
Network functions in virtualized GPU environment
Avinash Kumar Chaurasia

Computer Science and Engineering
Indian Institute of Technology Bombay, India

Email: avinashk@cse.iitb.ac.in

Uday Kurkure, Hari Sivaraman and Lan Vu
Performance Engineering

VMware, USA
Email: {ukurkure, hsivaraman, lanv}@vmware.com

Sairam Veeraswamy
Innovation Program

VMware, India
Email: sveeraswamy@vmware.com

Bhaskaran Raman
Computer Science and Engineering

Indian Institute of Technology Bombay, India
Email: br@cse.iitb.ac.in

Abstract—Network functions virtualization (NFV) is an emerg-
ing and important research topic in the telecom domain to pro-
vide innovative solutions that reduce cost and improve network
processing & computing efficiency. Attaining high throughput
is a key challenge and an important goal in the deployment of
NFV. While horizontal scaling can improve the throughput, it
increases the management complexity for cloud native NFVs.
Another approach is using accelerators to enhance the NFV
throughput, which can help reduce cost and simplify the large-
scale deployment of NFV. In the cloud environment, the increas-
ing use of virtualized GPU by large cloud providers requires
GPU-based NFV solutions to leverage virtual GPUs for efficient
cloud deployment. However, most researches in NFV acceleration
are done for non-virtualized GPU while utilizing virtualized GPU
for NFV is still under-investigated in the industry and research
community. In this paper, we present our study that addresses
this problem by exploring virtualized GPU to maximize the
benefits of NFV and analyze NFs behavior with respect to virtual
GPU in multiple use cases. We demonstrate using virtual GPU
increases GPU utilization and provides higher performance and
throughput for GPU-based NFV. Our experimental results show
that virtual GPU can help NFV deliver up to 288% in throughput
comparing to using passthrough GPU.

Keywords—NFV, GPU, vGPU, hardware assisted virtualized
GPU.

I. INTRODUCTION

Network functions (NFs) such as firewall, HTTP proxy,
IPSec, etc., usually come in the form of special hardware
known as application specific integrated circuits (ASICs).
These ASICs are very costly and deployed in almost every
generation of telecommunications(telecom) network. Since
every generation of the cellular network requires a different set
of NFs, telecom companies had to invest massive capital with
each generation change to upgrade the network processing. For
example role of mobility management entity (MME) in 4G is
taken over by three NFs in 5G, namely mobility management
function (AMF), session management function (SMF), and
authentication server function (AUSF). This huge upfront cost
is one of the important reasons why every telecom company is
hesitant to bring new technologies and want to continue with
the old generation network as much as possible. Over the last
decade, researchers tried to bring down the cost with network
function virtualization(NFV). With NFV, ASICs are supposed

to be replaced by NFs software, and NFs are executed over
generic compute units such as x86 cores. This helps in cost
reduction with respect to deploying new networking hardware.
Furthermore, it minimizes maintenance efforts because the
new upgrade is mostly done at the software level and can
be automated. Therefore, the advent of NFs makes telecom-
munications more agile and rapidly adapt to new demands
from the customers. However, NF deployment over x86 lacks
the processing power of ASICs because of the many inherent
software overheads. One of the overhead lies with the TCP/IP
stack [5]. The kernel allocates a buffer for each incoming
packet, then copies it into the kernel buffer, copies it further
into the application buffer, and later deallocates the kernel
buffer once it is no more required. Another problem is the
throughput obtained per CPU core. For a compute intensive
NF, per core throughput is very low. In such cases, horizontal
scaling can improve throughput. Horizontal scaling means
packets need to be transferred over network fabric in the data
center, causing extra latency overhead. Furthermore, managing
horizontally scaled network function is another important
research topic. Recent research tries to address a few of
these problems with possible software optimizations such as
DPDK [17] and netmap [15]. Both DPDK and netmap provide
zero-copy via bypassing traditional TCP/IP stack and directly
copy the packet in application mapped buffers.

