
Simmer: Rate proportional scheduling to reduce packet drops in
vGPU based NF chains

Avinash Kumar Chaurasia
avinashk@cse.iitb.ac.in

Indian Institute of Technology
Bombay
India

Anshuj Garg
anshujgarg@cse.iitb.ac.in

Indian Institute of Technology
Bombay
India

Bhaskaran Raman
br@cse.iitb.ac.in

Indian Institute of Technology
Bombay
India

Uday Kurkure∗
Hari Sivaraman

Lan Vu
ukurkure@vmware.com
hsivaraman@vmware.com

lanv@vmware.com
VMware
USA

Sairam Veeraswamy
sveeraswamy@vmware.com

VMware
India

ABSTRACT
Network Function Virtualization (NFV) paradigm offers flexibil-
ity, cost benefits, and ease of deployment by decoupling network
function from hardware middleboxes. The service function chains
(SFC) deployed using the NFV platform require efficient sharing of
resources among various network functions in the chain. Graph-
ics Processing Units (GPUs) have been used to improve various
network functions’ performance. However, sharing a single GPU
among multiple virtualized network functions (virtual machines)
in a service function chain has been challenging due to their pro-
prietary hardware and software stack. Earlier GPU architectures
had a limitation: a single physical GPU can only be allocated to
one virtual machine (VM) and cannot be shared among multiple
VMs. The newer GPUs are virtualization-aware (hardware-assisted
virtualization) and allow multiple virtual machines to share a single
physical GPU. Although virtualization-aware, these GPUs still lack
support for custom scheduling policies and do not expose the pre-
emption control to users. When network functions (hosted within
virtual machines) with different processing requirements share the
same GPU, virtualization-aware GPUs’ default round-robin sched-
uling mechanism proves to be inefficient, resulting in packet drops
and lower throughput. This paper presents Simmer, an efficient
mechanism for scheduling a network function service chain on
virtualization-aware GPUs. Our scheduling solution considers the
processing requirement of NFs in a GPU-based SFC, thus improving
overall throughput by up to 29% and reducing the packet drop to
zero compared to vanilla setup.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP ’22, Aug 29–Sep 01, 2022, Bordeaux, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9733-9/22/08. . . $15.00
https://doi.org/10.1145/3545008.3545068

ACM Reference Format:
Avinash Kumar Chaurasia, Anshuj Garg, Bhaskaran Raman, Uday Kurkure,
Hari Sivaraman, Lan Vu, and Sairam Veeraswamy. 2022. Simmer: Rate
proportional scheduling to reduce packet drops in vGPU based NF chains.
In 51st International Conference on Parallel Processing (ICPP ’22), August
29-September 1, 2022, Bordeaux, France. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3545008.3545068

1 INTRODUCTION
A typical network infrastructure consists of various network func-
tions (NFs) working together to offer a specific network service.
Multiple such NFs often process a network packet/traffic in a desig-
nated order. This arrangement of network functions is called a Net-
work Function Chain (NFC) or Service Function Chain (SFC) [16].
Traditionally, network functions like firewalls, Intrusion Detection
Systems (IDS), proxies, Network Address Translators (NAT), etc.,
were deployed using proprietary and special-purpose hardwaremid-
dleboxes [30]. Hardware middleboxes deliver good performance
but have higher deployment costs and are difficult to configure,
manage, and upgrade. [32]

Network Function Virtualization (NFV) technology addressed
the limitations of hardware middleboxes. NFV decoupled the net-
work functions from hardware middleboxes and transformed how
network functions were deployed and managed. NFV enables net-
work function deployment over general-purpose commercial-of-
the-shelf hardware (e.g., x86 servers), thereby removing specialized
hardware middleboxes. With NFV, a network function runs as a
software service over the commodity servers instead of a hardware
middlebox. This software-based network function implementation
is also known as virtual network functions (VNF). VNFs offer cost-
effectiveness, flexibility, agility, and ease of scalability. Network
operators often use a virtual machine or a container to deploy
VNFs [3, 9].

Although NFV offers many benefits, one of the significant con-
cerns with NFVs is their performance. Efforts have been made [20,
28] to improve NFV techniques and achieve a performance closer to
the hardware middleboxes. Programmable hardware like Graphics

https://doi.org/10.1145/3545008.3545068
https://doi.org/10.1145/3545008.3545068

ICPP ’22, Aug 29–Sep 01, 2022, Bordeaux, France Avinash Kumar Chaurasia, Anshuj Garg, Bhaskaran Raman, Uday Kurkure, Hari Sivaraman, Lan Vu, and Sairam Veeraswamy

Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs),
etc., have also been explored for deploying network functions to
improve the NFs performance [27, 29, 43].

Graphics Processing Units are specialized hardware devices ca-
pable of executing millions of threads in parallel. GPUs are now
widely used for general-purpose computing given the computation
power offered by them [1, 35]. At the same time, various works
have shown the effectiveness of GPUs in improving the perfor-
mance of the network functions like packet routing [17, 23, 36],
SSL proxy [22] and SRTP [44] reverse proxy. Previous works on
using GPUs for deploying network functions focused on running
only single network functions on GPUs. Real-world networks often
employ multiple network functions working together as a service
function chain. In setups up with multiple NFs, efficient sharing of
GPU among NFs is desirable.

Earlier GPU architectures were not virtualization-aware, and the
PCI passthrough technique [41] was used to provide GPU access
to virtual machines. PCI passthrough gives exclusive access of the
GPU to a virtual machine, i.e., only one VM can use the GPU at
a time. The proprietary hardware and drivers of GPUs constrain
the possibility of designing a custom virtualization solution. The
existing software-based virtualization solution work at the API
level and require modification in either application programming
interface (API) [11, 18, 33] or uses inefficient open-source GPU
drivers [37]. The API-based virtualization solutions provide limited
isolation between virtual machines, have compatibility issues, and
are low performing [42].

In a multi NFV setup (involving a network function chain), where
multiple virtual machines (network functions) share resources, effi-
cient resource management is crucial. The newer NVIDIA GPUs [7]
are virtualization-aware, i.e., they allow multiple virtual machines
to share a single GPU. NVIDIA’s virtualization technology exposes
multiple virtual GPUs (vGPU), which can be assigned to virtual
machines (vGPU VM). With this technology, each vGPU-enabled
VM can host a GPU-based NF and be chained to form a GPU-based
network function chain. However, these virtual machines (vGPU
VM) share the physical GPU in a round-robin manner. Also, the
GPU hardware/software does not expose the vGPU preemption
control to the GPU user. The lack of preemption control prevents
GPU users from incorporating custom vGPU scheduling policies.

The network functions in a service function chain (SFC) usually
have heterogeneous compute requirements. The round-robin vGPU
scheduling algorithm does not take the compute heterogeneity of
NFs into account and gives an equal time slot (GPU share) to each
vGPUVM (NF). The compute heterogeneity arises due to differences
in the per-packet processing time of the network function. The
lower the per-packet processing time, the higher the throughput.
Round-robin NF scheduling in an SFC where a slow (bottleneck) NF
is downstream and faster NF is upstream results in a packet loss. In
such SFC, slow NFs will drop the packets already being processed
by the upstream NF, causing the wastage of work (GPU cycles) and
reducing overall throughput.

