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Abstract—Network Function Virtualization has gained traction
as a network function deployment alternative due to its flexibility
and cost benefits. The telecommunication (telecom) operators and
infrastructure providers are looking for high throughput, low
latency NFV deployment model to avail the benefits of NFV.
Moreover, NFV is one of the core technology for the next-
generation communication network such as 5G. Furthermore,
telecom operators employ groups of network functions(NFs)
that process packets in linear order so that the output of one
NF becomes an input for another, thus forming the network
function chain (NFC). However, these NFCs should be flexible,
as all telecom packets do not necessarily need to be processed
by the same set of NFs. It has been earlier shown that GPU
increases the throughput of NFV chains. To the best of our
knowledge, none of the GPU-based frameworks supports dy-
namic NFV chains. Furthermore, discrete GPUs are expensive
and consume a fair amount of energy. This paper presents
the design and evaluation of Hummingbird, a framework to
support high throughput, dynamically routed NFV chain on
Heterogeneous System Architecture (HSA). Though HSAs are
affordable and power-efficient, they lack high throughput GPU-
CPU synchronization. Furthermore, current technology does not
provide a zero-copy mechanism for network IO between GPU
and NIC for HSAs. Hummingbird addressed those challenges. As
per our knowledge, this is the first such framework that provides
high throughput dynamic NFV chaining, with NFs chained across
GPU and CPU and designed in conformance to OpenCL 2.0
standard. Hummingbird achieves 6x throughput per-core and
3.5x throughput per unit of energy consumption compared to
state-of-the-art NFV deployment framework G-net, which uses
powerful and costly discrete GPU.

Index Terms—Network function virtualization, network func-
tion chain, APU, GPU, HSA

I. INTRODUCTION

Network Function Virtualization (NFV) [1] is a paradigm

that decouples Network Functions (NFs) from traditional

proprietary hardware appliances (ASICs) such as firewalls,

proxies, routers, etc. NFV enables the programming and

deployment of network function over the general-purpose off-

the-shelf hardware like CPU, GPU, FPGA, etc. Virtualization

of NFs over general-purpose compute units has proven to be

instrumental in reducing the OPeration EXpenses (OPEX) and

CAPital EXpenditure (CAPEX)) [1]. Furthermore, software-

based NFs are easier to debug and can be scaled on-demand.

Though NFVs offer flexibility and cost-effectiveness,

achieving a computing speed comparable to ASICs are chal-

lenging with software-based Network Functions. One of the

reasons for the slow performance of NFV is the overheads with

the operating system (OS) TCP/IP stack. Every packet must

go through a TCP/IP stack in traditional network processing.

It incurs a considerable overhead on the reception of each

packet [2]. The main problem with the traditional TCP/IP stack

is that it allocates and deallocates buffer per packet. As part of

the packet reception process, this procedure alone consumes

more than 50% of the CPU cycle [2]. To alleviate this, Intel

developed a novel Software Development Kit (SDK) called

data plane development kit (DPDK) [3]. DPDK bypasses the

TCP/IP stack and copies the packets directly in the userspace.

Hence enabling a fast path for packet processing and facilitat-

ing line-rate processing, i.e., DPDK accelerated applications

can process the packet at the speed of NIC card [4].

Despite the ability of DPDK to provide line-rate packets,

the compute-intensive network function’s performance was

way below the line-rates [5], [6]. In order to achieve a

packet processing speed closer to line-rates, researchers have

looked into the possibility of using hardware accelerators like

Graphics Processing Units (GPUs) [2], [5], [6], [7], Field

Programmable Gate Array (FPGA) [8], Heterogeneous System

Architecture (HSA) [9], etc. for deploying NFs.

Prior works [2], [5], [6], [7] demonstrated that GPU accel-

eration improves compute-intensive NF throughput manifolds.

However, the discrete GPUs used by these works are expensive

and consume a fair amount of energy. Another problem with

the discrete GPU is that it requires data to be copied in the

GPU memory from CPU memory via the PCI bus. This data

copy over PCI increases end-to-end latency and lowers the

throughput. Heterogeneous System Architecture(HSA) [10]

solves this inherent drawback of discrete GPU. HSA combines

both CPU and GPU on the same bus, having shared memory.

Since memory is shared, there is no explicit requirement to

copy data in the GPU memory.

The vanilla DPDK provides zero-copy [11] between NIC

and CPU but does not provide zero-copy between NIC and

GPU. Vanilla DPDK copies the packet directly into the appli-

cation’s memory, i.e., it avoids the extra copy from OS kernel

memory to the user memory region, hence called zero-copy.

APUnet [9] proposed an HSA based solution that modifies

DPDK in order to support zero-copy between NIC and HSA-
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GPU. APUnet demonstrated the efficacy of its solution by

experimenting with single NFs on AMD HSA.

Though APUnet [9] solution is suitable for a single NF,

in real-world deployments, multiple interconnected NFs called

NF chains (NFC) are often required to provide certain network

features to a network user. In the case of an NF chain, the

output of one NF becomes an input to another. Broadly, there

are two types of NFC: static and dynamic. In a static chain,

every network flow must go through all the NFs that form the

chain. In dynamic chaining, different network flows can go

through different sets of NFs.

