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Introduction

Overview

| will discuss the following in this presentaion:
@ Problem Description

o Terminology

(]

The central proof
o this will comprise of various parts—viz parts (1) - (18)

(]

Proofs of lemmas used

Conclusion

(]
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Introduction
The problem

Definition
The even cycle problem is “Does a given directed graph D contain
an even cycle?”

Why is the problem hard?
@ Harder than the ‘undirected’ case

@ Harder than the ‘odd’ case
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Introduction

o Digraphs, etc.
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Introduction

o Splitting and subdivision

Avadhut M. Sardeshmukh Even cycle problem for directed graphs



Introduction
Terminology

o Splitting and subdivision

@ Strongly k-connected
digraph
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Introduction
Terminology

o Splitting and subdivision

@ Strongly k-connected
digraph

o Initial and terminal
components
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Introduction

Terminology

v & Split this vertex

o Splitting and subdivision

@ Strongly k-connected
digraph @

o Initial and terminal
components

o Weak k-double cycle

A weak odd double cycle
obtained from 3-double cycle
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Characterization and Lemmas
Characterizati

Definition
A digraph D is even, if and only if every subdivision of D contains
a cycle of even length.

Characterization on the basis of even digraphs
@ Equivalence of even-length and even-total-weight based
definitions

o Characterization
o A digraph is even if and only if it contains a weak-odd-double

cyle
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Characterization and Lemmas
Lemmas used

We use the following four lemmas in the proof

o Lemma 1
If we contract an arc such that either its initial vertex has
outdegree one or its terminal vertex has in-degree one, then
the resulting digraph contains a weak k-double cycle if and
only if the original one does

e Lemma 2
If the digraph obtained by terminal-component-reduction of a
digraph contains a weak 3-double cycle, then original graph
also contains one.

Avadhut M. Sardeshmukh Even cycle problem for directed graphs



Characterization and Lemmas

Lemmas co

@
Lemma 3
If a strongly 2-connected digraph
contains a @
dominating/dominated cycle then
it contains a weak 3-double cycle
@

Avadhut M. Sardeshmukh Even cycle problem for directed graphs




Characterization and Lemmas

Lemmas co

Lemma 4

If a strongly 2-connected digraph
contains vertices vi, v, v3, v4 and
the arcs vivz, vivg, vovs, Wovy
and v3v4. Then D contains a
weak 3-double cycle. —>.
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Proof of the theore
Outline of the

Theorem

If a strong digraph has minimum outdegree at least 3, except
possibly for three vertices and, if we remove any vertex all the
remaining vertices are still reachable from a vertex vy of outdegree
2, Then D contains a weak 3-double cycle.

The proof proceeds as follows:
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Proof of the theore
Outline of the

Theorem

If a strong digraph has minimum outdegree at least 3, except
possibly for three vertices and, if we remove any vertex all the
remaining vertices are still reachable from a vertex vy of outdegree
2, Then D contains a weak 3-double cycle.

The proof proceeds as follows:

i. Assume that the theorem is false—-D be minimal
counterexample
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Proof of the theore
Outline of the

Theorem

If a strong digraph has minimum outdegree at least 3, except
possibly for three vertices and, if we remove any vertex all the
remaining vertices are still reachable from a vertex vy of outdegree
2, Then D contains a weak 3-double cycle.

The proof proceeds as follows:

i. Assume that the theorem is false—-D be minimal
counterexample

ii. Using the lemmas (1)-(4), obtain smaller graph G than D
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Proof of the theore
Outline of the

Theorem

If a strong digraph has minimum outdegree at least 3, except
possibly for three vertices and, if we remove any vertex all the
remaining vertices are still reachable from a vertex vy of outdegree
2, Then D contains a weak 3-double cycle.

