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Abstract

The paper we discuss here answers the question : “Does there exist a natural
number k such that any strongly k-connected digraph has an even length
dicycle?” This is an attempt at proving sufficient conditions (in terms of
connectivity and number of paths between any two vertices) for the existence
of an even length dicycle in a graph.
We here try to assimilate and explain the proof given by Thomassen [5] in
this regard.
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Chapter 1

Introduction

1.1 The problem

1.1.1 The even cycle problem

The even cycle problem is stated as follows :
“Does a directed graph D contain an even cycle?”
Here, even cycle means a cycle which comprises of an even number of edges.
This problem has come up in various connection and has been studied for
long. Recently (i.e. late 1990’s), a polynomial time algorithm for this prob-
lem has been discovered [2]. A discussion on the recent developments can
be found in a survey paper on pfaffian orientations of graphs by Robin
Thomas [3].

1.1.2 Why is it hard?

In this section we first note that the same problem in case of undirected as
well as in case of odd length cycle (this in case of directed also) is solvable
easily in polynomial time. So why is it that even cycle problem for directed
graphs only is so hard? We found some explainations as below, from the
references indicated.
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Harder than the ‘Odd length’ case

In case of odd length, existence of an odd closed walk 1 implies the existence
of an odd cycle. Once you find an odd closed walk (if its not already a
cycle), find a vertex that is repeated, forming a cycle around itself. Splice
out this cycle. Now one of the two cycles has to be of add length, for, sum
of their lengths is an odd number.(And, an odd number can’t be expressed
as a sum of two even numbers). There are efficient algorithms for finding an
odd/even closed walk. So, effectively we have efficient algorithm for the odd
cycle problem. To the contrary, an even number can be expressed as a sum
of two odd numbers. Hence the same systematic procedure is not applicable
here. A more detailed version of this discussion and an efficient algorithm for
finding odd/even closed walk in a digraph can be found in a masters thesis
by Michael Brundage. [1]

Harder than the ‘Undirected’ case

An important result in the directed graphs is that, large connectivity requires
large minimum degree, but large minimum degree does not imply large con-
nectivity. When we are in the undirected domain, life is much more easier.
Because there, large minimum degree immediately implies large connectivity.
So, the sufficiency conditions for the existence of even cycles can be readily
expressed in terms of minimum degree of the graph. But in directed domain,
life becomes suddenly difficult.
In fact Thomassen [4] proved that for each positive integer n, there are di-
graphs G and D on n vertices which do not contain even cycles even if :

• Dn is strong and each vertex of Dn has outdegree n

• Each vertex of Gn has in-degree n and outdegree at least n

The terms used here to express the assertion are taken from the master’s
thesis of Michael Brundage [1].

1In a closed walk, vertices can be repeated, whereas in cycle they can’t.
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1.2 Terminology

1.2.1 Preliminaries

In a digraph we distinguish between two endpoints of an arc(an edge is called
an arc in the directed case) and if the arc is from vertex u to vertex v , we say
that u dominates v.We also distinguish between in-degree and out-degree of
a vertex, which we define as number of arcs entering the vertex and leaving
the vertex, respectively.
A u − v dipath is a directed path from vertex u to vertex v and for sets of
vertices A and B, an A − B dipath is a x − y dipath such that x ε A, y ε B

and no other vertex on the path belongs either to A or to B.

Splitting and subdividing

Splitting a vertex v means replacing it by two, one of which is designated for
incomming arcs and the other is designated for outgoing arcs. That is, all
arcs entering vertex v will now enter, say vi and all arcs leaving v will now
leave, say vo. Subdividing an arc uv means replacing that arc with a u − v

dipath by introducing one or more new vertices.
If A is any subset of the vertex set of a digraph D, we can remove all those
vertices from D (along with arcs incident with them, of course) that are not
in A and obtain a subgraph of D. This is called subdigraph induced by D.

1.2.2 Definitions

Strongly k-connected graph

A strong digraph is one in which every vertex can be reached from every
other vertex. And a graph is called strongly k − connected if it remains
strong after removal of any set of vertices of size less than k.
This implies that there be two disjoint paths between every two vertices of
a strongly k-connected digraph.

Initial and Terminal components

A strong component of a digraph D is a maximal strong subdigrph. That
is, if a graph is not already strong, then we can find its subdigraph which is
strong. The maximal such subdigraph is a strong component of a graph.
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We define two special types of strong components here. Initial component is
a strong component such that there is no edge leaving the component (there
are edges only comming in). Similarly, a terminal component is a strong
component such that there is no edge comming into the component (there
are edges only going out).
Reduction at an initial/terminal component :
If H is an initial component of a digraph D, then H-reduction of D at a
vertex v is a graph obtained from the subdigraph induced by the vertices in
H, and v, by adding all the arcs vz for all vertices z in H to which there is an
arc in D from a vertex that is not in H. (By definition of initial components,
there can only be edges of this type). In short we look at the rest of the
graph excluding H as only one vertex and represent all its connections to H

by arcs from a single vertex - viz. z.
Similarly if H is a terminal component then H-reduction of D at a vertex

v is a graph obtained from the subdigraph induced by the vertices in H, and
v, by adding all the arcs zv for all vertices z in H which have an edge going
out of H (to a vertex in D − V (H)). Here also, we are looking at the rest of
the graph excluding H as a single vertex and represent the connections from
H to this set as edges to a single vertex - viz. z.

Weak-odd double cycle

A double cycle is a graph whose arcs form two cycles–one in each direction.
That means, a double cycle is obtained from a cycle by adding arcs parallel
to the original arcs, but in the opposite direction.