Recent research is more focused on using accelerators such
as GPU [5]–[7], [18] and FPGA [8] for achieving better
throughput. However, using GPU for high-speed NF process-
ing introduces a different set of challenges. Discrete GPUs
suffer from PCI bus performance, as each packet needs to
move between GPU memory and CPU main memory in both
directions over the PCI bus. GPU Direct technology solves
the problem by offering direct packet transfer between NIC
and GPU memory, thus avoiding the CPU’s main memory;
however, even with this technology, packets are transferred
over a PCI bus.

Nowadays GPUs are an integral part of the cloud offered
by various vendors [2], [4], [11]. GPUs demand in cloud
setup is mostly related to solving compute intensive problems
having SIMD (Single Instruction Multiple Data) nature since



it can solve them relatively at ease with their higher compute
cores. These problems span across multiple areas such as
High Performance Computing (HPC), Machine learning, Deep
Learning, etc. In all the GPU enabled cloud infrastructures
[2], [4], [11], GPU is provisioned using a PCI passthrough
mode. However, provisioning this way negated the advantages
of virtualization. In passthrough mode, a GPU is directly
assigned to a VM and cannot be multiplexed across multiple
VMs. Many software based multiplexing techniques such as
API-level interception [16], remote GPU abstraction [19] and
kernel slicing [9] have been recommended for the purpose.
However, to provide a better performance, NVIDIA introduced
virtual GPUs to provide hardware assisted multiplexing. The
technology allows a GPU to be virtualized and exposed as
multiple vGPUs such that each VM gets a separate vGPU.
NVIDIA driver schedules these VMs on GPU on a temporal
basis.

In a cloud setup, both of these two modes (passthrough
and virtual GPU) are available. However, when it comes to
NFV acceleration research, a significant portion of literature
covers non virtualized GPUs [3], [5], [6] or passthrough mode
GPU [21]. There is little to no work that provides NFV accel-
eration in a cloud setup, especially hardware-assisted virtual
GPU mode. Since passthrough mode is very similar to using
GPU in a non-virtualized manner with a little overhead, both
these setups’ performance would be the same. However, virtual
GPU setups are different, and without a study, predicting what
could be a better way to utilize GPU for NFV acceleration is
difficult.

Furthermore, virtual GPU setups provide two fine-tuning
knobs for application performance: scheduling algorithm and
vGPU profile. Selecting an appropriate scheduling algorithm
and vGPU profile affects the performance of workloads. Cloud
providers need to know which scheduling algorithm and vGPU
profile are most suitable for better GPU utilization concerning
the workload. In this work, we are trying to answer that
for NFs deployment, as we evaluate and characterize the
performance of NVIDIA hardware assisted GPU virtualization
using two compute intensive NFs. Our work helps achieve
line-rate throughput by providing inputs on the selection of
scheduling algorithms and vGPU profile. As a part of this
work, the following are our contributions:

• A detailed description of hardware assisted GPU vir-
tualization provided by NVIDIA, and it’s working and
limitations.

• We present our design of optimized versions of two
compute-intensive NFs for the GPUs.

• Detailed experimental evaluation of these NFs on two of
the most promising scheduling algorithms and different
vGPU profiles.

• Method of selecting an appropriate scheduling policy and
vGPU profile for optimal NF throughput using hardware
assisted virtualized GPU in cloud setup.

The next section will explain recent works on NFV ac-
celeration using GPU. Then in section 3, we will explain

GPU virtualization. In section 4, we will present our choice
of network function, design, and implementation. Section 5
describes the experimental evaluation of these NFs over two
different scheduling algorithms and vGPU profiles. Finally,
section 6 concludes our work with specific input on NF
deployment over virtualized GPUs.