The proof proceeds as follows:

i. Assume that the theorem is false—D be minimal
counterexample
ii. Using the lemmas (1)-(4), obtain smaller graph G than D
iii. Prove G to be a counterexample, contradicting minimality of D
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Proof of the theore
Parts 1 and 2

1 D is strongly 2-connected

@ Assume its not. D” be a terminal component reduction of D
@ Prove D" is a counterexample smaller than D

o D" has minimum outdegree 2
o Some vertex of D" plays role of v
o D” contains no weak 3-double cycle

2 v1 has outdegree 2 in D
Again, what if this were false :
@ Remove an arc comming to it, say from z

@ Now we get a smaller graph satisfying the conditions with
Vo = Z

@ Any v; can play the role of v; ; so contradiction

Avadhut M. Sardeshmukh Even cycle problem for directed graphs



Proof of the theore
Part 3

3 Delete viup, contract vyu; ; gets digraph with minimum
outdegree 2

Reasons why this might go wrong?

i. Outdegree of vy in D was 2 and it dominated vy

ii. Some vertex z; of outdegree 2 in D dominated both u; and vy
in D

Or, if we flip roles of w1 and wy,
iii. Outdegree of up in D was 2 and it dominated vq

iv. Some vertex z» of outdegree 2 in D dominated both uy and vy
in D

with vju; contracted we get D7 and vy up contracted we get Do

So
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Proof of the theore
Part 3 Contd.

D1 cannot be strongly 2-connected because
@ It has at most three vertices of outdegree 2
o It does not contain a weak 3-double cycle
o It is smaller than D, can't be a counterexample

So, D; — z; not strong, find Di, terminal component reduction of
Dq at
Terminal component is H; and all other vertices in set |
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Proof of the theore

Parts 4 and

4 Where do up, U] lie?
@ wpehanduj e HHU{z}

o If vy (or uy) liesin Iy, D — z will fail to be strong
o And if up does not lie in Iy, D — z; or D — uy fail to be strong

5 Dj is strongly 2-connected
To prove this

@ Prove if any vertex removed, all others can reach z; AND,
@ z; can reach all others

@ Removal of z; itself is trivial
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Proof of the theore

Parts 6

6 Dj has precisely four vertices of outdegree 2

o At least four, because otherwise D] becomes smaller
counterexample
@ Who else is candidate other than z;, v» and v3?

o a vertex of outdegree 3 which dominates both v; and vy in D
e uy if it has outdegree 3 and dominates vy in D

@ But only one such candidate is possible

Some Implications
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Proof of the theore

Parts 6

6 Dj has precisely four vertices of outdegree 2

o At least four, because otherwise D] becomes smaller
counterexample

@ Who else is candidate other than z;, v» and v3?

o a vertex of outdegree 3 which dominates both v; and vy in D
e uy if it has outdegree 3 and dominates vy in D

@ But only one such candidate is possible
Some Implications

i. We get vo,v3 € Hy So, up # wo,vz3as up e i
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Proof of the theore

Parts 6

6 Dj has precisely four vertices of outdegree 2

o At least four, because otherwise D] becomes smaller
counterexample

@ Who else is candidate other than z;, v» and v3?

o a vertex of outdegree 3 which dominates both v; and vy in D
e uy if it has outdegree 3 and dominates vy in D

@ But only one such candidate is possible
Some Implications
i. We get vo,v3 € Hy So, up # wo,vz3as up e i
ii. So outdegree of uy in D is 3 (Similarly for u;)
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Proof of the theore
Parts 8 and 9

8 Some vertex of /; U {z;} dominates vy in D

o Either uy, dominates vy or some vertex of outdegree 3
dominates v; and w»

@ As up ely, vertex dominating it is not in H;
@ In any case, the dominating vertex is from /1 or it is z;
9 Either z; # U} or zp # U}
o If z; = uj, every path from v» to up in D — vq contains u;

o Likewise, if zp = u), every path from v, to u3 in D — vy
contains u»

@ But D strongly 2-connected, so D — v; has a vo-{u1, up}
dipath; contradiction
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Proof of the theore