We obtain a weak double cycle from a double cycle by splitting vertices
and/or subdividing arcs. And, a weak double cycle which is obtained from
a double cycle on odd number of vertices is a weak odd double cycle. Note
that, a weak odd double cycle may itself have an even number of vertices;
the term ‘odd’ refers to the number of vertices in the original double cycle
from which this weak cycle is obtained (possibly, by splitting vertices, hence
changing parity of number of vertices). An example of a weak odd double
cycle obtained from a double cycle on 3 vertices is shown below. Observe
that the weak odd double cycle shown here has 4 vertices.
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A 3−double cycle

(Double cycle on 3 vertices)

Split this vertex

A weak−odd−double cycle

Obtained from a 3−double cycle (3:odd)

Even Digraph

A digraph D is even, if and only if every subdivision of D contains a cycle of
even length. If, instead of looking at the subdivisions of D, we try to assign
binary weights to the arcs of D, then saying that every such assignment has
a cycle of even total weight is same as saying that every subdivision of the
graph contains a cycle of even length. Because a particular subdivision of the
graph corresponds to a particular assignment of weights. If the subdivision
divides an arc into even number of arcs, we assign a zero to that arc in the
original graph. And, if the subdivision divides an arc into odd number of
arcs, we assign one to that arc in the original graph. Thus, the weight as-
signmet corresponds to the parity of the length of any cycle in a particular
assignment. A subdivision corresponding to a particular assignment can be
similarly formed. It is basically possible because we only want to distinguish
between odd and even lengths, which can be done using weights zero and one.

Note that the concept of even digraphs is one more way to characterize
the even cycle problem. How? An even digraph already contains an even
cycle, because every subdivision of it contains an even cycle. In particular
the subdivision in which no vertex/arc is split/subdivided has an even cycle.
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Chapter 2

The Theorem

2.1 Proofs of Important Lemmas

Characterization of the problem

A digraph is even if and only if it contains a weak-3-double cycle. This
characterization was given by the same author Carsten Thomassen, which is
used in this paper to prove the desired result.
Here basically we use the result that : A weak odd double cycle has an odd
number of dicycles and every arc is in an even number of dicycles. So, every
weak odd double cycle is even.
It is easy to see that this is true. An odd double cycle has odd number of
dicycles - 2 spanning cycles in each direction and a cycle around each adjacent
pair of vertices, of which only an odd number can be there. So this totals to
odd number plus 2 which is always odd. And these cycles are preserved over
any number of splittings/subdivisions. So the first assertion is proved. For
the second, see that each arc in a double cycle is in exactly two cycles-one
spanning cycle and one smaller cycle with its neighbour. Over any number
of splittings/subdivisions, this will not change,for the original arcs. For the
new arcs, they have to be a part of both the spanning cycles and they have
be a part of both the smaller cycles. Hence they are in 4 dicycles. So this is
proved.

But how is a graph with above property even?
This is simple to see. Suppose we assign weights to the arcs. Then let w(Ci)
be the total weight of cycle Ci. The sum of all C ′

i
s must be even because

each arc weight is counted in an even number of times. But number of C ′

i
s
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itself is odd. So sum of an odd number of odd numbers can never be even.
So some w(Ci) must be even. That is there is an even-total-weight cycle. So
the digraph is even [6].

Lemma 2.1.1 Let xy be an arc of D such that either d+(x, D) = 1 or
d−(y, D) = 1. 1 Let D’ be obtained from D by contracting xy into a ver-
tex z. Then D’ contains a weak k-double cycle iff D does.

This lemma states that, if we contract an arc such that either its initial vertex
has outdegree one or its terminal vertex has in-degree one, then the resulting
digraph contains a weak k-double cycle if and only if the original one is.
[Proof]Contraction of an arc xy means replacing the vertices x and y by a
single vertex z such that all arcs entering or leaving x or y now enter or leave
(respectively) z. Observe that for the arc we are contracting, either every
path through its initial vertex passes only through the terminal vertex or,
every path to the terminal vertex comes only via the initial vertex.
Intuitively, we can convince ourselves that the lemma indeed is true. Because,
given the above situation, the process of contracting an edge looks much like
the reversal of the process of splitting a vertex (with the difference that some
extra outgoing arcs–in the former case, and some extra incoming arcs–in the
latter case, are added). And splitting is a way of forming subdivisions of a
digraph. So, any cycle in the original graph represents a subdivision of a
cycle in the new graph. So if any cycle in the new graph is a weak k-double
cycle, then so is its subdivision–in the original graph. (Remember how weak
double cycles are defined)

Conversely, any weak k-double cycle in the original graph is transformed
to a weak k-double cycle in the new graph. The original weak k-double
cycle must be something obtained from a k-double cycle by at least one
subdivision/splitting. So, we are reversing this process by contracting an
edge. This gives us a cycle which in a sense is stronger than the former weak
double cycle. So, at most it can be a proper double cycle, which is also a
special case weak k-double cycle.

1d+(x, D) means outdegree of x in D and d−(x, D) means in-degree of x in D
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Lemma 2.1.2 Let D be a strong digraph such that D-v is not strong. Let H
be a terminal component of D-v. Let D’ be the H-reduction of D at v. If D’
has a weak k-double cycle, then so does D.

