Continual Learning with Neural Networks: A Review

Abhijeet Awasthi
IIT Bombay
awasthi@cse.iitb.ac.in

ABSTRACT

Continual learning broadly refers to the algorithms which aim
to learn continuously over time across varying domains, tasks or
data distributions. This is in contrast to algorithms restricted to
learning a fixed number of tasks in a given domain, assuming a
static data distribution. In this survey we aim to discuss a wide
breadth of challenges faced in a continual learning setup and review
existing work in the area. We discuss parameter regularization
techniques to avoid catastrophic forgetting in neural networks
followed by memory based approaches and the role of generative
models in assisting continual learning algorithms. We discuss how
dynamic neural networks assist continual learning by endowing
neural networks with a new capacity to learn further. We conclude
by discussing possible future directions.

KEYWORDS

Continual Learning, Lifelong Learning, Online Multitask Learning,
Never Ending Learning, Catastrophic Forgetting, Dynamic Neural
Networks

1 INTRODUCTION

Continual learning is strongly motivated by the principle of re-
taining and reusing previously learned knowledge to learn new
tasks with lesser training time and resources. Continuous learning
draws inspiration from lifelong learning in humans where con-
cepts are build cumulatively as opposed to learning each concept
from scratch. Other names for continuous learning include Lifelong
Learning, Online Multitask Learning and Never Ending Learning.
Formally, given sequentially arriving tasks Ty, T»,...,Tx along with
their respective datasets D1, Ds,...,Dk, and a finite amount of mem-
ory M to store either partially trained models or data, our goal is
to continually learn from these tasks such that while learning a
task T;, we make use of training data D; along with the previously
accumulated knowledge stored in M. The updated model is required
to provide high accuracy on all previous tasks, not just the most
recent task. Each task T; is expected to benefit from previous tasks
providing a forward flow of knowledge. Additionally, previous tasks
are expected to improve after seeing new tasks providing a back
flow of knowledge. Thus, in continuous learning the challenge is
to accrue the full benefits of batch multi-task learning under the
constraints that tasks arrive sequentially and we only have limited
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memory and limited computation cycles for retraining everything
from scratch.

We list challenges faced by neural networks in a continual learning
set up.

(1) Catastrophic Forgetting In neural networks, parameters
learned by back-propagating errors adapt to the most recent
task, rendering poor performance over previously learned tasks.
This makes learning in neural networks forgetful, subject to
evolving nature of task objectives or frequently changing train-
ing data distribution. Section 2 reviews regularization based
methods to overcome these problems.

(2) Memory constraints A continual learning set-up assumes
a modest space to store model parameters and training data
from previous tasks. Hence, retraining models using previously
observed data might not be feasible in some situations. Section
3 reviews some useful methods based on generative models and
memory based models (using finite memory) to handle these
constraints.

(3) Augmenting the model capacity while promoting reuse
of learned representations With growing number of tasks
to learn, there comes a need to increase the learning capacity
of the model (number of trainable parameters).
Further, assuming an infinite capacity to store model param-
eters, training a separate model for each new task appears to
be very straightforward. However, such an approach would
still be inefficient as there is no provision to reuse the knowl-
edge accumulated in past, which could otherwise allow for
better generalization or quicker convergence. In Section 4, we
discuss dynamic neural networks which aim to tackle these
problems by judiciously increasing the model capacity while
simultaneously promoting reuse of learned representations.

Semantic and Syntactic differences amongst tasks Tasks

arriving sequentially might differ in syntax of input or output

(e.g. sentence classification vs sentence generation). Likewise,

tasks sharing similar syntax might be semantically different

(e.g. text generation for news articles vs text generation for

poems). Thus, using a same model to learn all the tasks seem

infeasible.

We categorize the existing works on continual learning into three
broad categories. In the first category we discuss methods based
on importance weighted parameter regularization which makes
learning in neural networks less forgetful. In the second category
we discuss data-replay based methods which either store examples
from previous tasks or learn to generate new examples from previ-
ously observed data distributions. In the third category we discuss
methods which grow a neural network architecture over time to
accommodate new knowledge.



2 REGULARIZATION-BASED APPROACHES

Catastrophic forgetting prevents a neural network to learn multiple
tasks in a sequential order. In this section we discuss a few methods
to overcome catastrophic forgetting by regularizing weights of a
neural network. A key idea common to methods discussed here
is to identify the parameters which played an important role in
learning past experiences. These parameters are then protected
from updates in future, whereas the unimportant parameters are
trained further to learn new tasks. Formally, let Q]t< represent the
estimated importance of parameter (weight) 6 for learning all the
tasks till task Ty (inclusive). Q,’C attains a higher value for important
parameters and vice-versa. 91’; represents value of parameter 6
after learning task T;. While learning the task T;4+1 with objective
L++1 we modify the learning objective according to Equation 1.
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While learning task T;.41, the surrogate term in R.H.S. of Equation 1
associates an importance weighted penalty for deviation of param-
eters from their values at the start of training for task Ty+;. This
preserves important parameters from changing significantly and
simultaneously allows less important parameters to adapt and mini-
mize the loss over the new task Ty11. A is a hyper-parameter used to
specify relative importance of the surrogate term in comparison to
the actual loss L;+1. Parameters after learning task Ty are given
according to Equation 2.