Ideally, the GPU share allocated to each NF (vGPU VM) should be
proportional to the compute requirement of the NF. The challenges
in implementing the rate-proportional scheduling of the vGPU
VMs are two folds. First, there is a lack of preemption support in
virtualization-aware hardware. Second, the virtualization-aware

Figure 1: Architecture of virtualization aware GPUs.

hardware and associated software (drivers) are proprietary, so one
cannot design a custom scheduling solution. Towards addressing
these challenges following are the contributions of our work:

• Identify the issues and challenges of using a hardware-assisted
GPU virtualization solution to deploy virtual network func-
tions.

• Propose an approach to control the GPU share of VNFs
hosted inside vGPU virtual machines (vGPU VMs).

• Design and implement Simmer, an efficient scheduling solu-
tion for deploying a virtual network service chain over the
virtualization-aware GPU.

• Demonstrate the efficacy of Simmer by comparing it against
vanilla setup and with various GPU virtualization modes.

The rest of the paper is organized as follows. Section 2 discusses
background and motivation. Section 3 describes the design and
implementation of Simmer. Section 4 presents the evaluation of our
work. Section 5 discusses the related work and Section 6 concludes
the paper.

2 BACKGROUND AND MOTIVATION
2.1 virtualization aware GPU hardware
Graphics Processing Units are specialized hardware that consists
of thousands of cores working in a Single Instruction Multiple
Thread (SIMT) manner. The GPU hardware can launch and schedule
millions of threads that execute the same function on different data.
GPUs were developed for accelerating the problems of the image
processing [31] and computer vision domains [12]. However, they
are now widely used as general-purpose compute accelerators [1,
35].

The earlier GPU architecture did not have support for virtu-
alization. NVIDIA recently introduced virtualization-aware GPU
hardware [13]. Figure 1 shows the architecture of hardware-assisted
virtualization solution. With the help of the NVIDIA virtual GPU
manager, a virtual-aware GPU hardware enables and exposes multi-
ple instances of virtual GPUs (vGPUs). These vGPUs can be assigned
to virtual machines and are accessible after installing NVIDIA GPU
drivers.

The virtualization aware hardware can operate in two modes—
virtual GPU(vGPU) mode and Multi-instance GPU (MIG) mode.
These two modes differ in how multiple virtual GPUs share the
physical GPU. The following is the description of the different
modes:

Simmer: Rate proportional scheduling to reduce packet drops in vGPU based NF chains ICPP ’22, Aug 29–Sep 01, 2022, Bordeaux, France

Table 1: Time require to process a 1472B packet by the NF

NF-1 NF-2 NF-3
Time (microseconds) 0.04 1.63 0.52

2.1.1 vGPU mode. vGPU mode multiplexes the physical GPU
among multiple vGPU in a round-robin manner, i.e., the physi-
cal GPU is time-shared among multiple vGPUs. The memory of the
physical GPU is statically partitioned among the vGPUs. NVIDIA
virtual GPU manager exposes two parameters viz. vGPU profiles
and vGPU scheduling algorithm to configure vGPU mode. vGPU
profile determines the total number of vGPUs exposed and mem-
ory per vGPUs. The vGPU mode supports three vGPU scheduling
algorithms— Fixed share, Equal share, and Best-effort. All these al-
gorithms work in a round-robin manner. The best-effort scheduling
algorithm is work conserving, and in this work, we configure the
vGPU mode with the best-effort scheduling algorithm.

2.1.2 Multi-instance GPU(MIG) mode. NVIDIAMIGmode[8] parti-
tions NVIDIA GPU into multiple GPU instances. Each MIG instance
has a dedicated set of GPU cores and is predefined based on the MIG
profile chosen at VM instantiation. Furthermore, each MIG instance
has a separate and isolated path throughout the memory stack to
ensure that workloads executing on one instance have a predictable
performance regardless of the workload and its behavior on other
instances. Dedicated GPU cores and isolated memory allow MIG
instances to execute workloads simultaneously on a single physical
GPU.

2.2 Heterogeneous compute requirement of NFs
Network infrastructure can include various network functions like
firewalls, network address translation (NAT), routers, intrusion
detection systems (IDS), etc. Each network function differs by its
operation on the incoming network packet. We implement three
network functions viz. Router [15], IPsec [25] and NIDS [2]. Table 1
shows the packet processing time of one packet of size 1472 bytes
by these network functions. In Table 1, NF-1 is Router, NF-2 is
IPsec and NF-3 is NIDS. Henceforth, we will mention these network
function using their aliases NF-1, NF-2 and NF-3.

In a service function chain, a fast (low compute intensive) NF
is often followed by a slow (high compute-intensive) NF. In such
heterogeneous chains, to balance the processing rates (throughput)
across the chain, the compute resources should be allocated to each
NF in proportion to the incoming packet rate and packet processing
time [26]. The slowest network function in the chain determines
the overall throughput of the chain and is often termed bottleneck
NF. Ideally, we would want to allocate the compute resources to
each NF such that their throughputs are similar.

2.3 Issues with vGPU scheduling
The virtualization-aware hardware does not expose the vGPU pre-
emption control to the GPU users. At the same time, the vGPU
scheduling algorithms work in a round-robin manner with non-
configurable time slice duration. The lack of preemption control
and non-configurable scheduling algorithms limits the GPU users
from employing custom scheduling policies. The NFV setups have

Table 2: Packet drop in vGPU setup for a chain of three NF
when NF-2 is the bottleneck NF

Packet
Size
(B)

NF-1 NF-2 NF-3

Packets
Dropped
(KPPS)

128 2.26 48.82(4%) 0
256 2.35 97.65 (6%) 0
512 2.01 289.14 (16%) 0
1024 1.27 510.52 (36%) 0
1472 0.167 722.33 (48%) 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

256 512 1024 1472

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Packet size (bytes)

NF-1 NF-2 NF-3

Figure 2: Throughput of each NF in the chain when NF-2 is
the bottleneck NF

multiple NFs with heterogeneous compute requirements hosted
inside virtual machines with one NF per VM. In such a setup, round-
robin scheduling that equally shares the GPU among all the NFs
results in packet loss and low throughput.

We implement three GPU-based NFs: NF-1(Router), NF-2(IPsec)
and NF-3(NIDS). We created a simple network chain of NF-1, NF-2,
and NF-3 in that order. Each vGPU VM hosts an NF inside, and
every network packet traverses through all the NF. The vGPU VMs
share the physical GPU in a default round-robin manner. In this
setup, NF-2 is the bottleneck of the chain. From figure 2, we can
observe that NF-2 suffers a drastic drop in throughput compared to
NF-1 because NF-2 is compute-heavy NF yet not given enough GPU
slots to match NF-1 throughput. Table 2 shows the packet dropped
in thousand packets per second (KPPS) for different packet sizes
for the same chain. Furthermore, from table 2, we can observe that
NF-2, which is the bottleneck NF, experiences the highest packet
drop (up to 48% of the total traffic), whereas the NF-1 has negligible
packet drops, and NF-3 never suffers a packet drop.