:-’:deleted

contracted contracted

The D1 perspective The D2 perspective
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Proof of the theore
Part 10

10 If zp = uj or zp € V() — {u2}, then z; € V(Ho)
@ Less the boundary conditions, it says that if z; isin /1, then z;
isin H

@ Any v» — z; dipath in D — v; cannot contain any vertex from
I, other than up (because v, is in Hy), in particular z

e This is true even if zo = uj

@ But as v is in H», a terminal component, z; is also in H»
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Proof of the theore

Part 11

11If zp = uj or zp € (V(H1) — {u1}) U{z1}, then 1 — up C H,
@ Case z = U
o z, = uh So by (10), z; lies in H,
o A z;-h dipath in D — w5 is present in D, — z, also,because it
avoids vy, g
o The start vertex of this path-z; is in H,, a terminal component
o So all possible endpoints (read all of /1) also lie in H,
@ Case zp ¢ (V(Hy1) oris {z1}
o As zp # up, uy lies in Hp
o A up-h dipath in D — z; is present in D, — z, also,because it
avoids z, which is in H;
o The start vertex of this path-u} is in H,, a terminal component

o So all possible endpoints (read all of &) also lie in H,
ﬁ'



Proof of the theore
Part 12

121If z € V(/l) S {UQ}, then
(V(h) — {2, 22}) U{z1, 13} C V(H2)
o Simply said, if zp is in /1, then all of /1, z; and u are
contained in H>

@ z1 isin Hy and u} is in Hy as before

o All {z1, ux}-h shortest dipaths in D — z, are present in
D> — z also

@ These start in H,, a terminal component of D, — z» so also
end in H,

@ So all the endpoints(read all of 1), z; and u} lie in H,



Proof of the theore

Parts 13

13 At most one vertex from /; U {z;} dominates vy in D

An Intuition

up is in k and H, contains almost all of /;. And not many arcs
from Hy to k. So only possibilities (who dominate uy) are z1, z
and u»
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Proof of the theore
Parts 13

13 At most one vertex from /; U {z;} dominates vy in D

An Intuition

up is in k and H, contains almost all of /;. And not many arcs
from Hy to k. So only possibilities (who dominate uy) are z1, z
and u»

e z = u) : By (10) and (11), z; lies in Hp So, only possibility is
2 (= u3)
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Proof of the theore
Parts 13

13 At most one vertex from /; U {z;} dominates vy in D

An Intuition

up is in k and H, contains almost all of /;. And not many arcs
from Hy to k. So only possibilities (who dominate uy) are z1, z
and u»

e z = u) : By (10) and (11), z; lies in Hp So, only possibility is
2 (= u3)
@ zisin Iy : Apply (12) to get 1 C Hp and z1,u) € H,
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Proof of the theore
Parts 13

13 At most one vertex from /; U {z;} dominates vy in D

An Intuition

up is in k and H, contains almost all of /;. And not many arcs
from Hy to k. So only possibilities (who dominate uy) are z1, z
and u»

e z = u) : By (10) and (11), z; lies in Hp So, only possibility is
2 (= up)

@ zisin Iy : Apply (12) to get 1 C Hp and z1,u) € H,

@ zpisin Hy : By (11) we get 1 — up C Hs
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Proof of the theore
Parts 13

13 At most one vertex from /; U {z;} dominates vy in D

An Intuition

up is in k and H, contains almost all of /;. And not many arcs
from Hy to k. So only possibilities (who dominate uy) are z1, z
and u»

e z = u) : By (10) and (11), z; lies in Hp So, only possibility is
2 (= up)

@ zisin Iy : Apply (12) to get 1 C Hp and z1,u) € H,

@ zpisin Hy : By (11) we get 1 — up C Hs

° zp =12z : As zp # uh, U} lies in Hp
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Proof of the theore
Part 14

Obtain G and G’
@ G obtained from the subdigraph of D induced by
hU{r,vi,z1} by adding rv; and rz;
o Outdegree of v here is 1. Contract vyup into uj to get G’

@ This proves the following fact
14 G’ doesn’t contain a weak 3-double cycle
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Proof of the theore
Part 15

15 G’ has minimum outdegree at least 2

@ Obtained from /; so a vertex looses outdegree only if has arcs
to Hy

o Outdegree of z; in D (i.e.2) indicates number of such vertices
Who else can loose their outdegree in G'?