II. RELATED WORKS

Network function virtualization aims to reduce capex and
opex, has a faster deployment, and improves innovation.
Another purpose is to minimize the dependencies on the
proprietary hardware to avoid vendor lock-in. Click [12]
provides a modular approach for building network functions.
It uses elements as basic building blocks that can be com-
bined to perform complex network functions. Most of the
research regarding NFV are concentrated on achieving high
throughput and low latency over x86. However, few works in
the past tried to improve performance with accelerators’ help
(FPGA and GPU). ClickNP [10] is a framework that provides
40Gbps line-rate throughput and low latency by accelerating
NFs over FPGA. ClickNP provides basic elements similar
to Click [12] for modular NF development. Furthermore, it
provides C-like high level language abstraction instead of
complex low-level HDL (hardware description languages).
PacketShader [5], SSLShader [7], Kargus [6] and G-NET [21]
are GPU accelerated NFV frameworks. PacketShader [5],
SSLShader [7] and Kargus [6] are specially designed while
keeping a particular NF in mind. PacketShader [5] accelerates
software router over GPU while optimizing many system
software for better throughput. SSLShader [7] is designed
for cryptographic computation over GPU and Kargus [6] is
intrusion detection system offloaded over GPU. Compared to
these three, G-NET [21] is a generic framework and provides
NFV chaining as additional functionality. G-NET [21] uses
HYPERQ enabled GPU to support the spatial sharing of
GPU. With the help of spatial sharing, it gives a complete
NFV chaining functionality over the GPU. With G-NET’s
exception, all of the GPU accelerated NF framework do not
use hardware assisted virtualization. Even G-NET [21] uses
GPU in passthrough mode. In the next section, we will explain
hardware assisted virtualized GPU.

III. BACKGROUND

Initially, GPUs can be part of virtual machines (VMs)
only in passthrough mode, i.e., each VM must have a ded-
icated GPU. The benefits of virtualization are relatively low
when VMs have a dedicated GPU. Cloud provider’s ability
to provide cheaper resources comes from over provisioning
the resource. Since providers cannot over provision GPU in
passthrough mode, it limits the provider’s ability to provide
GPU infrastructure in cost effective manner. Hardware assisted
virtualization provided by NVIDIA is an attempt to provide
similar over provisioning benefits over GPU.

Hardware assisted virtualized GPU or vGPU is compara-
tively a newer feature which divides a single GPU into multi-
ple virtual GPU (vGPU) devices as shown in the figure 1. Each



Fig. 1: Hardware assisted virtual GPU stack

of these vGPUs can be assigned to VMs1. GPU virtualization
is managed via the drivers installed inside the VM and the
hypervisor [13]. It exposes vGPUs to VMs and shares a
physical GPU across multiple VMs (Figure 1), and VM uses
non virtualized GPUs with the illusion created by hypervisor
and NVIDIA drivers. Two parameters that configure vGPUs
are the scheduling algorithm and the vGPU profile. These
parameters required configuration at the hypervisor level with
NVIDIA virtualization software as a part of NVIDIA driver.
The vGPU profile is responsible for deciding the memory
reserved per vGPU that a hypervisor should expose among
these two configuration parameters. This reserved memory
further determines how many vGPUs should be exposed. For
example, if GPU consists of a 16GB memory and 4GB is
reserved per vGPU based on the vGPU profile, then a total
of 4 vGPUs (16/4) are possible, each having a 4GB memory.
Table I lists all the possible vGPU profile for NVIDIA Tesla
P-100.

TABLE I: vGPU profiles supported by NVIDIA Tesla P-100

vGPU
profile

memory per
vGPU

number of vGPUs exposed

1q 1 GB 16
2q 2 GB 8
4q 4 GB 4
8q 8 GB 2
16q 16 GB 1

The second configuration parameter is the scheduling al-
gorithm. The scheduling algorithm is configured at the hy-
pervisor using the NVIDIA driver and provides temporal
sharing among VMs. Based on the algorithm chosen, the driver
allocates the GPU resources for VM processing. Currently, the
driver supports three types of scheduling algorithms:

1only one vGPU can be accessed by the VM

• Best effort scheduler: This scheduler utilizes GPU as
much as possible, i.e., if there are four vGPU enabled
VMs, and only 3 VMs need GPU computation, then the
scheduler will allocate all the time slots among 3 VMs
only.