In a network function chain, if one of the network functions
has a slow processing rate (bottleneck NF), it affects the overall
throughput of the chain. Also, the slow downstream NFs drop
the packet that the upstream NF already processed. This action of
dropping the partially processed packet wastes thework done by the
upstream NF and, at the same time, it results in lower throughput.

ICPP ’22, Aug 29–Sep 01, 2022, Bordeaux, France Avinash Kumar Chaurasia, Anshuj Garg, Bhaskaran Raman, Uday Kurkure, Hari Sivaraman, Lan Vu, and Sairam Veeraswamy

3 DESIGN
We already discussed in previous sections the limitations of sched-
uling algorithms of state-of-the-art hardware-assisted GPU virtual-
ization solutions. This section presents the design of Simmer — a
software solution for efficient scheduling of vGPU-based NFs.

3.1 Solution requirements
There are two main requirements for designing a solution for the
efficient scheduling of NFs. First, the NFs should get the GPU share
in proportion to their processing requirement. Second, we should
be able to quickly identify the bottleneck NF responsible for the
slow down of the entire service function chain.

3.1.1 Rate proportional sharing of GPU. In a virtual GPU (vGPU)
based Service Function Chain (SFC), the network functions sharing
a single physical GPU (via vGPU VMs) should be given the schedul-
ing opportunity according to their processing requirements. Ideally,
the slower NF should get the larger share of the physical GPU. The
NVIDIA vGPU scheduler controls VM scheduling on the physical
GPU at the hypervisor. Though the scheduler is suitable for most
workloads, it does not efficiently utilize GPU when NFV chaining
is concerned because the scheduler is agnostic to the workloads
running inside VMs. Since the scheduler is unaware of the workload
and its dependency, the scheduling decisions often lead to poor
performance of the NFV chains. Furthermore, the scheduler can
not be replaced by a custom scheduler, nor can it be altered.

NVIDIA’s best effort scheduler works as follows: It schedules
the active VMs on the physical GPU in a round-robin. However,
previous works on NFV deployment over vGPU [4] observed that
the best effort scheduler employs some heuristic to assign GPU to
the VM with an active GPU workload. If all the VMs have active
workloads, it schedules them in the round-robin. In summary, the
scheduler uses active GPU workload as meta information while
scheduling the VMs on the GPU. Based on this empirical knowledge,
we wish to control VM assignment to the physical GPU by altering
the active GPU workload meta information.

3.1.2 Identification of the bottleneck NF. The second requirement
of the solution is to determine the bottleneck NF and then coordi-
nate with other VMs to allow the bottleneck NF a larger share of the
GPU. If incoming packet flow is not controlled and matched with
the bottleneck NF, excess packets get dropped or queued for later
processing. Since packet drop is never desirable in any network,
queuing excess packets is better. For a bottleneck NF, packets in
the queue continue to increase until the queue gets full. Afterward,
packets get dropped. A solution must avoid these situations. A
queue occupancy is an excellent metric to measure the speed of NF
processing, hence can be used to find a bottleneck NF. Since GPU
is a shared resource among all the NFs of the chain, an increase in
the share of the bottleneck NF on the GPU may starve another NF
and temporarily make it a bottleneck NF. Hence, a solution must
be able to handle such situations.

3.2 Design Choices
3.2.1 Centralized vs Distributed design. There can be two ways
to measure individual NF’s Receive (RX) queue and modify the
meta information in each NF: central and distributed. One machine

(virtual or physical machine) can act as an arbitrator in a central
approach and gather RX queue information from all the NFs. Based
on the collected information, the arbitrator chooses one NF and
informs the selected NF that it can use a physical GPU. The arbitra-
tor must inform the rest of the NFs to wait (pause their operation)
and not use the GPU; otherwise, the vGPU scheduler will schedule
all the VMs in a round-robin. If there are n NFs, then the central
system will periodically receive n messages and have to reply to n
VMs regarding who is allowed to use GPU or not. Furthermore, the
system must define the frequency at which the central arbitrator
must collect these messages.

Though central arbitrator systems have advantages such as a
global view of the chain and control over the scheduling via meta-
information modification, it suffers from drawbacks such as single
point of failure and scalability. These drawbacks are well known
to researchers for similar systems such as SDN (software-defined
networks) [34]. Similar to our central arbitrator concept, SDN
(software-defined networks) also employ a central controller to
solve complex networking problems and suffer from identical prob-
lems [24]. However, SDN does not require frequent updates, and
it only updates routers for a new packet arrival for which routes
are not available at the data plane. In contrast, our arbitrator has to
continuously update the meta-information to control the VM exe-
cution on the GPU. Hence the delay caused by the messages to and
from the central arbitrator may result in sub-optimal scheduling.
Furthermore, the central arbitrator must inform each NF regarding
the GPU slot availability, which may require complex scheduling
techniques.

The distributed approach allows scalability and quick response
but lacks the global view of the RX queue of NFs. In the distributed
approach, each NF collects the information required to make an
independent decision regarding the GPU slot’s availability. The
distributed approach becomes complex if each NF wishes to have a
global view and then sync their decision regarding the GPU slot
availability. Having a global view makes the system less scalable
because the number of messages required for a system to have
a global view increases exponentially per VM addition. Instead,
suppose each NF has local information and can guess or make an
informed decision regarding the GPU slot availability based on
that local information. In that case, that system becomes highly
scalable and can make quick decisions, possibly without complex
techniques. We choose to adopt this local information-based dis-
tributed approach due to its apparent benefit of scalability. We
created a software-based receive (RX) queue to enqueue all the in-
coming packets. This RX queue feeds packets to GPU-based NFs in
our system. The idea is that each NF assesses whether they are the
bottleneck or not based on its RX queue occupancy. If any NF finds
itself a bottleneck, it informs its upstream NF to take appropriate
action. Since upstream NF is responsible for pushing packets to
bottleneck NF, the upstream NF must pause computation on the
GPU to reduce contention for GPU access. Furthermore, the RX
queue occupancy of this upstream NF continues to increase, result-
ing in it becoming the new bottleneck NF. Due to the distributed
nature of the solution, every upstream NFs eventually pause its
computation unless the original bottleneck NF gets enough GPU
access and reduces its RX queue occupancy significantly. If first
NF becomes the bottleneck, then it will a signal to the source of

Simmer: Rate proportional scheduling to reduce packet drops in vGPU based NF chains ICPP ’22, Aug 29–Sep 01, 2022, Bordeaux, France

Figure 3: Architecture of Simmer.

the packets. Now it is up to the infrastructure provider to handle
this signal and use any existing solutions like it can either queue
the packets or spawn a new chain on another physical system and
load balance the traffic. We implemented our solution as a Simmer
module, and the subsequent section explains the architecture of
Simmer.