@ A vertex dominating vi,u; and up in D can have outdegree 1
in G’; but by lemma 4, that's impossible

@ u», if it dominates both v; and ug; but by lemma 3 this is
impossible
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Proof of the theore
Parts 16 and

16 r in G’ plays the role played by v; in D

@ z; and v; have direct arcs from r. So removal of any vertex
doesn’t disconnect them

@ For all other vertices : D — up has paths from r to I1; these
paths are present here

17 G’ is strong
@ Any vertex in G’ is reachable from r, by 16

@ D — uy has a path to r from any vertex and outdegree of v; in
G is one

@ So, any dipath to rin D — u; from L U{z} isin G’
@ Hence, any vertex in G’ can reach r. And thus, G’ is strong
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Proof of the theore
Part 18 and C

18 G’ has at most three vertices of outdegree 2

@ Almost all vertices of /; have the same outdegree in G as in D
ie. >3

@ So only r and vy in can have outdegree less than 3

e While forming G’ from G, u} or a vertex dominateding both
v1 and up loose outdegree

@ Only one such vertex is possible, as seen above

Conclusion

From parts (13)-(18), we conlcude that we have got a smaller
counterexample to the theorem. So we get a complete
contradiction. Hence the proof of this theorem.
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Lemma 1

Let xy be an arc of D such that either d™(x,D) = 1 or d~(y, D)
= 1.D’ be obtained from D by contracting xy into a vertex z. Then
D' contains a weak k-double cycle iff D does.

@ Any cycle in the original graph represents a subdivision of a
cycle in the new graph

o If any cycle in the new graph is a weak k-double cycle, then
so is its subdivision

o Conversely, any weak k-double cycle in the original graph is
transformed to one in the new graph
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Lemma 2

D’ be the H-reduction of D at v. If D' has a weak k-double cycle,
then so does D (D-v not strong and H the terminal component)

@ A weak k-double cycle in D’
has an arc vz’ means D has
an arc to Z’ from some
vertex outside H, say z

o P is a dipath from v to z

@ Replace vz’ by the dipath P,
to get a weak k-double cycle
in D
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Lemma 3

D strongly 2-connected. If D has a dicycle which dominates/is
dominated by v, then D contains a weak 3-double cycle.

o Lets say C is a cycle whose
vertices all dominate v

@ There are two independent
v — Cdipaths, say P; and P>

@ The dicycle C, dipaths P;
and P», and two arcs from
C to v form a weak

3-double cycle

Avadhut M. Sardeshmukh Even cycle problem for directed graphs

Splice out P1,P2,

1,2, andv \
— / °

4

v

Weak 3-double cycle
around ¢1,c2and v.




Lemma 4

Let v1,v2,v3,v4 be vertices in a strongly 2-connected digraph D
such that D contains the arcs viv3, viva, vov3, vy and vavy.
Then D contains a weak 3-double cycle.

Two cases come out here

@ P; and P, be two dipaths from v4 to v1 and vy, resp.

@ vj3 lies on one of the dipaths P; or P;
o P gets partitioned into two dipaths—R;(from v4 to v3) and R,
o P3bea V(R)UV(P:)— V(R:) dipathin D — v3
o P U P, U P3s U {v1v3, vzvg, vivs} contains a weak

3-double cycle

@ v3 does not lie on Py or P>

] D—V4 has a vy — V(Pl) U V(Pz) dlpath P3

o Lets say Pj intersects Py
o Now P U P, U P3 U {v1v3, viva, Vavs, vava} is a weak bk ¢

3-double cycle
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