• Equal share scheduler: This scheduler reserves the time
slot as per active VMs (powered on VMs). If the equal
share scheduler is used in the scenario mentioned above,
the scheduler will divide time into four identical slots, and
one slot will waste without any computation. However, if
one VM is powered off, it will divide the time slot into
three equal parts.

• Fixed share scheduler: This scheduler divides the time
slot based on the vGPU profile, i.e., if four vGPUs can
be exposed, then GPU time is divided into four slots. It
does not matter whether VM is active or not.

Best effort scheduler is supposed to perform equally or better
than the other two schedulers as it can dynamically adjust
the time slots allocated to the VM based on circumstances.
Furthermore, VMs are scheduled on GPU using a round-
robin mechanism for equal share scheduler and fixed share
scheduler. It is expected that best effort scheduler with only 1
VM should have similar performance (little lower throughput
due to virtualization overhead) as passthrough mode GPU.
Despite all the performance benefits vGPU can offer, there
are certain limitations in using vGPU: (1) Currently, vGPU
profile must be selected separately for each VM in offline
mode, (2) Scheduler is chosen at the hypervisor and every
time scheduler is changed, the host needs to be restarted, (3)
It is not possible to power-on more VMs than calculated based
on the vGPU profile since memory is kept reserved per VM,
(4) Heterogeneous vGPU profile is not allowed, i.e., vGPU
profile should be consistent across all the active VMs (powered
on) and (5) Many GPU optimizations such as Unified Virtual
Memory (UVM), CUDA visual profilers, etc. are not present
in virtualized mode.

Since GPUs perform well for a compute intensive task,
we will discuss two compute intensive network functions for
performance evaluation of network function over GPUs in
passthrough mode and virtual mode in the next section.

IV. DESIGN AND IMPLEMENTATION OF NETWORK
FUNCTIONS

Network functions can be classified into two categories:
IO intensive and IO-compute intensive. Since every network
function performs computation over every incoming packet,
they are always IO intensive. Some NFs aren’t compute
intensive such as the IPv4 router. The router needs to look
up the table based on the packet header’s destination address
and outputs the next port the packet needs to be forwarded.
Whereas other NFs such as network intrusion detection system
(NIDS) and Internet Protocol Security (IPSec) are compute
intensive. These NFs perform computation over the payload
segment of the packet. IPSec performs both HMAC and AES
operation on each packet; both algorithms (cryptography) are



(a) Throughput performance over GPU in passthrough mode (b) Throughput performance over a single vGPU

Fig. 2: Throughput of IPSec and NIDS with respect to packet size (with and without streams)

considered compute intensive. NIDS performs string matching
against a predefined set of rules for intrusion detection.

We implemented both IPSec and NIDS in CUDA. Our
IPSec uses HMAC-SHA1 and AES-128 bit in CBC mode.
Openssl [14] AES-128 bit CBC encryption and decryption
algorithm is rewritten in CUDA as part of our implementation.
NIDS is implemented using Aho-Corasick algorithm [1]. It is
based on deterministic finite automata (DFA). However, we
have used only 147 rules for building the DFA state. Our
design allocates a CUDA thread per packet. In each round, we
first copy the packets in GPU memory, then, kernel is launched
where CUDA threads perform computing on their respective
packets. On completion, the kernel terminates, and the result
is copied back to host memory. To optimize the performance
of these NFs, we heavily used constant memory for read-only
data access. These read-only data are copied to GPU constant
memory at the initialization stage. The memory footprint of
these data varies according to NF. For instance, IPSec accesses
big tables for encryption/decryption, and keeping these tables
in cache-friendly constant memory boosts the performance
manifold. Whereas, NIDS does not have much of predefined
read-only data.