3.2.2 vGPU NF Vs Process NF. A network function can be hosted
within a vGPU-enabled virtual machine or implemented as a GPU-
based process. In a process-based setup, each network function in
an SFC is implemented as a process. In such a setup, all the pro-
cesses share the same GPU in a round-robin order [13]. The GPUs
schedule the multiple processes and multiple vGPUs (VM) in the
same manner. At the same time, like vGPUs, no explicit scheduling-
control knobs are exposed by GPUs for governing the scheduling
of multiple processes. However, using vGPUs for hosting network
functions instead of processes have additional advantages. Firstly,
virtual machines provide better resource control than processes.
Compute resources of a network function hosted on a virtual ma-
chine can be scaled up and down depending upon the requirement
of the NF. Secondly, vGPUs (VM) provides better GPU resource
isolation than GPU-bound processes. Each vGPU has its exclusive
memory, and the memory access of one vGPU is not affected by
the memory access of other vGPU. However, in the case of pro-
cesses, every process has a global view of the entire GPU memory,
and memory failure (like memory over-allocation or out-of-bound
access) of one process can crash the other GPU-bound process.

3.3 Architecture of Simmer
Figure 3 shows the architecture of our solution setup— Simmer.
Simmer uses single root I/O virtualization (SR-IOV) [5] enabled
network interface cards and virtualization-aware NVIDIA GPUs
to provision virtual machines with a virtualized network interface
card (vNIC) and virtual GPU (vGPU) resources, respectively. Each

Figure 4: Rate control mechanism between two NFs.

virtual machine hosts a single network function (GPU NF). Sim-
mer uses DPDK API [10] for bypassing the Operating System (OS)
kernel network stack of the guest Operating System for efficient
packet delivery. The NVIDIA virtual GPU manager sits inside the
hypervisor and facilitates the physical GPU virtualization. The vir-
tual machine’s guest OS requires NVIDIA drivers to enable access
to the virtual GPUs.

The Simmer module is present inside each virtual machine. Sim-
mer has two main components– Congestion monitor and Rate
controller, as shown in figure 4.

3.3.1 Congestion Monitor. : The task of the Congestion monitor is
to keep track of the occupancy of the NF receive (NF RX) queue of
its corresponding network function (virtual machine). There is a
threshold qt associated with the RX queue of each network function.
The NF RX queue threshold qt denotes the percentage occupancy
of the queue. From here onwards, the RX queue always refers to
the NF RX queue shown in the figure 4. The Congestion monitor
periodically checks the queue and sends a slow-down signal to the
rate controller of the upstream NF when queue occupancy crosses
qt.

3.3.2 Rate controller. : The Rate controller controls the packet flow
between the RX queue and the network function. It acts like an
ON/OFF switch to start and stop the packet flow between the RX
queue and NF. When a rate controller receives a slow-down signal
from a downstream NF, it temporarily cuts the flow of packets from
the RX queue to the NF. However, when it receives a fasten-up
signal, it switches on the flow of packets.

3.4 Simmer Implementation
In our Simmer, GPU-based NFs are part of the GPU kernel. The
GPU kernel launches the kernel when it receives a fixed number
of packets, i.e., a batch of packets. The GPU kernel receives the
batch of packets from the RX queue, and DPDK enqueues incoming
packets in the RX queue.

ICPP ’22, Aug 29–Sep 01, 2022, Bordeaux, France Avinash Kumar Chaurasia, Anshuj Garg, Bhaskaran Raman, Uday Kurkure, Hari Sivaraman, Lan Vu, and Sairam Veeraswamy

At boot, Simmer initializes the modules along with three user
specified variables: batch_size, flow_status, and qt. batch_size is the
number of the packets required for a GPU kernel launch. flow_status
defines the status of packet flow between the RX queue and NF. qt
is the RX queue threshold, and its value determines when to trigger
signals for slow-down (pause) or fasten-up (resume). The flow of
packets in the framework is as follows: DPDK enqueues packets in
the RX queue of its respective NF on packet reception. If flow_status
is non-zero and the RX queue occupancy crosses batch_size, the
rate controller sends packets to the NF. However, if flow_status is
zero, the rate controller pauses the packet flow from the RX queue
to NF. When NF receives batch_size packets, it launches the GPU
kernel if previous GPU kernels have completed their execution
on the GPU. Once the RX queue occupancy crosses the threshold
value (qt), the congestion monitor triggers the slow-down signal to
adjacent upstream NF. On the other hand, if the queue occupancy
goes below the threshold(qt), the congestion monitor triggers the
fasten-up signal to adjacent upstream NF.

On slow-down signal reception, the rate controller of the up-
stream NF sets the flow_status to zero; hence it pauses the flow
of packets to NF, resulting in halting further kernel launches. Al-
ternatively, suppose the upstream NF receives a fasten-up signal,
the NF sets the flow_status to the non-zero value resulting in the
resumption of the kernel launches. Every time NF refrains from
launching the kernel, it excuses itself from being scheduled on the
physical GPU resulting in other NFs (especially bottleneck NFs)
using the extra time slot to improve the chain’s throughput.

We implemented the signal using the UDP protocol and sent it
to other NFs over the network. To keep it fast and straightforward,
we avoided TCP. Even if the same signal is sent multiple times for
a single event, the upstream NF response stays stable due to binary
action taken by the flow control.

4 EXPERIMENTATION
Our experimental setup consists of multiple VMs hosted on VMware
ESXi-7.0.2 hypervisor [39]. The hypervisor runs on a Dell ma-
chine with Intel(R) Xeon(R) Gold 5218R CPU having 40 cores with
2.10GHz frequency and 768 GB of RAM. NVIDIA’s A100 GPU [6]
with 6912 cores and 40 GB of GPUmemory is attached to the system,
and it supports a maximum of ten vGPUs or seven MIG instances.
Each VM has 30 GB RAM and eight vCPUs. All the VMs except
one (traffic generator) are attached to a vGPU instance (when MIG
mode is disabled), and the hypervisor uses a best-effort scheduler
for vGPU scheduling. However, when MIG mode is enabled, they
use the MIG GPU instance. Each VM uses single root I/O virtualiza-
tion (SR-IOV) enabled virtual NIC (vNIC) backed by 25 Gbps Intel
Ethernet NIC. Furthermore, each VM runs Ubuntu 20.04 as guest
OS and uses DPDK 18.11 for network IO.

4.1 NFs in service function chain
We implement three NFs viz. NF-1, NF-2, and NF-3 and use them in
our evaluation. All three NFs have different compute requirements.
NF-2 and NF-3 are IO and compute-intensive NFs, whereas NF-1 is
only IO intensive. Figure 5 shows the individual NF performance in
a hardware-assisted virtualized GPU environment over A-100 GPU
in two configurations: when MIG is enabled (MIG instances) and

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

128 256 512 1024 1472

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Packet size (bytes)

NF-1-vGPU
NF-1-MIG

NF-2-vGPU
NF-2-MIG

NF-3-vGPU
NF-3-MIG

Figure 5: NF’s individual performance when a one VM occu-
pies whole GPU.