This lemma states that, if we obtain a terminal component-reduction of a
digraph at a vertex, and this newly-obtained digraph contains a weak k-
double cycle, then original graph also contains one. In other words, if the
original digraph does not contain a weak k-double cycle, then the new one
also cannot contain a weak k-double cycle(Contrapositive of the lemma).
[Proof] Let M ′ be a weak k-double cycle in D′. If it has an arc vz′ then that
means D has an arc to z′ from some vertex outside H, say z. If P is a dipath
from v to z. If we replace vz′ in M ′ by the dipath P , M ′ is transformed into
a weak k-double cycle in D. Observe that if one more such arc, say y ′(and
vertex y corresponding to it), exists, then we will walk backwards from y

towards v and stop where we cut P . This subdipath is the replacement for
the arc vy′ if it is present in the weak k-double cycle. Thus any weak k-double
cycle in D′ can be transformed into one in D. Hence proof.

Lemma 2.1.3 Let v be a vertex in a strongly 2-connected digraph D. If D-v
contains a dicycle whose vertices all are dominated by v (in D) , or a dicycle
whose vertices all dominate v (in D) then D contains a weak 3-double cycle.

[Proof] Here, we use the Menger’s theorem to prove the lemma. In simple
terms, Menger’s theorem states that, if a digraph is (strongly) k-connected
then there are at most k independent (pairwise internally disjoint) paths be-
tween any two vertices in the digraph. In particular, there are 2 independent
paths between any two vertices in a strongly 2-connected digraph.
Consider a dicycle C whose vertices all dominate v. By Menger’s theorem,
there are two independent paths, say P1 and P2, between v and vertices of
C. That is to say, if we take any two different vertices, say, c1 and c2 on the
dicycle C, then the two v − V (C) dipaths–v − c1 and v − c2 have nothing
in common except v. Now consider the dicycle C, the two dipaths P1 and
P2, and the arcs in D from c1 and c2 to v(any vertex on the dicycle domi-
nates v). The union of all these actually forms a weak 3-double cycle with v,
c1 and c2 being the ‘three main’ vertices. This situation is pictured as follows:
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C

Digraph D

c1

c2

P1

P2

v

Splice out P1,P2,
c1,c2,C, and v

v

c1

c2

Weak 3-double cycle 
around c1,c2 and v.

Thus, D contains a weak 3-double cycle. The case where v dominates all the
vertices of C is proved similarly using two V (C) - v paths. Hence the lemma
is proved.

Lemma 2.1.4 Let v1,v2,v3,v4 be vertices in a strongly 2-connected digraph
D such that D contains the arcs v1v3, v1v4, v2v3, v2v4 and v3v4. Then D
contains a weak 3-double cycle.

[Proof] We again use the Menger’s theorem here. As D is strongly 2-
connected, there should be two arc-disjoint paths between any two vertices.
Lets say P1 and P2 be two dipaths from v4 to v1 and v2, respectively. The
only common vertex to these graphs is v4 itself. Now there are two possibil-
ities for the remaining vertex v3 : either it lies on one of the dipaths P1 or
P2 or it does not. We consider both cases and prove the lemmas in both the
cases.

Assume that v3 does not lie either on P1 or on P2. Now, observe that,
one dipath from v3 to V (P1) is the arc v3v4. By Menger’s theorem, there has
to be one more such path, say P3. We can safely assume that P3 intersects
P1. Then we can form a v3v4 dipath as follows: we can leave v3 along P3,
reach P1 somewhere and then follow P1 from there to v1.

Thus, we have three vertices now - namely, v1, v3 and v4. The dipath
formed by concatenating P1, the arc v1v3, and arc v3v4 is a dicycle in one
direction–v4v1v3v4. The dipath formed by concatenating the arc v1v4, P2
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(from v4 to v2) and arc v2v3 and then the path from v3 back to v1 as dis-
cussed above is a dicycle in another direction–v1v4v3v1. Thus we have found
a weak 3-double cycle.

Consider the second case. Here v3 ε P1. So, P1 now gets partitioned into
two dipaths–R1(from v4 to v3) and R2(from v3 to v1). Also, one way for the
vertices in V (R1)∪V (P2) to reach to those in V (R2) is through v3. So, there
has to be one more path not involving v − 3. Call this path P3. Now we can
form a v4 v1 dipath (not passing through v3) by leaving v − 4 along P1, then
leave P1(or if P3 is from a vertex on P2, we leave v4 along P2 and then leave
P2) along P3, before v3 is reached and reach on R2 part of P1 and then follow
rest of R2 to reach v1. We have necessarily bypassed the vertex v3.

We again form a weak 3-double cycle around vertices v1, v3 and v4 as
follows: The cycle formed by concatenating arcs v1v3 and v3v4 with the v4v1

dipath as formed above is a dicycle in one direction–v1v3v4v1. Similarly the
cycle obtained by concatenating arc v1v4, dipath R1 and dipath R2 is a dicycle
in the other direction–v1v4v3v1.
Hence the proof of this lemma.

2.2 Proof of main result

Theorem 1 Let D be a strong digraph such that each vertex has outdegree
at least 2. Let v1, v2,v3 be vertices such that all other vertices of D have
outdegree at least 3. Assume further that if we remove any vertex other than
v1, all the remaining vertices are still reachable from v1. Then D contains a
weak 3-double cycle. In particular, D is even.

Outline of proof
The proof proceeds as follows:

• First assume the theorem to be false and let D be a minimal counterex-
ample to the theorem. That is, a counterexample with as few vertices
and arcs as possible subject to the conditions in the theorem statement.

• Using lemmas from previous chapter obtain graphs smaller than D that
retain certain properties of D(like evenness or non-evenness).

10



• Now construct a graph G, from these intermediate small graphs, such
that G is in some sense smaller than D and still is a counterexample
to the theorem.

