v1

ii. Some vertex z1 of outdegree 2 in D dominated both u1 and v1

in D
Or, if we flip roles of u1 and u2,

iii. Outdegree of u2 in D was 2 and it dominated v1

iv. Some vertex z2 of outdegree 2 in D dominated both u2 and v1

in D

So, with v1u1 contracted we get D1 and v1u2 contracted we get D2
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Part 3 Contd..

D1 cannot be strongly 2-connected because

It has at most three vertices of outdegree 2

It does not contain a weak 3-double cycle

It is smaller than D, can’t be a counterexample

So, D1 − z1 not strong, find D ′
1, terminal component reduction of

D1 at z1

Terminal component is H1 and all other vertices in set I1
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Parts 4 and 5

4 Where do u2, u′1 lie?

u2 ε I1 and u′1 ε H1 ∪ {z1}
If v1 (or u′

1) lies in I1, D − z1 will fail to be strong
And if u2 does not lie in I1, D − z1 or D − u1 fail to be strong

5 D ′
1 is strongly 2-connected

To prove this

Prove if any vertex removed, all others can reach z1 AND,

z1 can reach all others

Removal of z1 itself is trivial
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Parts 6

6 D ′
1 has precisely four vertices of outdegree 2

At least four, because otherwise D ′
1 becomes smaller

counterexample

Who else is candidate other than z1, v2 and v3?

a vertex of outdegree 3 which dominates both v1 and u1 in D
u1 if it has outdegree 3 and dominates v1 in D

But only one such candidate is possible

Some Implications

i. We get v2, v3 ε H1 So, u2 6= v2, v3 as u2 ε I1

ii. So outdegree of u2 in D is 3 (Similarly for u1)
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Parts 8 and 9

8 Some vertex of I1 ∪ {z1} dominates v1 in D

Either u2 dominates v1 or some vertex of outdegree 3
dominates v1 and u2

As u2 εI1, vertex dominating it is not in H1

In any case, the dominating vertex is from I1 or it is z1

9 Either z1 6= u′1 or z2 6= u′2
If z1 = u′1, every path from v2 to u2 in D − v1 contains u1

Likewise, if z2 = u′2, every path from v2 to u1 in D − v1

contains u2

But D strongly 2-connected, so D − v1 has a v2-{u1, u2}
dipath; contradiction
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An Intuition for parts (10)-(12)
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Part 10

10 If z2 = u′2 or z2 ε V (I1)− {u2}, then z1 ε V (H2)

Less the boundary conditions, it says that if z2 is in I1, then z1

is in H2

Any v2 − z1 dipath in D − v1 cannot contain any vertex from
I1 other than u2 (because v2 is in H1), in particular z2

This is true even if z2 = u′2
But as v2 is in H2, a terminal component, z1 is also in H2
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Part 11

11 If z2 = u′2 or z2 ε (V (H1)− {u′1}) ∪ {z1}, then I1 − u2 ⊆ H2

1 Case z2 = u′2
z2 = u′

2 So by (10), z1 lies in H2

A z1-I1 dipath in D − u2 is present in D2 − z2 also,because it
avoids v1, u1

The start vertex of this path-z1 is in H2, a terminal component
So all possible endpoints (read all of I1) also lie in H2

2 Case z2 ε (V (H1) or is {z1}
As z2 6= u′

2, u′
2 lies in H2

A u2-I1 dipath in D − z1 is present in D2 − z2 also,because it
avoids z2, which is in H1

The start vertex of this path-u′
2 is in H2, a terminal component

So all possible endpoints (read all of I2) also lie in H2
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Part 12

12 If z2 ε V (I1)− {u2}, then
(V (I1)− {u2, z2}) ∪ {z1, u

′
2} ⊆ V (H2)

Simply said, if z2 is in I1, then all of I1, z1 and u2 are
contained in H2

z1 is in H2 and u′2 is in H2 as before

All {z1, u2}-I1 shortest dipaths in D − z2 are present in
D2 − z2 also

These start in H2, a terminal component of D2 − z2 so also
end in H2

So all the endpoints(read all of I1), z1 and u′2 lie in H2
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Parts 13