Dynamic chaining is essential for upcoming networks such

as 5G [12]. 5G offers varied features for different use cases,

and each of these features is enabled by an NF, and multiple

such NFs are chained to provide a set of features to the

users. For example, in 5G, applications such as vehicular

traffic, video streaming, AR/VR, etc., require different sets of

services, bandwidths, authorizations, etc., requiring different

NF processing(not necessarily disjoints). APUnet [9] cannot

provide such services, as any chaining is not considered

while designing the APUnet. Due to its design, APUnet does

not allow more than one NF execution on the GPU, which

becomes a significant bottleneck for NFCs having multiple

compute-intensive NFs. With only one NF on the GPU, other

NFs of the NFC get offloaded to the CPU, and the CPU does

not perform well for compute-intensive NFs, thus lowering the

throughput of the whole chain. Furthermore, APUnet is not

OpenCL [13], [14] compliant. OpenCL is an open and cross-

platform framework that provides API to write applications

for HSA so that applications written for one vendor platform

can be executed on other vendor platforms. Though the

OpenCL standard provides API, hardware vendors implement

those APIs for their platforms. Since APUnet is not OpenCL

compliant, there is no guarantee whether data synchronization

across GPU and CPU will work on all HSA because internal

hardware implementation may differ. Additionally, APUnet

uses Mellanox APIs and modify DPDK for zero-copy between

NIC and GPU, which tied the solution to only one vendor NIC.

This paper presents Hummingbird— an HSA based frame-

work with dynamic NFV chaining support to address the

aforementioned challenges. Hummingbird is OpenCL 2.0 [14]

compliant and can easily be ported to all DPDK compatible

NICs. Furthermore, Hummingbird supports spatial sharing of

GPU among NFs. Spatial sharing enables Hummingbird to

host multiple NFs on the GPU. Since compute-intensive NF

performance gets enhanced by the GPU, allowing multiple

such NFs on the GPU improves the throughput of the NFC

consisting of multiple compute-intensive NFs.

Our solution also supports the dynamic movement of net-

work packets among the NF chains based on the predefined

policy for a given network flow. Hummingbird achieves this

by abstracting lower-level details of forwarding and synchro-

nization. An application NF does not need to be aware of

where the next NF would be, i.e., whether the next NF

would be on CPU or GPU (NFs are assigned CPU/GPU

statically at the initialization of the framework). Modules for

synchronization and forwarding will take care of respective

lower-level details. This feature enables network providers

to statically assign NFs to either compute type (CPU/GPU)

based on their requirement, i.e., compute-intensive NF should

be assigned GPU and non-compute-intensive NF should be

assigned CPU. This performance-based individual NF assign-

ment allows Hummingbird to achieve the best possible NFC

throughput. The following are the contribution of this paper:

• We design and develop a new framework Hummingbird
that enables the deployment of static and dynamic net-

work function chains over HSA.

• We identify the challenges in creating a lightweight and

OpenCL 2.0 compliant data synchronization mechanism

for network IO across CPU NFs and GPU NFs.

• We designed and developed a persistent GPU kernel-

based technique to space-share GPU among multiple NFs

for throughput enhancement.

• We modify DPDK to extend its zero-copy feature to

HSAs to enable efficient packet delivery between NIC

and GPU.

The rest of the paper is organised as follows. Section II

presents the background and motivation. Section III describes

challenges and solution requirement. Section IV present the

design and implementation of our solution. Section V dis-

cusses the evaluation to prove the efficacy of our work.

Section VI contains related work and section VII concludes

the paper.

II. BACKGROUND AND MOTIVATION

A. Network Function Virtualization (NFV)

Network functions(NFs) are well-defined building blocks

of any network infrastructure. They perform specific oper-

ations on network packets. NF such as IPv4 router for-

wards the packet based on destination IP address. Another

NF, network intrusion detection system(NIDS) inspects the

packet for any intrusion. All these NFs perform a specific

task. Generally, network administrators install different NFs

to provide multiple functionalities to network users. Since

packet traverses from one NF to another NF such that the

output of one NF becomes an input to another NF, it forms

a chain called network function chain. Traditionally, propri-

etary hardware boxes called ASICs were performing these

NF operations. However, the deployment of such boxes is

expensive and requires specialized networking. Compared to

proprietary ASIC deployment, NFV provides various benefits

to network providers. NFV enables NFs to use commodity

hardware which is far less expensive compared to ASICs,

thus reducing CAPEX [1], [15]. Furthermore, NFVs can be

configured and managed easily, reducing operational cost [1].

Additionally, virtualization offers easier addition and removal

of functionalities [15].

B. Data Plane Development Kit (DPDK)

Traditionally, all the packets received by the host must go

through different layers of the operating system (OS) TCP/IP

stack. The stack was designed long back, and at that time,
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throughput was not the main concern [16]. During the last

two decades, the speed of ethernet cards has increased from

a few Mbps to 10-40 Gbps. Traditional TCP/IP stack cannot

operate at this speed due to inherent drawbacks such as buffer

allocation and deallocation on the reception of each packet.

Prior work [2] found that allocation/deallocation consumes

more than 50% of the CPU cycles as part of the packet

reception process. Another problem is memory copy overhead

between OS kernel space and userspace. The OS kernel creates

a buffer in kernel space on every packet reception. Later,

that buffer is copied to userspace so that the application

can consume it. To solve the problems mentioned above,

Intel came up with an SDK called Data Plane Development

Kit (DPDK) [3]. DPDK pre-allocates the memory; hence it

does not require per-packet allocation/deallocation. Another

optimization that DPDK offers is that it delivers the received

packet directly in userspace, avoiding the OS kernel space to

user space memory copy overhead.