The parameter importance term Qf reflects either the sensitivity of
the loss function or some other network output w.r.t. the network
parameter 912. [6] proposes to estimate parameter importance by
computing Fisher information of parameters by treating loss in
Equation 1 as negative of log-likelihood. Parameters with higher
fisher information suggest higher sensitivity of loss function w.r.t.
those parameters. Thus Q]t< is given by Equation 3, where Fltc,k
represent diagonal elements of Fisher information matrix computed
w.r.t. modified loss £; over training data.

3)

Another approach suggested in [1] is to compute the partial deriva-
tive (gli) of the I norm of the transformation #; learned by neural
network after completion of task T;. Thus Q,ﬁ is given by Equation
4, where N is number of data samples used to estimate parameter
importance and xj, is the nth sample from the given data. Note that,
unlike previous method we do not need label of the n‘"* sample yy,
to calculate importance. This allows importance to be estimated in
an unsupervised manner.

N
QL= = " gk @
n=1

Approaches described above estimate parameter importance for
a given task only after it has been learned, and do not consider
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the dynamics of parameter updates during the learning process.
[16] considers these dynamics in their online approach to estimate
parameter importance. Let g]tc represent partial derivative of £;
w.r.t. to model parameter 6. A line integral of product of g]tC and
parameter updates is computed over the entire learning trajectory
of a given task. The negative of the line integral, w]i, can be shown
to represent the contribution of parameter updates of 0 towards
decreasing the loss £;. Equation 5 gives the formula for oo,tC where
T represents any point of time in the learning trajectory of task
Ty, G;C(r) denotes parameter update for 0 at time 7. Parameter
importance Q! , given by Equation 6 is computed by accumulating
line integrals normalized with the square of final change (A} =
6; - 92_1) in parameter values, for all the previous tasks. £ denotes
a very small value used to avoid division with a zero.
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Importance weighted parameter regularization could be generalized
further in a Bayesian set-up by predicting a distribution over learned
parameters instead of point estimates. [9] proposes a method based
on approximate bayesian inference to estimate posterior distribu-
tions and propagate them as priors to learn subsequent tasks. Use
of memory is encouraged to help in compensating the losses due
to approximation.

[12] proposes a strategy "Progress and Compress" based on a dual
model architecture. A network KB maintains knowledge gathered
from previously learned tasks. Learning any new task is taken up
by a randomly initialized network N. Learning here is a two phase
process. In the Progress phase the representations in KB are fed
to the network N to assist it in learning a new task. This encour-
ages a positive forward transfer of existing knowledge in KB. In
the compress phase, information contained in N is distilled to KB.
Compress phase utilizes regularization based methods discussed
above to retain past knowledge in KB while incorporating new
knowledge from N.

Although insightful, effectiveness of these approaches over a large
number of tasks is limited by the finite capacity of a network. In
Section 4 we look at methods which enhance a neural network’s
capacity (learnable parameters), enabling them to learn further.

3 DATA REPLAY-BASED APPROACHES

In this section, we begin with a discussion of approaches which
assume modest memory space to store examples from previous
tasks and use these examples to prevent catastrophic forgetting
while learning a new task. We then discuss the role of generative
models which provide an alternative to memory based models by
drawing pseudo examples from learned data distributions.

3.1 Memory assisted continual learning

Let M1,Mj,...,Mg denote memory space allocated to tasks T1,T5,..., Tk
for storing a diverse subset of examples from training data for each



task as it become available over time. A naive way to prevent cata-
strophic forgetting while learning a task T; could be to interleave its
data D; with the stored data corresponding to all the tasks learned
previously, thus simulating a batch multitask learning set-up. Ex-
amples from previous tasks help the network to retain previously
learned mappings while incorporating new information. [7] utilizes
examples stored in memory to guide parameter updates in a direc-
tion of non increasing losses corresponding to previously learned
tasks, while minimizing the loss corresponding to the current task.
The idea is to enforce a positive inner product between gradients
of losses corresponding to the current and previously learned tasks
(Equation 7). A positive inner product will cause gradient descent
updates for the current task to minimize losses corresponding to
previous tasks at best, and not affect them at worse, thus reducing
catastrophic interference.
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More often than not, gradients g; for task Ty would disobey Equa-

tion 7, thus in place of gradients g;, parameter updates are based

on projected gradients gy which ensure a positive dot product with

gradients of previous tasks. g; can be obtained by solving a linearly

constrained quadratic program given by Equation 8.
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Intuitively, we expect this approach to reduce the problem of over-
fitting in the naive approach because instead of replaying the same
training examples every time, we use memory only to constrain
the parameter updates for the current task to be in a specific di-
rection. Here, the level of catastrophic forgetting depends upon
the diversity of examples stored in memory. A higher diversity
is expected to yield more reduction in catastrophic interference.
Methods like Greedy K-center algorithm [4] can be used to return a
diverse subset of examples spread well across the space of inputs. A
possible limitation of memory-based approaches is that replaying
the same subset of examples multiple times would very likely lead
to over-fitting.