• Lastly, G is a contradiction to the minimality of D. And hence the
proof.

The proof proceeds in various parts. So we present the explanation of the
proof in various sections that follow. All the related parts of the original
proof have been clubbed up under one section.

2.2.1 Proving properties of graph D

(1) D is strongly 2-connected
We prove this property by contradiction. Suppose that D was not strongly 2-
connected. That means there is some vertex u such that D−u is not strong.
Let D′ be a terminal component of D − u. We have assumed that if we
remove any vertex, all other vertices are still reachable from v1. So v1 can’t
be in the terminal component D′.(By definition, any vertex in a terminal
component can have arcs to vetices from the same component only.) Note
that although v1 cannot be in the terminal component, u can itself be equal
to v1, which is fine.
Obtain the D′-reduction of D at u – call it D′′. Now we will prove that D′′

is a smaller counterexample to the theorem. For this, we need to prove:

• D′′ has minimum outdegree at least two.

• Some vertex of D′′ plays the role of v1.

• D′′ contains no weak 3-double cycle.

To prove the first assertion, we observe that the outdegree of all vertices
in D′′ is same as their outdegree in D, except for u. (Because the only
change we made was removing u and we restore that while forming the re-
duction. All other outgoing arcs have to be within the terminal component
only) So, d+(x, D′′) = d+(x, D′′) ≥ 2 ∀ x ε D′. We also need to prove that
d+(u, D′′) ≥ 2, because u might have ‘lost’ some arcs to vertices not in the
terminal component. For that, lets assume that outdegree of u is less than 2,
say 1. This means that there is at most one arc from the rest of the graph to
the terminal component D′(While forming the reduction, we add arcs from
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u into D′ to account for this connectivity). So, if we remove the only ver-
tex from D′ to which u has an arc, there is no way for v1 (which is outside
the terminal component) to reach any vertex from D′. But this is not true.
Hence outdegree of u should also be at least 2.
Now that u has outdegree at least two in D′′, it can play the roll of v1 in D′′.
This proves the second assertion. And, by lemma 2.1.2, as D does not have
a weak 3-double cycle(assumption in the proof), D′′ also doesnot have one.
This proves the third assertion.

We have proved that D′′ is a smaller counterexample to the theorem so
it contradicts the minimality of D. We conclude that the assumption that
we started off with is false. Hence D is strongly 2-connected.

(2) Outdegree of v1 (in D) is 2
To prove this, note that if all vertices had outdegree at least 3, we could take
a vertex say z dominating v1, remove the arc zv1 and get a graph smaller
than D with v2 = z(as D is strongly 2-connected, any of the v ′

i
s can play

the role of v1); and this would again contradict the minimality of D. Conse-
quently, some vi has to have outdegree 2 and it will then play the role of v1.
So if d+(v1, D) = 2, let u1 and u2 be two vertices dominated by v1.

(3) If we delete the arc v1u2 and contract v1u1, then the resulting
digraph has minimum outdegree at least 2
To prove that this indeed is the case, we will investigate the possible situ-
ations where this is not the case. So if after deleting v1u2 and contracting
v1u1, the minimum outdegree is not 2, it has to be the case that either:

i. Outdegree of u1 in D was 2 and one of the two vertices it dominated
was v − 1 and due to contraction v1u1, the new vertex formed now has
outdegree 1. OR

ii. Some vertex z1 of outdegree 2 in D dominated both u1 and v1 in D.
And because u1 and v1 are now the same vertex, z1 has now only one
outgoing arc.

As the roles of u1 and u2 can be interchanged (v1u1 deleted and v1u2

contracted), we also have the other two symmetric possibilities where
the above statement might be violated. So we also have either:
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iii. Outdegree of u2 in D was 2 and one of the two vertices it dominated was
v − 1 and due to contraction of v1u2, the new vertex formed now has
outdegree 1. OR

iv. Some vertex z2 of outdegree 2 in D dominated both u2 and v1 in D.
And because u2 and v1 are now the same vertex, z1 has now only one
outgoing arc.

Now we systematically investigate and prove that the statement is true in all
the four scenarios. Let’s see first what happens if (ii) or (iv) are true. If (ii)
is true and z1 is equal to u2, then the situation is something like this : Here
there is a cycle whose vertices all dominate a vertex. And by lemma 2.1.3,
such a graph should contain a weak 3-double cycle, which, by assumption is
false. So, if (ii) is true, then z1 can’t be same as u2. Symmetrically, if (iv) is
true, then z3 can’t be same as u1. So, if (ii) ever holds, we can choose the
notation such that z1, v1, u1 (or z1, v1, u1) play the roles of v1, u1, u2 (that
is above statement is true if we contract z1v1 and delete z1u1). Note that
this is possible because here z1 can’t be u2. And also because the following
: there are at most three vertices of outdegree 2 in D and if (ii) holds, two
of them are v1 and z1. The third can either be u2 (if (iii) is true) or z2 (if
(iv) holds). Understand that (i) and (ii) become true/false independent of
(iii)/(iv).

And if z1, v1, u1 cannot play the roles of v1, u1, u2 that means due to
contraction of z1v1, some vertex of outdegree 2 that dominated z1 as well as
v1 lost its outdegree. And the only vertex remaining which can be of outde-
gree two is u2. So (iii) holds. But given this situation, z1, u1, v1 can play
the roles of v1, u1, u2. That is instead of contracting z1v1, we will contract
z1u1. This will work because now there is no vertex of outdegree 2 that can
dominate both z1 and u1.