C. Graphics Processing Units (GPU)

The graphics processing units (GPU) were traditionally

used to accelerate graphics based compute-intensive tasks such

as image processing [17], 3D visualization [18], computer

vision [19], etc. Now GPUs have grown into processing

more generic tasks such as accelerating high-performance

computing and scientific workloads. Given the performance

benefits, researchers have tried to use graphics processing units

for accelerating network functions [2], [5], [6]. GPUs can

broadly be classified into two types:

Discrete GPU: Discrete GPUs are connected with the system

via the PCI bus. These GPUs have a high memory bandwidth

like GDDR5 and thousands of computing cores. However, the

CPU must transfer the data from the main memory to the GPU

memory to process any data. Hence, PCI bus speed limits the

performance of IO-intensive applications over GPU.

Integrated GPU (iGPU)/Heterogeneous System Architec-
ture (HSA): Integrated GPU means both CPU and GPU are

on the same die sharing the same bus. This architecture allows

the CPU to share its main memory with the GPU, removing

the necessity to transfer data over the PCI bus. However,

an application needs a virtual memory-sharing programming

model to use shared physical memory. OpenCL standard 2.0

[14] enables this type of sharing over such architectures.

Accelerated Processing Unit (APU) is a recent AMD HSA ar-

chitecture with integrated GPU (iGPU). APU is cost-effective

and power-efficient when compared to discrete GPU. However,

APU has lesser computing cores, e.g., A12-9800 has only 512

cores in comparison to 3584 cores found in NVIDIA TITAN

X Pascal (refer table I). Furthermore, APUs do not have high-

speed GDDR memory. Instead, they have to contend with the

TABLE I: Comparison of GPUs and APUs

GPU type # of
cores

Power
usage

Price

NVIDIA Titan RTX 4608 280W $2499
NVIDIA TITAN X Pascal 3584 250W $1200
AMD APU A12-9800 512 65W $138

CPU for DDR memory access. Although APU has advantages,

it poses challenges for NF chain deployment. We describe

these challenges and our proposed solution to address them in

the next section.

III. CHALLENGES AND SOLUTION REQUIREMENTS

The choice of APU as the hardware platform for our work

was motivated by the architectural advantage it provides in the

form of shared main memory between CPU and GPU. How-

ever, designing a high-performance NFV chaining solution

over APUs is challenging. The following are the challenges in

designing and implementing such a solution.

A. CPU-GPU data synchronization overhead

When GPU is employed to process packets, a batch of

packets is transferred to GPU memory, and then the kernel

is launched. On completion, the kernel exits(tear down). The

kernel needs to be relaunched to process the next batch of

packets. This repeated kernel launch for processing every

batch incurs enormous overhead [20]. Though the persistent

kernel [21] technique alleviates the problem of kernel launch

and tears down, the data copy overhead between CPU and

GPU degrades throughput significantly. OpenCL 2.0 provides

a shared virtual memory (SVM) programming model that

allows data sharing between CPU and GPU to solve this.

Furthermore, this SVM model also provides a mechanism

to synchronize data across CPU and GPU. However, syn-

chronization requires the usage of atomic operations over the

shared data. Extensive atomic operations on a given memory

address, serialize all the GPU threads (for atomic operation)

that try to access it. Hence, GPU’s benefit over CPU in terms

of hundreds of cores, executing threads in parallel diminishes

as atomic operations and data size increases. Furthermore, data

processed by the GPU must be synched at the CPU (via atomic

operations) before the CPU accesses the data itself. In most

cases, multicore GPU can produce faster than what a CPU core

can consume, resulting in synchronization at the CPU being

the bottleneck. A high throughput NFV chaining framework

must resolve all the bottlenecks, including synchronization

overheads for optimal throughput.

B. Need for multiple persistent kernels

In an NFV chain, offloading a compute-intensive NF on a

CPU reduces the whole chain’s throughput. Usage of GPU for

such compute-intensive NF is proven to improve the perfor-

mance [5], [6], [9]. However, if the chain consists of multiple

compute-intensive NFs, the chain’s throughput can be severely

restricted by the compute-intensive NF executing on the CPU.

Earlier research works supported offloading of only one NF to

GPU [9]. Though GPU can be shared among numerous NFs

using non-persistent kernels, this approach requires periodic

kernel launch and termination overheads. One of our key ideas

is to share GPU among multiple kernels (NFs) using the per-

sistent kernel approach. The framework benefits from sharing

GPU among multiple persistent kernels. Persistent kernels [21]

eliminate per kernel launch and termination overhead, whereas
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sharing the GPU among multiple NFs improves the chain

throughput by allowing more compute-intensive tasks on the

GPU.

C. Thread divergence due to dynamic chaining

Our framework also incorporated an NFV chaining feature

called dynamic chaining that allows a packet to be routed

based on either headers or its content. Since our framework

employs GPU heavily for NF computation, it requires that

threads should progress in a lock-step [22] manner within

the workgroup for better performance. However, each thread

might receive different packet sizes; hence some threads finish

earlier than others, resulting in out-of-sync execution. In order

to enforce lock-step execution for better performance, a barrier

can be used. Furthermore, NF may also have these barriers

built within. Usage of barriers enforces another challenge

when dynamic chaining is enabled. Due to the dynamic chain-

ing and unpredictable incoming traffic, some threads might

not receive any packets (or receive late) for processing. Under

such circumstances, threads receiving the packets will process

them and hit the barrier. However, threads not receiving the

packet will wait for packet reception. Since these threads

do not hit the barrier unless they receive the packets, the

whole workgroup waits for their progression, resulting in

lower throughput.

D. Efficient packet copy to GPUs

DPDK is a de-facto standard for high-speed packet pro-

cessing. Optimizations such as pre-allocation of buffer and

zero-copy among NIC and CPU improve the packet IO dras-

tically [23]. However, Vanilla DPDK does not provide zero-

copy between NIC, CPU, and GPU. Hence to process packets

on the GPU, packets first need to be copied from DPDK

accessible memory to GPU accessible memory, then perform

GPU operation and finally copy it back to DPDK accessible

memory so that NIC can send the packet out. These two extra

copies increase the memory contention, which further reduces

the throughput [9]. To solve this memory contention problem

for throughput improvement, we modified DPDK to provide

zero-copy between NIC, CPU, and GPU.