13 At most one vertex from I1 ∪ {z1} dominates u1 in D

An Intuition

u1 is in I2 and H2 contains almost all of I1. And not many arcs
from H2 to I2. So only possibilities (who dominate u1) are z1, z2

and u2

z2 = u′2 : By (10) and (11), z1 lies in H2 So, only possibility is
z2 (= u′2)

z2 is in I1 : Apply (12) to get I1 ⊆ H2 and z1, u
′
2 ε H2

z2 is in H2 : By (11) we get I1 − u2 ⊆ H2

z2 = z1 : As z2 6= u′2, u′2 lies in H2
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Part 14

Obtain G and G ′

G obtained from the subdigraph of D induced by
I1 ∪ {r , v1, z1} by adding rv1 and rz1

Outdegree of v1 here is 1. Contract v1u2 into u′2 to get G ′

This proves the following fact

14 G ′ doesn’t contain a weak 3-double cycle
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Part 15

15 G ′ has minimum outdegree at least 2

Obtained from I1 so a vertex looses outdegree only if has arcs
to H1

Outdegree of z1 in D (i.e.2) indicates number of such vertices

Who else can loose their outdegree in G ′?

A vertex dominating v1, u1 and u2 in D can have outdegree 1
in G ′; but by lemma 4, that’s impossible

u2, if it dominates both v1 and u1; but by lemma 3 this is
impossible
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Parts 16 and 17

16 r in G ′ plays the role played by v1 in D

z1 and v1 have direct arcs from r . So removal of any vertex
doesn’t disconnect them

For all other vertices : D − u2 has paths from r to I1; these
paths are present here

17 G ′ is strong

Any vertex in G ′ is reachable from r , by 16

D − u1 has a path to r from any vertex and outdegree of v1 in
G is one

So, any dipath to r in D − u1 from I1 ∪ {z1} is in G ′

Hence, any vertex in G ′ can reach r . And thus, G ′ is strong
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Part 18 and Conclusion

18 G ′ has at most three vertices of outdegree 2

Almost all vertices of I1 have the same outdegree in G as in D
i.e. ≥ 3

So only r and v1 in can have outdegree less than 3

While forming G ′ from G , u′2 or a vertex dominateding both
v1 and u2 loose outdegree

Only one such vertex is possible, as seen above

Conclusion

From parts (13)-(18), we conlcude that we have got a smaller
counterexample to the theorem. So we get a complete
contradiction. Hence the proof of this theorem.
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Proving Lemma 1

Lemma 1

Let xy be an arc of D such that either d+(x ,D) = 1 or d−(y ,D)
= 1.D’ be obtained from D by contracting xy into a vertex z. Then
D’ contains a weak k-double cycle iff D does.

Any cycle in the original graph represents a subdivision of a
cycle in the new graph

If any cycle in the new graph is a weak k-double cycle, then
so is its subdivision

Conversely, any weak k-double cycle in the original graph is
transformed to one in the new graph
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Proving Lemma 2

Lemma 2

D’ be the H-reduction of D at v. If D’ has a weak k-double cycle,
then so does D (D-v not strong and H the terminal component)

A weak k-double cycle in D ′

has an arc vz ′ means D has
an arc to z ′ from some
vertex outside H, say z

P is a dipath from v to z

Replace vz ′ by the dipath P,
to get a weak k-double cycle
in D
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Lemma 3

Lemma 3

D strongly 2-connected. If D has a dicycle which dominates/is
dominated by v, then D contains a weak 3-double cycle.

Lets say C is a cycle whose
vertices all dominate v

There are two independent
v − Cdipaths, say P1 and P2

The dicycle C , dipaths P1

and P2, and two arcs from
C to v form a weak
3-double cycle
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Lemma 4

Lemma 4

Let v1,v2,v3,v4 be vertices in a strongly 2-connected digraph D
such that D contains the arcs v1v3, v1v4, v2v3, v2v4 and v3v4.
Then D contains a weak 3-double cycle.

Two cases come out here

P1 and P2 be two dipaths from v4 to v1 and v2, resp.
v3 lies on one of the dipaths P1 or P2

P1 gets partitioned into two dipaths–R1(from v4 to v3) and R2

P3 be a V (R1) ∪ V (P2)− V (R2) dipath in D − v3

P1 ∪ P2 ∪ P3 ∪ {v1v3, v3v4, v1v4} contains a weak
3-double cycle

v3 does not lie on P1 or P2

D-v4 has a v3 − V (P1) ∪ V (P2) dipath P3

Lets say P3 intersects P1

Now P1 ∪ P2 ∪ P3 ∪ {v1v3, v1v4, v2v3, v2v4} is a weak
3-double cycle
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