We now consider the case when (i) or (iii) hold. So if (i) and (iii) hold,
v1 dominates and is dominated by both u1 and u2. Now the scenario looks
like that of a cycle with all dominating/dominated vertices. So if there is an
arc between u1 and u2 then lemma 2.1.3 will be applicable. And will imply
that the graph contains a weak 3-double cycle, which is again false. So, there
is no arc between u1 and u2.So if y be the vertex (6= v1) dominated by u1.
Then u1, y, v1 can play the role of v1, u1, u2.
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2.2.2 Obtaining D1 and D2

We saw in the previous section that a digraph obtained from D by contracting
arc v1u1 and deleting arc v1u2 has minimum outdegree at least 2. We now
call this digraph D1 and call the new vertex formed (due to contraction) as
u′

1. Similarly the digraph obtained by interchanging roles of u1 and u2 (i.e.
by contracting v1u2 and deleting v1u1) is called D2 and the new vertex here
is called u′

2. We note here that all the statements about D1 that we prove in
next section are also true for D2.

As D1 is obtained from D by contraction of an arc whose initial vertex had
outdegree 1 (before we contracted v1u1 we deleted v1u2, making outdegree of
v1 1), lemma 2.1.1 applies here. So, as D doesn’t contain a weak 3-double
cycle, D1 also doesn’t contain a weak 3-double cycle. Next we claim that
there are at most three vertices of outdegree 2. To see this, note that when
we contract v1u1, we are loosing a vertex of outdegree 2. And if at all any
new vertex of outdegree 2 is created anew, there can exist only one such
vertex. Why? Because of the following: New vertex of outdegree 2 may be
produced either because u1 had out-degree 3 and dominated v1 or because
some other vertex w of outdegree 3 dominated both u1 and v1. But if u1

dominated v1 then existence of w creates the scenario of lemma 2.1.3 (the
cycle v1u1v1 with all vertices dominated by w) and implies that D1 contains
a weak 3-double cycle. And the existence of 2 such w’s creates the scenario of
lemma 2.1.4 (two vertices dominating a pair of vertices–u1 and v1, which have
an arc between them) and again implies that D1 contains a weak 3-double
cycle. But as D1 doesnot contain a weak 3-double cycle, either u1 dominates
v1 or some other w (only one) dominates both u1 and v1. Therefore, if D1

happens to be strongly 2-connected, it will be a smaller counterexample to
the theorem, contradicting the minimality of D and so D1 is not strongly
2-connected.

2.2.3 Obtaining and proving properties of D′
1 and D′

2

Since D1 is not strongly 2-connected, we can find a vertex z1 such that D1−z1

is not strong. We now choose a z1 such that the terminal component H1 of
D1 − z1 is relatively minimal. That is if we choose any other such vertex z ′

then the terminal component obtained is either bigger than this or is equal
to this (i.e. H1). Call the set of vertices of D1 other than z1 that are not
in the terminal component H1 as I1. We now investigate which vertices of
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u′

1, u2, and z1 lie in which parts of the graph D1. (A similar analysis can be
done about D2 also, as noted in the previous section).

(4) u2 ε I1 and u′

1 ε H1 ∪ {z1}
Where can u′

1 lie in D1? Observe the situation here. As D1−z1 is not strong,
and H1 is the terminal component created by removing z1, we know that in
D1, the only way for the vertices in H1 to reach to other vertices (namely
those in I1) is through z1 (which got cut away by the removal of z1). But
D1 has been obtained from D by contraction of v1u1. If we restore that arc
back, we get back D (of course we have to add the deleted arc v1u2). But
this will not make any difference to the locality of v1 and u1. They will lie
only where u′

1 lies in D1. And so, if v1 happens to be in I1, then even after
restoring to D the only way out for vertices in H1 is through z1 only. But
there has to be one more because D is strongly 2-connected. For this reason,
v1 must be in H1 so that u2 is in I1 and when we add that arc back to get
D, we form one more way out for the vertices in H1 (other than through z1).
So, u′

1 lies in H1 (or equals z1) and u2 lies in I1.

(5) D′

1 is strongly 2-connected
We obtain the H1-reduction of D1 at z1 and call it D′

1. As D1 has outdegree
at least 2, there are at least 3 vertices in D′

1. Now we need to prove that
if we remove any vertex from D′

1, it still remains strong. Clearly as D′

1 is
a reduction at z1, if we remove z1 what remains is itself a strong (termi-
nal) component. So we prove this for all other vertices than z1. Now if we
show that if we remove any other vertex, z1 can reach the remaining vertices
and the remaining vertices can reach z1. This proves that, the graph is still
strong. Now, any vertex of D′

1 must be able to reach z1. Because if that is
not the case, we can exclude those vertices from H1 and still form a terminal
component H ′

1 which in fact is smaller that H1 and hence contradicts the
minimality of H.

So what remains to be proved is that if we remove any vertex from D′

1,
z1 can still reach remaining vertices. We prove it as follows:
Here we make use of the fact that D is strongly 2-connected and hence D− t

has a path from z1 to all other vertices, in particular, those in H1 (because
those are the ones in D′

1). So basically we want to prove that these paths
do exist in D′

1 as well. So, in D, (as there are now two logical parts of D

now, namely I1 and H1) this z1-H1 path can either come to H1 directly or
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it can come via a vertex of I1. In the first case we are done. This path
will surely be included in D1 (This follows from definition of H-reduction).
And if that path comes via I1, then at some point the path must leave I1

and enter H1(and afterwards remain in H1 only). Let this happen at the
arc w1w2 (such that w1 ε I1 and w2 ε H1) Now as w2 has an arc from I1,
while forming the reduction D′

1, we will add an arc from z1 to w2. So,
in D′

1, take this arc from z1 to w2 and then follow the original path to any
vertex in question. This completes the proof that D′

1 is strongly 2-connected.