IV. DESIGN AND IMPLEMENTATION

A. Hummingbird architecture overview

Figure 1 shows the architecture of our solution humming-
bird. The main components of hummingbird are modified

DPDK, GPU coordinator & scheduler module, route decider

module, and packet forwarding module. The following are the

details of each module.

1) Modified DPDK: Modified DPDK (mDPDK) provides

zero-copy among NIC, CPU, and GPU. The NIC receives the

incoming packet and copies it in shared virtual memory(SVM).

OpenCL 2.0 enables SVM to allow data sharing between

CPU and GPU via pointers. After packet copy in SVM, NIC

writes the information regarding packet pointer in its memory-

mapped registers. mDPDK polls (reads periodically) these

registers. If a new packet pointer information appears, mDPDK

fetches the packet using these pointers and returns it to the

application. Since the packet resides in the SVM, both CPU

and GPU can access it. In case the application transmits the

packet, mDPDK first places the packet in SVM, then writes the

packet pointer information in memory-mapped NIC registers,

and at last updates the NIC register to transmit the packet. NIC

copies the packet from SVM to hardware queues and transmits

it on the wire.

2) route decider module: The path of packets is not static

and can not be predetermined due to various functionality

requirements for different packets. Generally, the network

administrator (admin) configures what type of packet is pro-

cessed by which set of NFs. The route decider module

enables this dynamic chaining feature. The module accepts

admin configuration in a comma-separated text file where each

line contains packet type, current NF, and next NF. During

framework initialization, the module loads the configuration in

the form of a table. Both CPU and GPU-based NFs consult this

module before forwarding packets to the next NF. CPU cores

executing CNFs(CPU NFs) consult the module directly before

forwarding the packet to the next NF, whereas GNFs(GPU

NFs) delegate this task to CPUSyncer belonging to GPU
coordinator & scheduler module.

3) packet forwarding module: This module creates an NF

forwarding table and initializes it per NF information. Each

row in the table contains the following information: NF

type (NIDS/IPSec/Router), NF compute type (CPU/GPU), the

number of cores assigned, and their receive(RX) queue. The

working process of the module is as follows: 1) the module

consults the route decider module to find the next NF for the

packet. 2) it retrieves the address of the RX queue from the

NF forwarding table by matching with the next NF and its

compute type obtained in the previous step, and 3) the module

enqueues the packet in the RX queue (obtained from step 2).

4) GPU coordinator & scheduler module: This module has

two parts— one executes on the GPU, and the other executes

on the CPU. Both submodules cooperate and synchronize data

across GPU and CPU. Hummingbird creates one logical queue

per kernel thread, which the GPU uses for in place packet

processing. Additionally, Hummingbird creates a mapping of

GPU-based NFs (GNFs) and kernel threads such that each

GNF owns a group of kernel threads. The GPU submodule

passes the packet pointer to the GNF responsible for that

kernel thread for each unprocessed packet in the logical queue.

The submodule enforces lock-step execution (via barriers)

across kernel threads on packet processing completion within

a workgroup. A workgroup (warp in terms of CUDA) is a set

of kernel threads that executes on the same control unit (or

SM in terms of CUDA). After passing the barriers, it informs

the CPU submodule via a shared atomic variable. The CPU

submodule polls (read continuously in a loop) these atomic

variables, fetches the processed packets and calls the router-
decider module for further processing.

We will take an example to showcase NFV chaining over

Hummingbird. Step numbers in figure 1 explain one such

example. As per example, modified DPDK first receives the
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Fig. 1: Architecture of Hummingbird framework.

Fig. 2: Partition of a circular packet buffer into per thread

queue. Where qi-1 is assigned to ti(thread i).

packet from NIC (step-1) and enqueues the packet (step-2)

to CNF1 (CPU NF) for further processing (step-3). After

processing, CNF1 enqueues the packet for GNF1 (GPU NF)
processing (step-4). The output of GNF1 is synced (step-5)

by the GPU coordinator & scheduler and packets are further

enqueued (step-6) for GNFm (GPU NF) processing. Again

GPU coordinator & scheduler syncs processed packets (step-

7) and enqueues them for CNFn (CPU NF) (step-8). Next,

CNFn enqueues the packet in the Tx queue (step-9) of modified
DPDK and it retrieve packets from the Tx queue (step-10)

and transmit them via NIC (step-11). Next few sections will

explain different aspects of Hummingbird in detail.

B. Persistent thread kernel

To reduce the overhead of kernel launch/teardown for HSAs,

we employed a persistent kernel, i.e., GPU thread does not

terminate after processing. Instead, it loops continuously and

waits for the next packet’s arrival. Employing this technique

means no more frequent kernel launch and tear down. Hum-
mingbird employs a logical queue per GPU kernel thread

for passing packet pointers to the GPU such that the CPU

enqueues the packet in these queues, and each kernel thread

process the packet from its queue only. However, kernel

threads are hundreds in number, so managing so many queues

becomes complex. In most cases, hundreds of GPU cores are

faster than a CPU core; hence even a slight complexity can

create a bottleneck at the CPU. To reduce the complexity,

we created a single big circular queue in SVM and created

a logical abstraction of the queues for each thread, as shown

in figure 2. We modeled the queue as a 2D array such that

each contiguous KernSize index forms a row where KernSize
is the total number of kernel threads. The first cell of each

row becomes the first logical queue (q0), the second cell of

each row forms the second logical queue(q1), and the last cell

of each row forms the last logical queue. As shown in the

figure 2, each kernel thread can access packet pointers from

the designated logical queue, i.e., t1 can access packet pointers

from q0, t2 from q1, etc. The advantage of using a single queue

is that packet enqueue operation becomes simple as packets

can be enqueued at the next available index of the queue.