To provide a further performance boost, we used multi-
ple CUDA streams for NF computing. In such scenarios,
we always used an asynchronous mechanism of data copy
between host and device. Furthermore, the total number of
CUDA threads are equally divided among the streams. Data
(packets and results) are also divided equally among streams
and asynchronously transferred between host and device, to
leverage parallel execution and data copy. We also found that
the performance of NF does not monotonically increase with
the increase of CUDA streams. When we increase the number
of CUDA streams, NF performance also increases until it
reaches a certain optimal level; after that, it stays the same
or drops. In our experiments, the number of CUDA streams is
kept at this optimal value for the best achievable throughput.

Our experiments in the later sections show that using multiple
CUDA streams provides better performance than using the
default CUDA stream for computing.

V. EXPERIMENTAL EVALUATION

Our test setup includes a host machine (PowerEdge R740xd
model) consist of 32 Intel Xeon cores operating at 2.30 GHz
with 766GB memory. The host is running over an ESXi 6.5
and NVIDIA tesla P-100 GPU. CUDA version 9 is used to
perform the experiments. The configuration of each VMs is
as follows: Ubuntu 16.04 64 bit OS, 32 GB ram, and eight
vCPU core each. Packets are generated and kept in memory
so that IO overhead (NIC to main memory and main memory
to NIC) does not act as a variable in our analysis.

In the next few subsections, we analyze the experimental
results of NFs (IPSec and NIDS) over vGPU and compare it
with passthrough mode performance. These experiments help
in answering many questions for cloud provider: (1) Whether
passthrough mode is better or virtual GPU, (2) How many
vGPU should be activated for better throughput, (3) What
will happen to NF throughput if the cloud provider wishes to
multiplex different types of workload such as machine learning
workload with NFs.

In most cases, we are using best effort scheduler unless
explicitly mentioned. Additionally, we are using the term
nostream or without stream when the default CUDA stream is
used, as every CUDA program uses a default stream 0. When
we mentioned streams in experiments, it is for the cases where
we specially programmed it to use multiple CUDA streams.

A. Passthrough mode

The throughput of IPSec and NIDS network function when
GPU is in passthrough mode is presented in figure 2a. Both
NFs behave differently with respect to packet size and CUDA
streams. While IPSec throughput decreases with increased
packet size for default CUDA stream (nostreams), whereas
with multiple CUDA streams, throughput more or less stays



(a) IPSec throughput (b) NIDS throughput

Fig. 3: Comparison of NFs throughput with respect to schedulers and number of online VMs

(a) IPSec throughput (b) NIDS throughput

Fig. 4: Combined NF throughput with respect to vGPU profile

stagnant. However, NIDS NF throughput rises with an increase
in packet size. Usage of streams (multiple CUDA streams)
does not change the trend; the only difference is, NIDS
performance is much better with streams. Figure 2a shows
that NIDS throughput is dependent on packet size, which
means it processes the packet in constant time regardless
of packet size. However, lower throughput than IPSec for
smaller packet sizes means the compute requirement for NIDS
is higher. IPSec performance is mostly restricted by PCI
transfer speed. The larger the packet size, the more bytes
need to be transferred hence lowering the throughput. CUDA
streams help in alleviating this bottleneck by asynchronously
moving the packets in the background. For a packet size
of 1522B, IPSec obtained a throughput of 8.32Gbps when
multiple CUDA streams are not used (i.e., default CUDA
stream is being used) in comparison to 15Gbps when multiple
CUDA streams are used. NIDS obtained a throughput of
3.96Gbps without stream usage (default CUDA stream) and

14.29Gbps with streams (multiple CUDA streams) usage for
1522B packets.

B. NFs baseline performance in vGPU mode

This section studies the NFs performance execution in a
single vGPU enabled VM. For this experiment, we have used
a 4q vGPU profile and best effort scheduler. Figure 2b shows
that vGPU closely mimics the performance of IPSec and NIDS
NFs in passthrough mode. IPSec throughput is just 9.7% lower
than IPSec on passthrough mode as 13.55Gbps throughput is
obtained in vGPU configuration against 15Gbps passthrough
mode. This is caused by the overhead of virtualization intro-
duced by vGPU. It proves our hypothesis that single vGPU
enabled VM performance with best effort scheduler is close to
passthrough mode performance. Moreover, the key benefits of
vGPU for NFs are in having multiple vGPUs sharing a single
physical GPU, which we will show in the section V-C.