Table 3: MIG instances supported by NVIDIA A-100

MIG profile memory per
MIG instance

No. of MIG instances
exposed

A100-1-5C 5 GB 7
A100-2-
10C

10 GB 3

A100-3-
20C

20 GB 2

A100-4-
20C

20 GB 1

A100-7-
40C

40 GB 1

Table 4: vGPU profiles supported by NVIDIA A-100

vGPU profile memory per
vGPU

number of vGPUs ex-
posed

A100-4C 4 GB 10
A100-5C 5 GB 8
A100-8C 8 GB 5
A100-10C 10 GB 4
A100-20C 20 GB 2
A100-40C 40 GB 1

when MIG is disabled (vGPU instances). Each NF (VM) gets exclu-
sive access to the physical GPU in vGPU and MIG configurations.
MIG configuration uses A100-7-40C profile (table 3), and vGPU con-
figuration uses A100-40C profile (table 4). Hence, only one NF (VM)
is deployed on the physical GPU in either configuration to measure
the maximum individual throughput each NF can offer without any
interference. As we can observe from figure 5, the NFs on the MIG
are either equal or better than their corresponding performance
on the vGPU instance. We believe virtualization overhead in the
vGPU instances such as vGPU scheduling may be the reason for
the lower throughput of the NFs over vGPU.

Simmer: Rate proportional scheduling to reduce packet drops in vGPU based NF chains ICPP ’22, Aug 29–Sep 01, 2022, Bordeaux, France

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

128 256 512 1024 1472

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Packet size (bytes)

2xbatch_size
2.4xbatch_size
2.8xbatch_size
3.2xbatch_size

3.6xbatch_size
4xbatch_size
Vanilla setup

(a) Throughput

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

128 256 512 1024 1472

P
ac

k
et

 d
ro

p
 (

M
p
p
s)

Packet size (bytes)

2xbatch_size
2.4xbatch_size
2.8xbatch_size
3.2xbatch_size

3.6xbatch_size
4xbatch_size
Vanilla setup

(b) Packet drops

Figure 6: Chain of three heterogeneous NF: Simmer with
different queue threshold values (qt) vs vanilla setup

4.2 Queue threshold (qt) selection
Simmer modifies the meta-information to control the scheduling
of the VMs (NF) on the physical GPU. It triggers a signal when
queue occupancy crosses a predefined threshold in the RX queue.
We perform a set of experiments to understand the impact of thresh-
old value on the chain’s throughput. We vary the threshold value
in multiple of batch_size because GPU is processing batch_size
packets at a time (section 3.4). We varied the threshold value from
twice the batch_size (2×batch_size) to quadruple the batch_size
(4×batch_size). From figure 6, we observed that for a heterogeneous
chain of three NF, packet drop reduces to zero (figure 6b) when the
threshold value stays in the range of 2× to 2.8× of the batch_size,
and system throughput stays highest in this threshold range among
the rest of the threshold values (figure 6a). We kept the minimum
threshold value at 2× of the batch_size due to a possible scenario
explained as follows. A lower value means NF triggers the slow-
down signal with packets fewer than 2× batch_size. A possibility
arises that GPU (bottleneck NF) is already processing batch_size
(1×) packets out of these packets and is about to complete. Due
to the slow-down signal, the flow of incoming packets ceases, and

 1

 2

 3

 4

 5

 6

 7

 8

 9

128 256 512 1024 1472

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Packet size (bytes)

2xbatch_size
2.4xbatch_size
2.8xbatch_size
3.2xbatch_size

3.6xbatch_size
4xbatch_size
Vanilla setup

(a) Throughput

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

128 256 512 1024 1472

P
ac

k
et

 d
ro

p
 (

M
p
p
s)

Packet size (bytes)

2xbatch_size
2.4xbatch_size
2.8xbatch_size
3.2xbatch_size

3.6xbatch_size
4xbatch_size
Vanilla setup

(b) Packet drops

Figure 7: Chain of three homogeneous NF: Simmer with dif-
ferent queue threshold values (qt) vs vanilla setup

the bottleneck NF is left with less than batch_size packets and can-
not relaunch the kernel. The bottleneck NF sent the slow-down
signal to ask for a more significant share of the GPU, and upstream
NF obliged by pausing their kernel launch. However, bottleneck
NF cannot launch the kernel due to the unavailability of enough
packets; hence it becomes counterproductive.

We performed similar experiments for a chain of three homo-
geneous NFs (chain of three NF-2) to understand the impact of
varying threshold values on the performance when three NFs of
similar computing requirements are chained. Figure 7 shows the
homogeneous chain’s performance when the threshold is varied.
The behavior of Simmer for a homogeneous chain is very similar
to a heterogeneous chain concerning a threshold value. However, a
homogeneous chain attains a throughput improvement of 13% com-
pared to a heterogeneous chain that gets 29% throughput improve-
ment when Simmer is employed. Heterogeneous chain with Simmer
performs comparatively better as rate-proportional scheduling is
possible due to the heterogeneous nature of NFs. In contrast, default
round-robin scheduling provides rate-proportional scheduling in a
homogeneous NF. Most of the packet drops in a homogeneous NF
chain happen at the first NF of the chain. Hence GPU resource is not

ICPP ’22, Aug 29–Sep 01, 2022, Bordeaux, France Avinash Kumar Chaurasia, Anshuj Garg, Bhaskaran Raman, Uday Kurkure, Hari Sivaraman, Lan Vu, and Sairam Veeraswamy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

128 256 512 1024 1472

N
o
rm

al
iz

ed
 K

er
n
el

 l
au

n
ch

 c
o
u
n
t

Packet size (bytes)

Normalized NF-2 kernel launch count

Vanilla Setup Simmer

Figure 8: Improvement in bottleneck kernel launch: Simmer
vs Vanilla setup

wasted. We observed that Simmer also reduces memory contention.
Without Simmer, many incoming packets are received and kept in
memory by DPDK and later dropped due to the full NF RX queue.
Simmer reduces this drop. Hence a homogeneous NF chain with
Simmer employed benefits from contention reduction due to lower
packets IO in memory. We also performed the same experiments
by forming a homogeneous NF chain consisting of three NF-3 and
three NF-1 and found similar performance for both homogeneous
chains. In summary, Simmer reduces memory contention and pro-
vides rate-proportional scheduling. We are using 2.8×batch_size
as a queue threshold (qt) for the rest of the experiments in the pa-
per because, for this value, both homogeneous and heterogeneous
chain shows zero packet drops.

4.3 Effectiveness of rate proportional
scheduling

Simmer increases the GPU share of the bottleneck NFs present in
an SFC. The best way to measure this is by calculating each NF
time on the GPU and then normalizing it by the total time of all
the NFs on the GPU. If Simmer increases this normalized time for
the bottleneck NF, it proves Simmer ability to increase GPU share
for the bottleneck NF.

CUDA provides the API to measure the kernel execution time,
and its precision is unquestionable in bare metal execution or
passthrough mode. However, as per our evaluation, in the vGPU
context, the same API can not measure kernel execution time
with precision yet (as the technology matures, precision may im-
prove). Hence, we use a normalized count of kernel launches as
a workaround. To measure the Simmer efficacy, we normalize the
bottleneck NF kernel launch count with all of the NF’s combined
kernel launch count and compare the values when Simmer is em-
ployed vs. when it is not. In our experiment, SFC consists of three
NFs: NF-1(Router), NF-2(IPsec), and NF-3 (NIDS), in the order where
NF-2 is the bottleneck NF for the chain. Figure 8 shows the number
of NF-2 kernel launches normalized by the combined kernel launch
count of all the NF. From the figure 8, we can observe that NF-2

 0

 2

 4

 6

 8

 10

128 256 512 1024 1472

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Packet size (bytes)

Vanilla setup-3 homogeneous NF
Simmer-3 homogeneous NF

Vanilla setup-3 heterogeneous NF
Simmer-3 heterogeneous NF

Bottleneck NF(NF-2)

Figure 9: Static chaining of three NFs: Throughput compari-
son of Simmer vs Vanilla setup
normalized kernel launches increase when simmer is employed
compared to vanilla setup, which proves the efficacy of Simmer.