C. CPU-GPU synchronization and GPU logical partitioning
With the employment of persistent kernel, inherent CPU-

GPU synchronization point (kernel launch and tear down)

provided by the OpenCL[14] no longer exists. Hence to solve

the challenge of data consistency, we leveraged the APU

architecture. We have devised a new OpenCL 2.0 compliant

algorithm that uses minimal atomic operations and access data

consistently. Overall, we reduced thread serialization by the

factor of workgroup size. The algorithm is in two parts, i.e.,

one for the CPU and the other for the GPU. The algorithm

not only synchronizes packets across GPU and CPU but

also incorporates various features for throughput improvement,

such as logical partitioning (spatial sharing) of GPU to enable

multiple NFs on the GPU and the ability to scale up CPU

resources for the CPUSyncer. The following section discusses

the design challenges of the algorithms, but first, we will

describe a few keywords used in the algorithm. A workgroup

is a collection of threads running on a control unit(CU) in

a lock-step manner. Collection of such workgroups form a

kernel size (KernSize), i.e., the total number of GPU kernel

threads. Both workgroup size(workGroupSize) and the number

of workgroups (numOfWorkGroups) are predefined and fixed

at the kernel launch.

D. Addressing the design challenges
Since atomic instruction usage for synchronization between

the CPU and the GPU is mandatory for the algorithm to remain
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Algorithm 1 - GPUSyncer: Sync algorithm executed by each

GPU thread.
1: localIndex← 0
2: lastReadIndex← 0
3: {CpuIndex and GpuIndex is atomically shared between CPU and GPU}
4: while true do
5: while lastReadIndex = localIndex do
6: Use only first thread of the workgroup to atomically store

CpuIndex for the workgroup in localIndex.
7: end while
8: Barriers()
9: Loop until Queue[thread id][localIndex].packetF lag is not set

10: NFVprocessing(Queue[thread id][localIndex].packet)
11: Reset Queue[thread id][localIndex].packetF lag
12: increment lastReadIndex
13: atomically increment GpuIndex for the workgroup in first thread of

the workgroup.
14: Barriers()
15: end while

Algorithm 2 - CPUSyncer: Sync algorithm running on CPU

1: {CpuIndex and GpuIndex is atomically shared between CPU and GPU}
2: while true do
3: for each work group do
4: atomically store GpuIndex of the workgroup in localGpuIndex
5: atomically store CpuIndex of the workgroup in localCpuIndex
6: while localGpuIndex �= localCpuIndex do
7: for i← 0 to workGroupSize do
8: if Queue[i][localCpuIndex].packetF lag is not set then
9: Send Queue[i][localCpuIndex].packet to packet for-

warding module
10: Queue[i][localCpuIndex].packet← dummy packet.
11: end if
12: end for
13: increment localCpuIndex
14: atomically increment CpuIndex of the workgroup
15: end while
16: end for
17: end while

OpenCL 2.0 compliant; hence we cannot remove it altogether.

However, the higher the number of atomic operations, the

worse the performance; hence we thought of reducing them.

We designed GPUSyncer to reduce atomic operations by a

factor of workgroup size by performing atomic operations in

only the first thread of the workgroup (instead of per-thread)

and then syncing it across all the threads in the workgroup via

barriers. Barriers also helped in enforcing lock-step execution.

Without barriers, threads would diverge at line #6 and #13

(GPUSyncer) due to conditional statement and may process

stale data at line#10 (GPUSyncer). CPUSyncer also uses

atomic variables per workgroup. Furthermore, each workgroup

uses a separate memory address for load and store operations,

thus reducing the contention among multiple workgroups. We

leverage workgroup-based processing to employ multiple NFs

on the GPU to enhance the performance further. Since each

workgroup processes data independently of other workgroups,

they can parallelly execute different instructions without a

performance loss. We statically assign a set of a workgroup

to each GNF (GPU NFs) during application initialization and

preserve the mapping in CPUSyncer. CPUSyncer uses this

information while consulting route decider module to find the

next NF for packets.

Another advantage of using workgroup based processing is

that we can scale CPUSyncer to multicore. Our experiments

showed that a single core CPUSyncer becomes a bottleneck

when handling small packet sizes as DPDK receives more

packets at small packet sizes than at large packet sizes. A mul-

ticore distributed CPUSyncer solves this problem. To achieve

scaling, we logically bind a mutually exclusive set of work-

groups to each CPUSyncer core such that each CPUSyncer

core only sync packets in the queues belonging to kernel

threads of the assigned workgroups.

The overall working of the algorithm is as follows: GPU

thread takes the packet from its queue, checks for the packet

flag, and if find it set then processes it, then resets the

packet flag (algorithm 1), implying GPU has processed the

packet. Once all the threads within the workgroup complete

the processing, they increment the GpuIndex corresponding

to the workgroup. The GpuIndex and CpuIndex are atomi-

cally shared variable between CPUSyncer and GPUSyncer,

accessed via atomic operations only. GPUSyncer uses barriers

to enforce lock-step execution to ensure that all the threads

within the workgroup processed the packets. On the other

hand, CPUSyncer parallelly polls GpuIndex of each work-

group. If GpuIndex digresses from CpuIndex, then it means

new packets are available to be synched. CPUSyncer accesses

each abstract queue corresponding to the workgroup, retrieves

the packet if the packet flag is 0 (reset), and forwards it as per

policy

Though barriers have many advantages, they become a

problem when the dynamic chaining feature is enabled. To

understand the effect of barriers in dynamic chaining, let

us consider a scenario where some GPU threads within a

few workgroups might not receive data for some time. It

is undoubtedly possible that a particular NF does not get

enough traffic to feed all the GPU thread, especially when

policy (dynamic chaining) is steering most of the flows

away from the NF. In such a scenario, barriers block the

work group’s progress until all the threads receive a packet.