(a) IPSec performance without CUDA streams (default stream) (b) IPSec performance with multiple CUDA streams

(c) NIDS performance without CUDA streams (default stream) (d) NIDS performance with multiple CUDA streams

Fig. 5: NF performances when CNN workload are used simultaneously

C. NF throughput improvement with parallel usage of vGPU

Although the drop in NF throughput is sublinear for single
vGPU, the combined throughput of all the vGPUs exceed
passthrough mode throughput even though the underlying
hardware is the same. Figure 3 shows the experimental re-
sult of combined NF throughput of all vGPUs. Combined
throughput means the sum of throughput obtained by executing
NF in all the possible vGPU enabled VMs. When we used
the 4q vGPU profile for our experiments, we observed that
the combined throughput of either scheduler (equal share
scheduler and best effort scheduler) exceeded passthrough
mode throughput or one active VM throughput. With equal
share scheduler, we achieved 148% and 182% throughput for
IPSec and NIDS, respectively, compared to their respective one
active VM throughput. Whereas, with best effort scheduler, we
achieved 256% and 288% throughput for IPSec and NIDS,
respectively, compared to their respective one active VM
throughput. Furthermore, best effort scheduler outperforms
equal share scheduler in every possible scenario. Best effort
scheduler with 4 VM outperforms best effort scheduler with

1 VM because in 1 VM scenario kernel waits for the packet
transfer to complete before performing computation over that
(even with multiple streams). However, the same is not the
case in scenarios where NFs are computed using four vGPU
enabled VM, NVIDIA best effort scheduler schedules the VM
that is ready to perform computation, and packet transfer for
the rest of the VMs will continue in parallel. In a scenario
when equal share scheduler is used, time slots get reserved
per active VM. Hence, if VM gets scheduled when the packet
is being transferred to (or from) GPU, it will lead to wastage of
some GPU cycles as the kernel have to wait for packet transfer
for useful computation. Since we have already established it as
the fact that NFs with streams perform better than NFs without
stream (default stream), we are skipping the performance
results of the NFs without stream. However, results follow
the same trends in those cases, i.e., for 4q vGPU profile, the
combined throughput of 4 vGPU enabled VM using Best effort
scheduler outperforms other scenarios.



Fig. 6: Drop in throughput with respect to increase in CNN
VMs. 1522B packet size is used for respective NF computation

D. Nfs performance with respect to vGPU profile

Figure 4a and figure 4b shows respective combined through-
put achieved by IPSec and NIDS NF for different vGPU
profiles. Best effort scheduler is being used for the experiment
as it excels in performance compared to equal share scheduler.
From the figures 4a, 4b we can observe that throughput
gets better as number of vGPUs in the systems increases.
It corroborated our claim that lesser the time VM waits for
useful computation, the better will be throughput, i.e., when
VM gets scheduled, it should be computing instead of waiting
for data transfer to get completed. Though we have not faced
any memory allocation restriction for a P-100 Tesla NVIDIA
GPU, it is completely possible for some other GPU where
vGPU has lesser reserved memory. NF throughput over such
vGPUs might suffer from memory allocation problem, hence,
lowering the throughput as all packets might not fit in the
reserved vGPU memory. Hence, the vGPU profile must be
selected based on NF performance on the particular GPU for
optimal throughput.