4.4 Performance of Simmer in a static SFC
A static SFC is a chain where each incoming packet must go through
all the network functions in a predefined order. In reality, static
chain deployments are rare, but some cases do exist; hence it is
imperative to test the framework for such setups. We performed
experiments with two static SFCs: homogeneous SFC and hetero-
geneous SFC. A homogeneous SFC consists of three identical NFs
(three NF-2), whereas a heterogeneous SFC consists of the NF-1,
NF-2, and NF-3 in the strict chain order. Being the most compute-
heavy among the rest of the NFs, NF-2 is a bottleneck NF for the
chain.

From the figure 9, we can observe that the throughput of the
chain when three NFs (homogeneous or heterogeneous) are chained
improves when Simmer is employed compared to when it is not. For
the heterogeneous chain, throughput improvement can be observed
as high as 29% (figure 9). On analysis, we found that the Simmer
improves the throughput because it reduces the packet drop as
shown in the figures 7b and 6b. Dropped packets consume compute,
and network resources in upstreamNFs but do not contribute to real
traffic (and throughput). Simmer allows bottleneck NFs to gainmore
compute opportunities on the physical GPU, reducing packet drops
and resource wastage, thus improving throughput. The following
section will analyze the performance of the Simmer for dynamic
SFC, which is a more widely deployed model.

4.5 Performance of Simmer in a dynamic SFC
In a Dynamic SFC, packets may be processed on any NF in any
order as per predefined policy. A set of NFs can form multiple SFC
with varying chain lengths. To analyze the performance of the Sim-
mer, we formed a dynamic SFC over vGPU such that different chain
process packets based on destination IP address. Furthermore, we
analyzed the performance of Simmer on both homogeneous dy-
namic SFC and heterogeneous dynamic SFC. We configured our
setup to process two separate traffic with equal flows (same incom-
ing rate) in two different SFCs. For homogeneous dynamic SFC, a
chain of three identical NFs (NF-2) processes traffic-1, and a chain

Simmer: Rate proportional scheduling to reduce packet drops in vGPU based NF chains ICPP ’22, Aug 29–Sep 01, 2022, Bordeaux, France

 0

 2

 4

 6

 8

 10

128 256 512 1024 1472

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Packet size (bytes)

Vanilla setup-3 homogeneous NF
Simmer-3 homogeneous NF

Vanilla setup-3 heterogeneous NF
Simmer-3 heterogeneous NF

Bottleneck NF(NF-2)

Figure 10: Dynamic chaining of three NFs: Throughput com-
parison of Simmer vs vanilla setup

Table 5: MIG profile assigned to each NF

NF MIG profile compute (SM) memory (GB)
NF-1 1-5c 1 5
NF-2 3-20c 3 20
NF-3 2-10c 2 10

of two identical NFs (NF-2) processes traffic-2. For heterogeneous
dynamic SFC, a chain of NF-1, NF-2, and NF-3 process traffic-1,
whereas a chain of NF-2 and NF3processes traffic-2. NF-2 is the
bottleneck NF for either chain in the setup.

Though software-defined networking (SDN) [30, 38] is consid-
ered a standard to achieve dynamic routing nowadays, it is relatively
complex and requires complex configuration setups. Furthermore,
SDN is beneficial in large networks where static routing may lead to
manual errors in routing tables. However, our experimental setup
consists of only three nodes (VMs) and does not require complex
routing. Hence we employ static routing to construct a table, and
each packet consults the table to route packets through a set of
NFs to form a dynamic SFC. Our static routing table consists of
packet destination IP, current NF, and next NF. packet destination IP
is the IP and matched against the destination IP in the IP header of
each packet. current NF is the NF where the packet is processed just
now and looking for the following NF for further processing. Every
packet is matched against both packet destination IP and current NF
to determine where the packet should head for further processing,
i.e., the next NF. From the figure 10, we can observe that the Simmer
improves the throughput for both homogeneous and heterogeneous
dynamic NFV chaining. We observed an improvement of 13% for a
homogeneous dynamic SFC, whereas, for a heterogeneous dynamic
SFC, we observed an improvement of 23%. Similar to static SFC,
reduction in packet drop due to employment of the Simmer is the
main reason behind the performance improvement.

4.6 NFV chaining: vGPU vs MIG instances
NVIDIA recently introduced MIG instances [8] for spatially sharing
the GPU among virtual machines in a virtualized environment. As
MIG instances (MIG VMs) have exclusive rights over a set of GPU
cores (space sharing), their performance might differ from vGPU
instances (time-sharing of GPUs). We analyzed and compared the

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

128 256 512 1024 1472

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Packet size (bytes)

vGPU: Vanilla
vGPU: Simmer

MIG: Vanilla
MIG: Simmer

Figure 11: vGPU vs MIG instances: Throughput of three het-
erogeneous NF chain

MIG against vGPU to answer which suits better to deploy SFC. To
deploy NFs over MIG instances, we partitioned the GPU into three
static MIG instances and assigned it to VMs (NFs). We statically
chained three NFs: NF-1, NF-2, and NF-3. Furthermore, we assigned
MIG profiles to each NFs as shown in the table 5 to proportionate
the GPU cores as per NF compute requirement. A-100 GPU that
we have used in our experiments has 40 GB memory, 6912 GPU
(CUDA) cores, and eight SMs. Each SM consists of 864 GPU cores.
However, MIG allows only seven SMs for workload executions.

From the figure 11, we can observe that Simmer improves the
performance of the NFV chaining over MIG instances as well as
vGPU instances. Compared to vGPU instances, the Simmer perfor-
mance in the MIG instance does not come from better scheduling
of the NFs as there is no scheduler for the MIG. Instead, Simmer
reduces the packet drop rate, which improves the utilization of the
cores. Due to the reduction in packet drops, most of the processed
packets contribute to the chain throughput.

However, SFC over vGPU performs better than MIG instances
due to sharing of GPU cores. In vGPU setups, if any NF does not
require computing momentarily, other NFs can utilize those cores,
which can not happen in MIG setups. Furthermore, Simmer efficient
NF scheduling utilizes the cores better, thus further boosting the
throughput.