(6) D′

1 has precisely four vertices of outdegree 2. Three of them
are z1, v2, v3(if one of v2, v3 is u1 then we take u′

1 in its place). The
fourth vertex is either u′

1 or a vertex of outdegree 3 that dominates
both v1 and u1.
First, by lemma 2.1.2, D′

1 does not contain a weak 3-double cycle. It also is
strongly 2-connected. So if it also has at most three vertices with outdegree
2, then it will become smaller counterexample to the theorem, contradicting
the minimality of D. So it must violate this condition in the theorem. So,
one thing is clear that D′

1 has at least four vertices of outdegree 2. Now
investigate who are the candidates.

One possibility is z1, then v2 and v3 are also candidates because they
had outdegree 2 in D as well. Then there can be a vertex of outdegree 3
which dominates both v1 and u1 or u1 itself can be of outdegree 3 and could
dominate v1 in D. But as discussed in section 2.2.2 exactly one of these two
can happen and also in case the latter happens, there can be at most one
such vertex. Hence the three stable candidates are z1, v2, v3. (with one of
them possibly equal to u1). This reveals the fact that in D, v2 and v3 lie in
the H1 part because they are in D′

1 and D′

1 is composed of V (H1) and z1.
Possibility is that one of v2 or v3 are same as u1 and also z1 is u′

1. But these
two can’t happen together because there are at least 4 vertices of outdegree
2 in D′

1. So conclusion is that,

v2, v3 ε H1

Also note that, as u2 ε I1, and v1, v2 are in H1, u2 can’t be same as v2 or v3.
Neither can it be the case that v1 or v2 dominate u2. But, there are only three
vertices of D which can possibly have outdegree 2. And they are v1, v2, v3.
Now that u2 can’t be same as v1 is but obvious. Hence u2 has outdegree at
least 3 in D.
In section 2.2.2 we pointed out that the statements being made for D′

1 have
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counterparts for D′

2 and they hold there. So, as from analysis of D′

1 we got
that u2 has outdegree 3 or higher in D, we get that u1 has outdegree 3 or
higher in D, from the analysis of D′

2. Essentially we want to emphasize here
that u − 1 and u2 are different than {v1, v2, v3}. And hence, although v1, v2

belong to H − 1 (and u1 also lies there) they can’t be equal to u1. So we
refine the above relation as :

v2, v3 ε H1 − {u′

1}.

(7) u1 ε I1 and v2, v3 ε H2-{u′

2}
This is immediate from the fact that the statements made about D′

1 above
are all true for D′

2 also.

(8) Some vertex of I1 ∪ {z1} dominates v1 in D

Now we consider the D′

2 counterpart of the statements about D′

1. There are
precisely 4 vertices of outdegree 2 in D′

2 also. Follows the fact that either
u2 dominates v1 or some other vertex of outdegree 3 dominates both v1 and
u2. (Obtained by just interchanging the occurrences of u1 and u2 from the
statement in previous section). Now we know that u2 lies in H1. So, a vertex
dominating it cannot lie in H1. Because, there are no other paths from H1

to I1 than through z1 and the arc v1u2. So in both cases, a vertex from I1

dominates v1. Note that this vertex can also be z1. Because there is a gap
in this argument which is filled by z1.

(9) Either z1 6= u′

1 or z2 6= u′

2

That is to say, both of the above clauses cannot be false at the same time.
That is, z1 being u′

1 and z2 being u′

2 cannot happen at the same time. How
do we prove this?

Consider z1 = u′

1. What does this mean when we move back to the
original graph D? If we split back z1 (which is now u′

1) to give us v1u1, we
get back D (after of course, replacing the deleted arc v1u2). So, now the two
independent paths from the vertices in H1 to those in I1 are – one through
the arc v1u2 and other through the vertex u1. So, as u2 is in I1, and v2 is in
H − 1, any path from v2 to u2 in D − v1 must contain u1.

Similarly, we can start with z2 = u′

2, and can conclude from the analysis
of D′

2 that, any path from v2 to u1 in D − v1 must contain u2. But because,
as D is strongly 2-connected, D−v1 should have a v2-{u1, u2} dipath. (That
is either a path to u1 which doesn’t have u2 or vice versa) This contradiction
proves that, both the assertions cannot be true at the same time.
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So, we can choose the notation such that, say, z1 6= u′

1 and then z2 = u′

2.
But once we do this, we can no longer interchange between u1 and u2. Hence
we would like to investigate further the vertices in I1 and H1.

2.2.4 Investigating vertices in I1, H1, I2, H2

(10) If z2 = u′

2 or z2 ε V (I1) − {u2}, then z1 ε V (H2)
The meaning of the claim : This means to say that if z2 lies in the vertex set
I1 , then z1 lies in H2. The union and set difference operations are just to
handle some boundary conditions. For a first read we can skip it. So what
are the boundary conditions?

Here we write V (I1) − {u2} to emphasize that, while defining z2, in D2,
there is no u2, we have contracted it but when we talk of I1, we know that
u2 is there in it. And hence z2 is in I1 but can’t be equal to u2 and u′

2 is not
in I1 but still z1 can be equal to u′

2.
[Proof] To understand why this is true, note first that v2 belongs in H1. And
secondly, as D is strongly connected D − v1 is strong. So if we consider any
v2 − z1 dipath in D− v1, it will not contain any vertex from I1 other than u2

because we know that only way from H1 to I1 other than through z1 is the
arc v1u2. So in particular, if z2 is in I1 (and of course is not u2), then any
v2 − z2 dipath will not contain z2. But what if z2 = u′

2? Even then any v2z1

dipath cannot contain z2 because, we can split back the contracted arc v1u2

and get back D. But in D − v1 this arc is lost. So if you now want to reach
any vertex in I1 you have to go through z1 only.