This delay reduces system throughput marginally. To solve

this, we introduced a dummy packet. It works as follows:

1) CPUSyncer atomically reads the shared variable for a

workgroup. If GpuIndex and CpuIndex of any workgroup

differs, CPUSyncer retrieve packets from their queues. 2) For

each packet CPUSyncer checks whether it is a dummy or not,

3) if it is dummy then does not do anything else it forwards

the packet to the next NF using packet forwarding module

and 4) for each actual packet, CPUSyncer places a dummy

packet at the index from where the actual packet is retrieved.

However, packet forwarding module can rewrite these indexes

with actual packets while enqueuing new packets for GNF

processing. Dummy packets will ensure that all the threads of

a GNF progress. If a kernel thread does not have an actual

packet, it has a dummy packet to process.

E. Dynamic Chaining of NFs

packet forwarding module and route decider module are

responsible for dynamically forwarding packets to NFs queues.
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CNFs call packet forwarding module and pass the packet

pointer to it. However, GNFs delegate this task to CPUSyncer

of ”GPU coordinator & scheduler”, which in turn calls the

packet forwarding module. For each packet pointer, the packet
forwarding module asks the route decider module regarding

the next NF. route decider module looks up the prepopulated

table as mentioned in the section IV-A2 and retrieves the

following NF RX queue. packet forwarding module enqueues

the packet in the RX according to the section IV-A3. For

enqueuing, packet forwarding module uses CPU-CPU syn-

chronization (section IV-F) if the next NF is a CNF, else it

uses enqueuing method mentioned in section IV-C.

F. CPU-CPU sync and Enqueue Algorithm

NFs in the chain send packets to each other via a predefined

queue (steps 2, 8, and 9 in figure 1). Producer NF passes the

packet pointer via this queue to consumer NF. Furthermore,

dynamic chaining makes it worse as multiple NFs may be

enqueuing packets to the same queue. Since mutexes and

semaphores consume too many cpu-cycles, Hummingbird

solves both challenges by employing a separate queue be-

tween each pair of CPU cores. The queue uses a lock-free

technique [24] to avoid race conditions.

G. Zero-copy via virtual shared memory

To facilitate zero-copy, DPDK first pre-allocates memory

in userspace backed by hugepages (2MB or 1GB page size)

during its initialization, and then it informs the NIC to use

this userspace memory for packet IO. On packet reception,

NIC copies the packet via DMA (Direct memory address) in

this userspace memory and writes packet pointer information

in memory-mapped registers. DPDK polls these registers and

accesses the packet via packet pointer information. OpenCL

2.0 mandates that the GPU can access host (CPU) memory

only when it is a shared virtual memory(SVM) allocated by

clSVMAlloc() API. Since the DPDK memory allocator does

not pre-allocate memory in the SVM region, packets copied by

the NIC are not accessible to the GPU. There are two possible

approaches to solve this problem: (1) Create a separate SVM

region and copy each packet to/from between DPDK and SVM

region. (2) Modify the DPDK to pre-allocate the memory

in SVM and inform the NIC to use this SVM memory for

packet IO. Though the first option is easier to implement, we

opted for the second due to its inherent performance benefits

as it removes extra packet copy overhead between non-SVM

and SVM regions. Challenges in DPDK modification come

from the DPDK code size (170K lines of code) and lack of

documentation regarding the internals of the DPDK memory

model. We went through the whole codebase of the DPDK to

understand the memory model of the DPDK.

Another challenge with SVM memory is that it can not

use hugepages, whereas the DPDK memory model is entirely

dependent on hugepages. We solved this problem by modify-

ing the DPDK memory stack to allow SVM memory without

hugepages for packet IO. However, DPDK APIs still unmaps

the packet from SVM on packet reception and returns a pointer
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that is only accessible to the CPU. On further investigation, we

found that the DPDK calls mmap with a specific address on

packet reception. It unmaps the packet from the SVM region

and returns a packet pointer not accessible to the GPU due

to mmap() [25] ability to replace previously mapped memory

with newly mapped memory. To solve this, we further changed

the packet processing stack of the DPDK to preserve the SVM

memory mapping. Our modifications in the DPDK are generic

and works on all DPDK compatible NICs. In comparison,

APUNet [9] custom DPDK can only use Mellanox NICs.

V. EXPERIMENTAL EVALUATION

In this section, we present the evaluation of the humming-
bird framework. Our test setup consists of Ubuntu 14.04

(kernel 3.13.0-153) running on AMD APU Carrizo platform

A12-9800 with 32GB RAM as a packet processing system.

SVM features and GPU programming are enabled by OpenCL

2.0 (AMD-APP-SDK-v3.0). We Modified DPDK 18.08 for

fast network IO. Our traffic generator is running on 4th gen

Intel(R) Core(TM) i7-4790K (4.0 GHz) with 16 GB main

memory running over Ubuntu 16.04 (kernel 4.4.0-142). Both

systems are connected via 40Gbps Mellanox Connect X-4

ethernet cards (MCX414A-BCAT [26]).