5 RELATEDWORK
Initial works concerning NFV deployment on GPU (including Pack-
etShader [17], SSLShader [22], Kargus [21], APUnet [14], etc.)
focuses on single NF deployment. PacketShader [17] solves the
challenges concerning kernel overhead for packet IO and shows
that GPU can provide 10Gbps router throughput. SSLshader [22]
and Kargus [21] employ GPU to accelerate cryptographic com-
putation and intrusion detection system respectively. Kargus [21]
is unique in the way that it divides task between CPU and GPU
and execute the task on both in parallel. GPUNFV [40] focuses on
stateful packet processing on the GPU. GEN [45] supports RTC-
based SFC on the GPU, i.e., there is no isolation: one NF can easily
corrupt the memory of other NFs. Yang Hu and Tao li [19] pro-
posed a graph-based traffic allocation scheme to divide the work

ICPP ’22, Aug 29–Sep 01, 2022, Bordeaux, France Avinash Kumar Chaurasia, Anshuj Garg, Bhaskaran Raman, Uday Kurkure, Hari Sivaraman, Lan Vu, and Sairam Veeraswamy

between CPU and GPU. These works use a GPU to accelerate a
single NF on either bare metal GPU or passthrough mode GPU.
Whereas Simmer is designed for vGPU-based NFV chaining, i.e.,
it uses a single GPU for a chain of multiple NFs. In terms of NFV
chaining, G-net [43] is one of the well-known works on the GPU
in cloud setups. It uses HYPERQ-enabled NVIDIA GPU for accel-
erating NFV chains. However, NFs in G-net [43] share the GPU in
passthrough mode and do not provide resource isolation. In con-
trast, Simmer uses vGPU, which provides resource isolation among
NFs. Both G-net and Simmer faced different challenges to solve
the respective problem of performance enhancement due to the
different nature of the GPU and the property associated with it.
NFVnice [26] provides rate proportional sharing of NFs, similar to
SimmerḢowever NFVnice scheduling framework is applicable for
NFs on the CPU, and the same techniques can not be used with
Simmer because NFVnice schedules NFs by providing suggestions
to the Linux scheduler from userspace. Since the Linux scheduler
is not proprietary, its inner working is well known and can be
modified and influenced via system APIs. Recent work on NFV
deployment on vGPU shows that NFs underutilize passthrough
GPUs, and infrastructure providers can significantly benefit from
deploying such workloads on vGPU [4]. However, this work does
not consider NF chaining on the same physical GPU, which faced
challenges of unfair scheduling due to the work-agnostic nature of
the proprietary scheduler.

6 CONCLUSION
The efficient resource management among virtual network func-
tions in a service function chain is vital for getting a higher through-
put and lower packet drops. Scheduling multiple VNFs on mod-
ern virtualization-aware GPU is challenging due to their propri-
etary hardware/software stack, no support for incorporating cus-
tom scheduling policies, and lack of preemption control. Also, the
default virtual GPU scheduling policies are agnostic to the process-
ing demands of VNFs. Towards overcoming these challenges, we
present Simmer a solution for efficient scheduling of VNFs (hosted
inside VMs) over physical GPU. Simmer schedules the NFs based
on their packet processing requirements. We demonstrate by thor-
ough experiments that Simmer reduces the packet drops to zero
and improves the overall chain throughput up to 29%.

7 FUTUREWORK
We believe Simmer is the first step toward using vGPUs for NF
chaining in the cloud. To further build the trust with the industry,
we would like to extend our work Simmer for multiple systems
having diverse GPUs, including hardware-assisted vGPUs, MIG
instances, and passthrough-mode GPUs. We want to analyze the
performance of Simmer for such a system in the future.

REFERENCES
[1] Jacob T Adriaens, Katherine Compton, and Nam Sung Kim et al. 2012. The

case for GPGPU spatial multitasking. In IEEE International Symposium on High-
Performance Comp Architecture. IEEE.

[2] Alfred V. Aho and Margaret J. Corasick. 1975. Efficient String Matching: An Aid
to Bibliographic Search. Commun. ACM 18 (1975).

[3] Roberto Bonafiglia, Ivano Cerrato, and Francesco Ciaccia et al. 2015. Assessing the
performance of virtualization technologies for NFV: A preliminary benchmarking.
In Fourth European Workshop on Software Defined Networks. IEEE.

[4] Avinash Chaurasia, Uday Kurkure, and Hari Sivaraman et al. 2020. Network
functions in virtualized GPU environment. In International Conference on High
Performance Computing Simulation (HPCS).

[5] Jianglu Chen, Jian Li, and Fei Hu. 2013. SR-IOV Based Virtual Network Sharing.
In Proceedings of the Second International Conference on Innovative Computing
and Cloud Computing. 213–218.

[6] NVIDIA Corporation. [n. d.]. NVIDIA A100 Tensor Core GPU. https://www.nvidia.
com/en-in/data-center/a100/ [accessed 26-Nov-2021].

[7] NVIDIA Corporation. [n. d.]. NVIDIA GPUs For Virtualization. https://www.
nvidia.com/en-in/data-center/graphics-cards-for-virtualization// [accessed 18-
Nov-2021].

[8] NVIDIA Corporation. [n. d.]. NVIDIA Multi-Instance GPU. https://www.nvidia.
com/en-in/technologies/multi-instance-gpu/ [accessed 13-Nov-2021].

[9] Richard Cziva, Simon Jouet, and Kyle JS White et al. 2015. Container-based
network function virtualization for software-defined networks. In 2015 IEEE
symposium on computers and communication (ISCC). IEEE.

[10] DPDK. 2019. Part 1: Architecture Overview. https://doc.dpdk.org/guides/prog_
guide/overview.html. Accessed: 2019-03-08.

[11] José Duato, Antonio J Pena, and Federico Silla et al. 2010. rCUDA: Reducing the
number of GPU-based accelerators in high performance clusters. In International
Conference on High Performance Computing & Simulation. IEEE.

[12] James Fung and Steve Mann. 2008. Using graphics devices in reverse: GPU-based
Image Processing and Computer Vision. In IEEE International Conference on
Multimedia and Expo.

[13] Anshuj Garg, Purushottam Kulkarni, and Uday Kurkure et al. 2019. Empirical
Analysis of Hardware-Assisted GPU Virtualization. In 26th IEEE International
Conference on High Performance Computing, Data, and Analytics (HiPC).

[14] Younghwan Go, Muhammad Jamshed, and YoungGyoun Moon et al. 2017.
APUNet: Revitalizing GPU As Packet Processing Accelerator. In Proceedings
of the 14th USENIX Conference on Networked Systems Design and Implementation
(NSDI). USENIX Association.

[15] P. Gupta, S. Lin, and N. McKeown. 1998. Routing lookups in hardware at memory
access speeds. In proceedings of IEEE Conference on Computer Communications
(INFOCOM).

[16] Joel Halpern, Carlos Pignataro, et al. 2015. Service function chaining (sfc) archi-
tecture. In RFC 7665.

[17] Sangjin Han, Keon Jang, and KyoungSoo Park et al. 2010. PacketShader: a GPU-
accelerated software router. ACM SIGCOMM Computer Communication Review
40 (2010).

[18] Cheol-Ho Hong, Ivor Spence, and Dimitrios S Nikolopoulos. 2017. GPU virtu-
alization and scheduling methods: A comprehensive survey. ACM Computing
Surveys (CSUR) 50 (2017).

[19] Yang Hu and Tao Li. 2018. Enabling Efficient Network Service Function Chain
Deployment on Heterogeneous Server Platform. In IEEE International Symposium
on High Performance Computer Architecture (HPCA).