Hence on a v2 − z1 dipath in D − v1, z2 will never occur. But now try to
look at this from the D2 perspective. We also know that v2 lies in H2. And
similarly only way out from H2 in D − v1 is through z2. But if no v2 − z1

path ever contains z2 then the path will never move out of H2. In particular,
its end, z1 will be in H2.
Hence, if z2 is in I1 then z1 will be in H2.

(11) If z2 = u′

2 or z2 ε (V (H1) − {u′

1}) ∪ {z1}, then I1 − u2 ⊆ H2

The meaning of the claim : In the previous claim we investigated the effect
on z1’s location of z2 being in I1. Now we study the effect when z2 lies in the
other part of graph–i.e. H2 and z1. The claim says, again in simple terms,
that if z2 lies in H1 ∪ {z1} then the whole of I2 is contained in H2.

Once again the set differences and all are here to take care of boundary
conditions. When we say z2 εH1, we emphasize that while defining z2, we
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did not contract u1. So u′

1 is non-existent at this time although it is there
in H1 ; so we must rule out the possibility of z2 = u′

1 while talking of z1

being in H1 in general. Again when we say all of I2 is contained in H2, we
must not mean that u2, which is otherwise an element of I1, is there in H2.
Because basically, while obtaining H2, we contracted v1u2 to get u′

2 and so
u2 is non-existent at this time.
[Proof] We will prove it separately for the cases z2 = u′

2 and z2 is in H1.
Assume first that z2 = u′

2. So by the previous property, we now say that z1

lies in H2. Now, as D is strongly 2-connected, D−u2 is strong. In particular,
there is a z1-I1 dipath. We want to prove that this path is present in D2 − z2

also. So while forming D2, we have deleted v1u1 and if this path avoids u1

and z1, then we are done. This indeed is true. Because, v1, u1 are in H1 and
the only way from H1 to I1 other than through z1 is the arc v1u2. But in
D − u2, we don’t have that arc. So any such z1 − I1 path is there in D2 − z2

also. But in D2 − z2, H2 is a terminal component. Recall what we started
off with–z1 is in H2. So any path from z1 must also end in H2. So all those
vertices to which z1 has a path, particularly, all vertices in I1, are in H2.
Hence H2 contains all of I1.
The second case is z2 belongs in H1 or is equal to z1. Here as z2 6= u′

2, u′

2 must
lie in H2. (It is either equal to z2 or it has to be in H2) Again as D is strongly
2-connected, D − z1 is strong. So it has dipaths from u2 to all other vertices
of I1. We want these paths to be present in D2 − z2 as before. For this note
that because we are removing z2 which is not u′

2 from D2. And D2 is obtained
by contracting v1u2 into u′

2. So all u2-I1 paths from D − z2 come in D2 − z2

(They become u′

2-I1 dipaths now). But H2, where u′

2 lies, is a terminal com-
ponent of D2−z2. So all these paths also end in H2. Hence all the endpoints,
namely, all the vertices of I1 lie in H2. This exhaustively proves the assertion.

(12) If z2 ε V (I1) − {u2}, then (V (I1) − {u2, z2}) ∪ {z1, u
′

2} ⊆ V (H2)
The meaning of the claim : This claim says that if z2 is in I1, then again
all of I1 is contained in H2. Once again V (I1) − {u2} stands for the same
purpose as discussed previously. And here, when we say I1 is contained in
H2, we don’t mean it for u2 as before, as well as for z2 because now z2 also
is there in I1. Clearly z2 is outside H2 and u2 is non-existent at the time of
defining H2. And this time we are making the assertion a bit stronger by
saying that z1 and u′

2 are also in H1.
[Proof]To prove this we do the folowing. We proceed on the similar lines.
If z2 is in I1, we already know that z1 is in H2 and u′

2 is in H2 as before,
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because it is not equal to z2. So we will try to find paths from these to all
other vertices in I1. So, as D is strongly 2-connected, D − z2 is strong. So
it has paths from {z1, u2} to all other vertices of I1. We argue that these
dipaths come in D1 − z2 also. To see this, as usual, observe that, z2 is not
u′

2 and contracting v1u2 does not affect paths passing through u2. They just
become u′

2 paths now. Also, to make sure that these paths remain within I1

only, we here consider only shortest paths, so a path from u2 cannot go to
H1 since then it has to come back only through z1 and in that case, we will
consider the shorter path through z1 only. The same argument applies to
paths from z1 also. Hence all these dipaths avoid the vulnerable v1 and u1.

So, we have proved that there are {z2, u
′

2} - I1 paths in D2 − z2. But
both these starting points lie in the terminal component of this graph–H2.
So they all must end in H2 itself. So all there endpoints (namely all of I2)
are in H2. This proves the assertion.

(13) There is at most one vertex in I1∪{z1} that in D dominates
u1

We know that u1 is in I2 and H2 contains almost all of I1. And there are not
many arcs from H2 to I2. So intuitively, there are not many vertices from I1

either that in D dominate u1. We formally prove this.
[Proof] The only possibilities here are z1, z2 and u2. We prove that exactly
one of these three possibilities hold at any time. We do this by exhaustively
considering the places where z2 can lie as follows :

• z2 = u′

2 : In this case, by (10) and (11), z1 lies in H2 and so we don’t
care about it. So, only possibility is z2 (= u′

2)

• z2 is in I1 : Apply (12) to get I1 ⊆ H2 and z1, u
′

2 ε H2. So none of these
two are a concern. Only possible choice here is z2.