A. Performance benefits of zero-copy

To measure the performance benefits offered by the zero-

copy mechanism supported by modified DPDK, we wrote

a synthetic program that measures and compares the per-

formance metrics of zero-copy persistent kernel against tra-

ditional kernel launch without zero-copy between CPU and

GPU. We observed that (refer to figure 3) zero-copy persistent

kernel achieves ten times higher throughput when compared

to traditional kernel launch without zero-copy. Furthermore,

zero-copy persistent kernel throughput increases exponentially

with an increase in packet size.

B. NFs used in NFV chaining

We have implemented IPSec and NIDS for GPU execution

using OpenCL, whereas we implemented IPSec, NIDS, and

TABLE II: Algorithms used in NF implementation

NF Algorithms

Router DIR-24-8-BASIC [27]
NIDS Aho-Corasick algorithm [28] (147 rules)
IPSec AES-128 (CBC mode) [29] and HMAC-SHA1 [30]
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Fig. 4: Hummingbird: NF chain performance in the various

configuration of CPUSyncer and mDPDK where cxdy repre-

sents x cores for CPUSyncer and y cores for mDPDK.

Router( IP version 4) for CPU execution. Table II mentions

the algorithms used for respective NF implementation. We did

not implement Router over GPU because the Router is not

compute-intensive, and CPU is preferable over GPU for such

workloads. We reprogrammed Openssl [31] based AES-128

bit algorithm using OpenCL for IPSec GPU implementation.

C. Multicore CPUSyncer and multicore DPDK: Pros & Cons

We experimented with the various configuration on our

APU. We varied CPUSyncer cores from 1 to 2 and mDPDK

cores from 1 to 2 and analyzed the performance of Humming-

bird in two scenarios: (1) 1NF: GPU executes a single NF, (2)

2NF: GPU executes two NF simultaneously.

1NF: We observed that multicore CPUSyncer improves

the throughput in comparison to the single-core at smaller

packet sizes (<1024B). Whereas for larger packets, GPU

becomes the bottleneck; hence having multicore CPUSyncer

does not improve or degrade the performance (c1d1 and c2d1

in the figure 4a). We also observed that mDPDK becomes the

bottleneck (when CPUSyncer is not a bottleneck) at smaller

packet sizes due to increased packet incoming rate. Hence,

providing an extra core to mDPDK enhances the performance.

mDPDK on a single core is not a bottleneck for large packets;

hence adding an extra core does not improve the performance.

However, it might reduce the performance due to cache

bouncing [32] as packet hops across CPU cores(c2d1 and c2d2

in the figure 4a). In summary: for smaller packet sizes, c2d2

performs best, and for large packet sizes, c1d1 performs best.

We performed the same experiments with NIDS as well and

observed similar results.

2NF: In this experiment, we allocated GPU for two NFs

and chained those two. In this scenario, having a multi-

core CPUSyncer enhances the throughput (c1d1 and c2d1 in

figure 4b) for smaller packet sizes which is very similar to 1NF

scenario. However, when two NFs parallelly utilize the same

GPU, the GPU processing capacity gets divided among the

NFs. Hence, GPU can not process the packets at the speed at

which mDPDK is enqueuing, regardless of packet sizes. GPU’s

inability to process the packets at line rate results in packet

drops, which exacerbates when the number of mDPDK cores

increases, resulting in lower throughput. This performance can

also be observed from the figure 4b where c1d2 consistently

underperformed compared to c1d1. In summary, for smaller
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packet sizes, c2d1 performs best, and for large packet sizes,

c1d1 performs best.

In subsequent sections, we are not showing and comparing

performances under various configurations (c1d1, c2d2, c1d2,

c2d2). Instead, we will show the best-performing configuration

per packet size observed for the NF chain.

D. NFV baseline performance

This experiment aims to ascertain the maximum perfor-

mance a NF can achieve in an environment where it does

not have to share the resources with others. Only two NFs:

IPSec [33], [34] and NIDS [28] can use GPU cores. Whereas

all the other NFs can use CPU, including Router [27]. Figure 5

shows the throughput of these NFs on the respective compute.

From figure 5, we can observe that the performance of NF

over GPU far exceeds the performance of the identical NF

on the CPU. Additionally, we measured the latency for NFs

on both CPU and GPU and found that for compute-intensive

NFs, the use of GPU reduces the average latency up to

5.9 times. Hence, GPU is beneficial for compute-intensive

NFs deployment. Furthermore, Hummingbird’s performance

is better in comparison to APUnet1. In the rest of the paper,

IPSec always executes on the GPU.

E. Static NFV chaining: Benefit of GPU partitioning

We compared two different chains to analyze the perfor-

mance benefits of spatial partitioning of GPU. Both chains

consist of three NFs (IPSec, NIDS, and Router), and the NF

1APUnet data is taken from APUnet [9] paper directly. Since APUnet code
is not open-source, we could not run it on our platform to extract the results
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order in the chain is fixed such that packets first go to IPSec,

then NIDS, and then finally Router(IPv4). Though NF order in

both the chain is the same, they differ in compute type used for

NIDS. One chain uses our logical GPU partition and executes

IPSec and NIDS on the GPU, whereas the other chain uses

GPU for IPSec only and CPU for the rest of the two NFs. Let

us say the chain that uses logical GPU partition and executes

two NFs on the GPU is called g-chain and the other chain

with only IPSec on the GPU is called c-chain. We evaluated

these two chains on the Hummingbird, and we observed that

the throughput of c-chain almost remains constant with an

increase in packet size(figure 6). In comparison, the throughput

of the g-chain increases with an increase in packet size (as

shown in figure 6). Furthermore, the throughput of the g-
chain surpasses the c-chain regardless of the packet size. For

example, at a packet size of 1472B, the g-chain achieves

8.46Gbps, whereas the c-chain achieves 1.9Gbps. The c-chain
underperforms because compute-intensive NIDS becomes a

bottleneck as it is using a CPU core. Whereas, if the same

NIDS uses half of the GPU, we can achieve 4x performance

improvement for the chain.