[20] Jinho Hwang, K K_ Ramakrishnan, and Timothy Wood. 2015. NetVM: High per-
formance and flexible networking using virtualization on commodity platforms.
IEEE Transactions on Network and Service Management 12 (2015).

[21] Muhammad Asim Jamshed, Jihyung Lee, and Sangwoo Moon et al. 2012. Kargus:
A Highly-scalable Software-based Intrusion Detection System. In Proceedings of
the ACM Conference on Computer and Communications Security. ACM.

[22] Keon Jang, Sangjin Han, and Seungyeop Han et al. 2011. SSLShader: Cheap SSL
Acceleration with Commodity Processors.. In NSDI.

[23] Anuj Kalia, Dong Zhou, and Michael Kaminsky et al. 2015. Raising the bar for
using GPUs in software packet processing. In 12th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 15).

[24] Murat Karakus and Arjan Durresi. 2017. A survey: Control plane scalability issues
and approaches in Software-Defined Networking (SDN). Computer Networks 112
(2017).

[25] S. Kent. 2005. IP Encapsulating Security Payload (ESP). RFC.
[26] Sameer G Kulkarni, Wei Zhang, and Jinho Hwang et al. 2020. Nfvnice: Dynamic

backpressure and scheduling for nfv service chains. IEEE/ACM Transactions on
Networking 28 (2020).

[27] Xiaoyao Li, Xiuxiu Wang, and Fangming Liu et al. 2018. DHL: Enabling flexible
software network functions with FPGA acceleration. In 38th IEEE International
Conference on Distributed Computing Systems (ICDCS). IEEE.

[28] Joao Martins, Mohamed Ahmed, and Costin Raiciu et al. 2014. ClickOS and the art
of network function virtualization. In 11th {USENIX} symposium on networked
systems design and implementation ({NSDI} 14).

[29] Gabriel S Niemiec, Luis MS Batista, and Alberto E Schaeffer-Filho et al. 2019.
A survey on FPGA support for the feasible execution of virtualized network
functions. IEEE Communications Surveys & Tutorials 22 (2019).

[30] Zafar Ayyub Qazi, Cheng-Chun Tu, and Luis Chiang et al. 2013. SIMPLE-fying
middlebox policy enforcement using SDN. In Proceedings of the ACM SIGCOM.

[31] Harald Scheidl. 2018. GPU Image Processing using OpenCL.
https://towardsdatascience.com/get-started-with-gpu-image-processing-
15e34b787480. [accessed: 29-Sep-2021].

https://www.nvidia.com/en-in/data-center/a100/
https://www.nvidia.com/en-in/data-center/a100/
https://www.nvidia.com/en-in/data-center/graphics-cards-for-virtualization//
https://www.nvidia.com/en-in/data-center/graphics-cards-for-virtualization//
https://www.nvidia.com/en-in/technologies/multi-instance-gpu/
https://www.nvidia.com/en-in/technologies/multi-instance-gpu/
https://doc.dpdk.org/guides/prog_guide/overview.html
https://doc.dpdk.org/guides/prog_guide/overview.html
https://towardsdatascience.com/get-started-with-gpu-image-processing-15e34b787480
https://towardsdatascience.com/get-started-with-gpu-image-processing-15e34b787480

Simmer: Rate proportional scheduling to reduce packet drops in vGPU based NF chains ICPP ’22, Aug 29–Sep 01, 2022, Bordeaux, France

[32] Justine Sherry, Shaddi Hasan, and Colin Scott et al. 2012. Making middleboxes
someone else’s problem: Network processing as a cloud service. ACM SIGCOMM
Computer Communication Review 42 (2012).

[33] Lin Shi, Hao Chen, and Jianhua Sun et al. 2011. vCUDA: GPU-accelerated high-
performance computing in virtual machines. IEEE Trans. Comput. 61 (2011).

[34] Liran Sidki, Yehuda Ben-Shimol, and Akiva Sadovski. 2016. Fault tolerant mecha-
nisms for SDN controllers. In IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN).

[35] Jaewoong Sim, Aniruddha Dasgupta, and Hyesoon Kim et al. 2012. A performance
analysis framework for identifying potential benefits in GPGPU applications. In
Proceedings of the 17th ACM SIGPLAN symposium on Principles and Practice of
Parallel Programming.

[36] Weibin Sun and Robert Ricci. 2013. Fast and flexible: Parallel packet processing
with GPUs and click. InArchitectures for Networking and Communications Systems.
IEEE.

[37] Yusuke Suzuki, Shinpei Kato, and Hiroshi Yamada et al. 2014. GPUvm: Why Not
Virtualizing GPUs at the Hypervisor?. In USENIX Annual Technical Conference
(ATC). USENIX Association.

[38] Slavica Tomovic, Nedjeljko Lekic, and Igor Radusinovic et al. 2016. A new ap-
proach to dynamic routing in SDN networks. In 18th Mediterranean Electrotech-
nical Conference (MELECON).

[39] Inc. VMware. [n. d.]. VMware ESXi: The Purpose-Built BareMetal Hypervisor. https:
//www.vmware.com/in/products/esxi-and-esx.html [accessed 26-Nov-2021].

[40] Xiaodong Yi, Jingpu Duan, and Chuan Wu. 2017. GPUNFV: A GPU-Accelerated
NFV System (APNet’17). Association for Computing Machinery.

[41] Andrew J Younge, John Paul Walters, and Stephen Crago et al. 2014. Evaluat-
ing GPU passthrough in Xen for high performance cloud computing. In IEEE
International Parallel & Distributed Processing Symposium Workshops. IEEE.

[42] Hangchen Yu and Christopher J Rossbach. 2017. Full virtualization for gpus re-
considered. In Proceedings of the Annual Workshop on Duplicating, Deconstructing,
and Debunking.

[43] Kai Zhang, Bingsheng He, and Jiayu Hu et al. 2018. G-net: Effective {GPU}
sharing in {NFV} systems. In 15th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 18).

[44] Kai Zhang, Jiayu Hu, and Bei Hua. 2015. A holistic approach to build real-time
stream processing system with GPU. J. Parallel and Distrib. Comput. 83 (2015).

[45] Zhilong Zheng, Jun Bi, and Chen Sun et. al. 2018. GEN: A GPU-Accelerated
Elastic Framework for NFV. In Proceedings of the 2nd Asia-Pacific Workshop on
Networking. ACM.

https://www.vmware.com/in/products/esxi-and-esx.html
https://www.vmware.com/in/products/esxi-and-esx.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 virtualization aware GPU hardware
	2.2 Heterogeneous compute requirement of NFs
	2.3 Issues with vGPU scheduling

	3 Design
	3.1 Solution requirements
	3.2 Design Choices
	3.3 Architecture of Simmer
	3.4 Simmer Implementation

	4 Experimentation
	4.1 NFs in service function chain
	4.2 Queue threshold (qt) selection
	4.3 Effectiveness of rate proportional scheduling
	4.4 Performance of Simmer in a static SFC
	4.5 Performance of Simmer in a dynamic SFC
	4.6 NFV chaining: vGPU vs MIG instances

	5 Related Work
	6 Conclusion
	7 Future work
	References