E. NF performance with mixed workload

This section analyzes the impact of NFs performance when
it shares GPU with other machine learning workloads using
vGPU. In this case, our experimental setup is as follows: one
vGPU enabled VM is allocated for NF, and the rest of the
vGPU enabled VMs are executing TensorFlow [20] workload.
Tensorflow workload is used for convolutional neural network
(CNN) benchmark. We used the 4q vGPU profile for the
experiment. The throughput performance of IPSec and NIDS
(when CNN workload is present) with respect to packet size
is presented in the figure 5. Tensorflow (CNN) workload
lowered the throughput of the NFs. As the number of VMs
with TensorFlow workload increases, the throughput of NF
decreases. However, a reduction in throughput for either NFs
(IPSec and NIDS, with or without CUDA streams) is not
proportional to an increase in the number of TensorFlow
(CNN) VMs (Figure 5). Furthermore, as it can be observed

from figure 6, drop in throughput, more or less, remains the
same across both NFs(with or without CUDA streams). As per
our analysis, this sublinear decrease (Figure 6) in throughput
with an increase in TensorFlow (CNN) VMs is attributed to
the high IO nature of NF workloads. Since time slots are
distributed among multiple VMs, it is possible that when
CNN workloads are executed over GPU, packets from the
main memory gets transferred to vGPU memory for the NF.
Hence, NFs waiting time for packet reception decreases with
an increase in vGPU enabled VMs hosting CNN workload,
thus a sublinear decrease in throughput. In the real world use
cases, where cloud providers want a flexible deployment of
multiple GPU-based workloads (like both NFs and machine
learning) on a single server, we demonstrate such deployment
be possible with vGPU. Since machine learning jobs like CNN
are very compute intensive, they consume all GPU cycles
assigned to them, reducing the GPU cycles used for NFs.
This explains the reduction of NFs throughput as the number
of VMs running CNN jobs increase. Hence, we suggest the
optimal use of NFs with vGPU is sharing multiple vGPUs
with the same NFs functions, as shown in section V-C for the
optimal performance of NFs using vGPU.

VI. CONCLUSION

As most of the computing moves toward a hybrid cloud
based environment, network function (NF) deployment also
picked up the pace towards cloud based virtual deployment.
Virtualization benefits are manifolds and have limitations in
throughput, latency, and data locality. Accelerators like GPUs
in hybrid cloud setup, both in dedicated as well as disaggre-
gated deployment models, could help alleviate this problem.
Our experiments revealed that for IO intensive NFV workloads
passthrough mode is sub-optimal as the network IO overheads
lower the GPU compute utilization, thus impacting the ef-
fective performance of the NFV stack. Since many modern
GPUs come with hardware assisted virtualization, leveraging
them can further enhance NF performance in a cloud setup.
We demonstrated with our experiments that correct selection
of vGPU profile (lower the better as long as memory does
not become the bottleneck) and scheduling algorithm could
provide better throughput and help achieve 40Gbps line-rate
throughput, which is more than double of what passthrough
mode can provide. Our analysis would significantly help
telecommunication operators overcome some of their mind-
blocks related to lower throughput with NFs deployments, thus
could improve the quality of service at a lower CapEx point
by avoiding proprietary hardware based solutions. Our work
alleviates that fear with experimental proofs and encourages
NFV deployment.

ACKNOWLEDGMENT

This work has been done as a part of internship at VMware,
Inc. Authors would like to thank VMware, Inc for funding this
work and supporting us with hardware and software required.



REFERENCES

[1] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An
aid to bibliographic search. Commun. ACM, 18(6):333–340, June 1975.

[2] Build powerful machine learning applications on the most advanced
and highest performing gpu-accelerated cloud infrastructure, July 2020.
https://aws.amazon.com/nvidia/.

[3] Younghwan Go, Muhammad Jamshed, YoungGyoun Moon, Changho
Hwang, and KyoungSoo Park. Apunet: Revitalizing gpu as packet
processing accelerator. In Proceedings of the 14th USENIX Conference
on Networked Systems Design and Implementation, NSDI’17, pages 83–
96, Berkeley, CA, USA, 2017. USENIX Association.

[4] Cloud gpus, July 2020. https://cloud.google.com/gpu/.
[5] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Packet-

shader: A gpu-accelerated software router. In Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM ’10, pages 195–206, New
York, NY, USA, 2010. ACM.