F. Dynamic NFV chaining over HSA

This section aims to analyze the overhead incurred due

to dynamic chaining. Dynamic chaining enables dynamic

routing of the packet based on a policy, i.e., different packets

may follow different NF chains if the policy defines so.

We defined a policy based on the IP header for dynamic

chaining such that each traffic flow follows a different NF

chain. Source IP, source port, destination IP, destination port,

and protocol define a traffic flow. Change in any one of

these five fields creates a separate traffic flow. In this set of

experiments, sender is transmitting two flows: flow f1 having

ip1 as destination IP and flow f2 having ip2 as destination

IP. We configured Hummingbird to process the flow f1 by

the chain of IPSec(GPU)-NIDS(GPU)-IPv4(CPU) and flow

f2 by the chain of IPSec(GPU)- IPv4(CPU). To analyze the

overhead of dynamic chaining caused by dummy packets, we

varied the percentage of these two flows in the experiments.

In first experiment, flow f1 is 50% of the total traffic and

flow f2 is 50% of the traffic. In second experiment, flow

f1 is 93% of the total traffic and flow f2 is 7% of the

traffic. Figure 7 shows the performance of dynamic chaining

for both experiments. From figure 7, we observed that the

throughput of the second experiment is marginally better than
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the first experiment regardless of the packet size because

the second experiment consists of a higher proportion of f1
flow, thus requires fewer dummy packets. It implies that the

higher number of dummy packets in the system, the lower the

throughput as dummy packets do not contribute to the actual

traffic but still consume CPU and GPU resources. However,

the overhead is very low as the throughput gap between the

two experiments is very narrow (0.7 Gbps).

G. Power and cost advantage of NFV chaining over HSA

This section highlights the performance of Hummingbird

with its peer (G-net [7]). Since the GPU used by Hummingbird

and G-net is different, we compare both in terms of throughput

obtained per core or throughput obtained per unit of energy

consumption. In terms of per-core throughput, Hummingbird

outperforms G-net as shown in the figure 8a. Hummingbird

achieves six times throughput per core (for 1472 byte packets)

compared to G-net (figure 8a). When it comes to power con-

sumption, Hummingbird again outperforms G-net(figure 8b).

Based on our evaluation, we found that Hummingbird is

3.5 times more power-efficient for packet processing when

compared to G-net. Hummingbird performance comes from

various optimizations discussed in the design and implemen-

tation (section IV).

VI. RELATED WORK

NF chaining frameworks for CPU: Click [35] was the

first work to demonstrate usage of NFV for deploying a

simple router. Recent high performance network processing

frameworks such as NetVM [36], OpenNetVM [37] bypasses

TCP/IP stack to provide line-rate processing. NetVM [36]

and OpenNetVM [37] proposed a framework of dynamic NF

chaining over multiple CPUs to achieve packet processing at

high speed.

NF chaining frameworks using GPU:PacketShader [2]

main aim was to improve throughput by accelerating it using

GPUs. It leveraged the stateless nature of packet processing

by software routers to execute them in parallel over GPU.

SSLShader [6] leverages GPU to accelerate cryptographic

computation with the help of thousands of cores. Similar

to SSLShader, Kargus [5] employs GPU for accelerating

intrusion detection systems, but it also balances the workload

between CPU and GPU.

Tseng, Janet et al. [38] used integrated GPU to accelerate

open-vswitch. However, their work focuses on open-vswitch
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instead of a generic NFV framework. G-net [7] framework

uses a unique GPU with HYPERQ technology to spatially

share GPU among multiple NF chains. In terms of goal, G-

net [7] is closer to our work, but it uses costly and power-

hungry discrete GPU. Furthermore, G-net does not employ

CPUs for NF processing. Though APUNet [9] employed

similar HSA, it differs from us in architecture, solution,

and goals. APUnet does not support NFV chain deployment.

Furthermore, APUNet custom DPDK uses Mellanox APIs;

hence the solution is tied to a specific vendor. On the other

hand, our modified DPDK is generic and can be used with any

DPDK supported NIC. Additionally, APUNet leveraged the

LRU algorithm for synchronization, which is not guaranteed

to work for all HSA because the solution is not OpenCL

2.0 compliant. We developed a novel OpenCL 2.0 compliant

GPU-CPU cooperative synchronization mechanism for fast

and consistent data access. Hummingbird additionally offers

NFV chaining over HSA and incorporates various techniques

such as dynamic chaining and scheduling multiple NFs on

GPU to improve the performance.

VII. CONCLUSION

We designed and developed Hummingbird, high throughput

and efficient framework for dynamic NFV chaining over

APUs. Hummingbird performs well despite utilizing GPU with

fewer cores (APU) that require lesser power and is affordable.

Usage of such a framework in data centers by cloud providers

can provide environment-friendly computing without compro-

mising performance. However, there were many challenges

while designing Hummingbird, which we solved through

modified DPDK, persistent kernel, a novel distributed CPU-

GPU synchronization algorithm, logical GPU partitioning, and

dummy packet usage for stall-free lock-step execution. Our

experimental evaluation demonstrated that these techniques

helped Hummingbird achieve good performance and process

more bytes per core than its contemporaries.
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