• z2 is in H2 : Here by (11) we get I1 − u2 ⊆ H2. So nobody else than
u2 is from I1.

• z2 = z1 : So here as z2 6= u′

2, u′

2 lies in H2. Once again we are left with
only one choice–z2 (=z1).

This proves that at most one vertex from I1 ∪ {z1} can dominate u1 in D.

We now form the graphs G and G′ in the next section and prove that G′

is a counterexample to the theorem.
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2.2.5 Obtaining G and G’

Let G be the digraph obtained from the subdigraph of D induced by I1 ∪
{r, v1, z1} by adding the arcs rv1 and rz1, if they are not present already.
As D is strongly 2-connected, D contains two independent r−{v1, z1} paths
(that is, they have nothing common except r). If we look at these paths as
subdivisions of the arcs rv1 and rv2, then these dipaths together with the
subdigraph from which we formed G is a subdivision of G. Hence G does not
contain a weak 3-double cycle. Observe that v1 has outdegree 1 in G (be-
cause, it can only dominate u2, which is from I1 in G). So we can contract
v1u2 into u′

2 to get a new digraph called G′. So G′ also does not contain a
weak 3-double cycle.
We now prove that G′ satisfies the conditions of the theorem and hence it is
a smaller counterexample than D, contradicting the minimality of D. This
will complete our proof.

(14) All vertices of G′ have outdegree at least 2 in G′

Why is this true?
We reason when this might go wrong. It will only happen when some

vertex of I1 has an arc outside I1, that is to H1.(other possibility is arc to z1

but z1 is already included in G) So how many of such vertices can be there
in I1? And which are they? Recall how we formed the H1 reduction at z1.
We added arcs from z1 to the vertices of H1 which had an incoming arc from
some vertex of I1. So, these arcs from z1 to H1 in D′

1 represent the arcs
from I1 to H1. We have already proved in (6) that number of such arcs is
2(outdegree of z1 is 2) So, at most 2 vertices from I1 dominate some vertex
from H1. And these vertices from H1 which have arcs from I1 in D are the
vertices dominated by z1 in D′

1. So, one of them is u′

1 and the other is r.
And we have already included these two vertices in our digraph G. Note that
although we have not included u′

1 we have its representative from D viz. v1.
So all these vertices preserve their degrees in D. And in D, we know that
the minimum outdegree is at least 2. Consequently, minimum outdegree in
G′ also is 2.
So is there any other reason why any vertex would loose its outdegree while
comming from D to G′? The answer is yes. If a vertex dominates v1, u1 and
u2 in G will have outdegree 1 in G′. But we know that this situation calls
for the application of lemma 2.1.4 and so implies that D contains a weak
3-double cycle, which we know is false. So this is impossible. What else? I a
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u2 dominates both v1 and u1 (and because we are contracting v1u2) now u′

2

may have an outdegree equal to 1 in G′. But already we know that this also
is impossible, because it calls for the application of lemma 2.1.3 and implies
that D contains a weak 3-double cycle, which is a contradiction.

(15) If we remove any vertex from G′, the remaining vertices
are still reachable from r (r plays the role of v1).
Here, r in G′ has direct arcs to u′

2 (because we added rv1 in G) and z1 so if we
remove any vertex, v−1 and z1 are already reachable from r. What about all
others? We observe that D is strongly 2-connected and hence D−any vertex

has a path from r. And also in particular, D − u2 has a path from r to any
vertex. We easily get this dipath in G′ for the vertices we are interested
in–those in I1. Hence r in G′ can play the role of v1 in D.

(16) G′ is strong
We have already proved that any vertex in G′ is reachable from r. Now if we
prove that any vertex can reach r in G′, we are done. For this, first observe
that D−u1 has a path to r from any vertex because D is strongly 2-connected.
But any dipath in D − u1 from I1 ∪ {z1} is in G′ also because outdegree of
v1 in G is one (it only dominates u2). So we conclude that G′ is indeed strong.

(17) G′ has at most three vertices of outdegree
Lastly we investigate the vertices of outdegree 2 in G′. Here, r has out-degree
2 in G (and so in G′). We have already asserted that all other vertices that
belong to I1 have the same outdegree in G as in D which is ≥ 3. So the
only other vertex in G of outdegree 2 is obviously v1. While forming G′ from
G, we may create a new vertex of outdegree 2 which is either u′

2 or a vertex
that dominated both v1 and u2. But again by application of lemmas 3 and
4 and forming a contradiction, we can prove that only one of these two can
happen. Thus, there are at most three vertices in G′ which have outdegree
2 in G′.

2.3 conclusion

From the above three assertions, we conclude that G′ satisfies the conditions
in the theorem and still it doesnot contain a weak 3-double cycle. That is it
is a counterexample to the theorem. But this graph is certainly smaller than
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D (it is obtained from a part of D, viz. I1). So, it contradicts the minimality
of D. This contradiction completes the proof.

Note that we obtained such kind of contradictions a number of times
during the proof, but the proof completed here only. Because every time we
obtained a contradiction, there was always an escape from this contradiction–
such as proving that the digraph is strongly 2-connected or something else.
But only last time we had no escape, a complete contradiction. Hence the
proof concluded there.
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