[6] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo Moon, Insu Yun,
Deokjin Kim, Sungryoul Lee, Yung Yi, and KyoungSoo Park. Kargus: A
highly-scalable software-based intrusion detection system. In Proceed-
ings of the 2012 ACM Conference on Computer and Communications
Security, CCS ’12, pages 317–328, New York, NY, USA, 2012. ACM.

[7] Keon Jang, Sangjin Han, Seungyeop Han, Sue Moon, and KyoungSoo
Park. Sslshader: Cheap ssl acceleration with commodity processors.
In Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI’11, pages 1–14, Berkeley, CA, USA,
2011. USENIX Association.

[8] Christoforos Kachris, Georgios Ch. Sirakoulis, and Dimitrios Soudris.
Network function virtualization based on fpgas: A framework for all-
programmable network devices. CoRR, abs/1406.0309, 2014.

[9] PPoPP ’17: Proceedings of the 22nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, New York, NY, USA,
2017. Association for Computing Machinery.

[10] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian
Luo, Ningyi Xu, Yongqiang Xiong, Peng Cheng, and Enhong Chen.
Clicknp: Highly flexible and high performance network processing with
reconfigurable hardware. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, pages 1–14, New York, NY, USA, 2016.
ACM.

[11] Gpu optimized virtual machine sizes, July 2020. https://docs.microsoft.
com/en-us/azure/virtual-machines/sizes-gpu.

[12] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek.
The click modular router. SIGOPS Oper. Syst. Rev., 33(5):217–231,
December 1999.

[13] Nvidia virtual gpu technology, July 2020. https://www.nvidia.com/en-
us/data-center/virtual-gpu-technology/.

[14] OpenSSL. Tls/ssl and crypto library. https://github.com/openssl/openssl,
2019.

[15] Luigi Rizzo. netmap: A novel framework for fast packet i/o. In 2012
USENIX Annual Technical Conference (USENIX ATC 12), pages 101–
112, Boston, MA, 2012. USENIX Association.

[16] L. Shi, H. Chen, J. Sun, and K. Li. vcuda: Gpu-accelerated high-
performance computing in virtual machines. IEEE Transactions on
Computers, 61(6):804–816, 2012.

[17] Aayush Shrut. DPDK for Layman. https://www.linkedin.com/pulse/
dpdk-layman-aayush-shrut. Accessed: 2019-03-06.

[18] Mark Silberstein, Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu,
Amir Wated, and Emmett Witchel. Gpunet: Networking abstractions for
gpu programs. ACM Trans. Comput. Syst., 34(3):9:1–9:31, September
2016.

[19] Federico Silla, Sergio Iserte, Carlos Reaño, and Javier Prades. On the
benefits of the remote GPU virtualization mechanism: The rCUDA case.
Concurrency and Computation: Practice and Experience, 29(13), 2017.

[20] Tensorflow benchmarks, July 2020. https://github.com/tensorflow/
benchmarks.

[21] Kai Zhang, Bingsheng He, Jiayu Hu, Zeke Wang, Bei Hua, Jiayi Meng,
and Lishan Yang. G-net: Effective gpu sharing in nfv systems. In
Proceedings of the 15th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’18, Berkeley, CA, USA, 2018. USENIX
Association.

https://aws.amazon.com/nvidia/
https://cloud.google.com/gpu/
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://www.nvidia.com/en-us/data-center/virtual-gpu-technology/
https://www.nvidia.com/en-us/data-center/virtual-gpu-technology/
https://github.com/openssl/openssl
https://www.linkedin.com/pulse/dpdk-layman-aayush-shrut
https://www.linkedin.com/pulse/dpdk-layman-aayush-shrut
https://github.com/tensorflow/benchmarks
https://github.com/tensorflow/benchmarks

	Introduction
	Related Works
	Background
	Design and implementation of Network functions
	Experimental Evaluation
	Passthrough mode
	NFs baseline performance in vGPU mode
	NF throughput improvement with parallel usage of vGPU
	Nfs performance with respect to vGPU profile
	NF performance with mixed workload

	Conclusion
	References