subject to

3.2 Generative Models assisted continual
learning

A key idea common to many approaches which use generative
models to assist continual learning is to replace the role of memory
described in 3.1 by pseudo examples drawn from an approximation
of data distribution over all the training examples observed so far.
Referred as pseudo-rehearsals, these ideas are also motivated by the
phenomenon of memory consolidation during sleep in mammalian
brains [10]. More recently [13] proposed a dual model architec-
ture consisting of a generative model G and an inference model S.
Generative model G is responsible for generation of examples to
perform pseudo-rehearsals. G approximates the data distribution
observed by the model so far. Inference model S learns a mapping
between input and output patterns for all the observed tasks. Let
H; = (G¢, St) represent the model trained till task T;. Learning a
new task Ty41 from data Dy11 = (X¢41, Yr+1) is a three step process.
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In the first step, G; generates a set of pseudo examples X; resem-
bling the training examples related to all the tasks seen so far. S;
uses these examples as input to output pseudo labels ¥; correspond-
ing to X;. Tuple (X;, Y;) is represented as pseudo-data D;.

In the second step, generator G4 is trained to learn the data dis-
tribution corresponding to set X UXpi1. Xt helps the generator to
retain the knowledge of previous distribution while X;41 updates
the generator distribution with new information.

In the third step, S;+1 is learned using the set Dt U D¢41 as super-
vision. Effectively, at each step, the generator simulates a batch
multi-task learning setup described in Section 3.1

Methods using limited memory to replay a subset of previously seen
data or doing pseudo-rehearsals do not scale well for an increasing
number of tasks, with networks of a fixed capacity. The success
of pseudo-rehearsals is further limited by the quality of samples
provided by the generative model.

4 DYNAMIC NEURAL NETWORKS FOR
CONTINUAL LEARNING

Ideas discussed so far assume an infinite capacity network for learn-
ing new tasks. In a practical scenario a finite capacity of a neural
network would limit its ability to learn new tasks over time. Vari-
ous works on dynamic neural networks [3] [11] [15] aim to solve
this problem. These methods begin with a simplified architecture
and when needed, augment the network incrementally with new
components to attain satisfactory performance on the current task.

In [11] a neural network model is augmented with a separate sub-
network referred as column, responsible for learning a new task.
Representations developed in columns of previously learned tasks
are held fixed to avoid catastrophic interference. These representa-
tions are then fed as an additional input to the newly added column.
Using previously learned representations as input enables the flow
of existing knowledge to the new column. This method however
suffer from scaling issues since a new column is added every time
a new task is required to be learned. Inference in such networks
become increasingly hard due to computations over previously
added columns in order to pass signals to the new column.

Recently, [15] proposed an innovative method that grows the net-
work only sub-linearly over time. Here, training for a new task T;
is a three step process.

In the first step, the algorithm identifies a set neurons in the network
which can potentially contribute towards learning of the task T;.
Weights associated with this set of neurons are selectively trained
while keeping other weights fixed, using parameter regularization
to avoid catastrophic forgetting (Section 2). If performance over
current task becomes satisfactory, the algorithm skips the second
step.

The second step augments each layer of the network with a fixed
number of hidden neurons. The weights connecting these neurons
are randomly initialized. The augmented network is then trained
further by updating only the newly added weights using group
sparsity regularization [14]. Since not all the newly added hidden
units are useful, group sparsity regularization allows the algorithm
to selectively prune such units.



In the third step, the augmented network is further fine-tuned us-
ing parameter regularization to avoid catastrophic forgetting. The
algorithm then identifies the pre-existing weights (weights before
augmentation) which drifted beyond a certain threshold from their
original values before start of training for the current task. Neu-
rons connected by such weights are split into two, followed by
re-initializing the connecting weight for one neuron and restor-
ing the original value of connecting weight for other neuron. The
network is finally fine-tuned again to obtain optimal parameter
values for the current task. Problem of inference in such networks
is solved by assigning a time-stamp s to each hidden unit added
during the training of task Ts. While inference over examples of
task T¢, only the hidden units with time-stamp less than or equal to
t are considered. This forbids hidden units added during later stages
of algorithm to interfere negatively with the mappings learned for
previous tasks.

5 CONCLUSIONS

Compared to many machine learning algorithms, continuous learn-
ing aim to learn new information more efficiently by retaining and
reusing past knowledge. This is particularly important in novel and
resource poor settings where large training datasets may not be
available at the onset of a learning phase. A model that trains con-
tinuously as training data arrives is more natural in such settings.

We began our discussion with ways to regularize parameters of
neural network models which would allow new tasks to be learned
sequentially while retaining the ability to perform on previously
learned tasks. Then we discussed about methods which utilize a
finite memory to store examples from previously observed data
distributions and use them to retain the learned knowledge. We
looked at the use of generative models which try to learn previ-
ously observed data distributions and serve as a replacement for
finite memory. Then we reviewed methods which aim to fix the
shortcomings of finite capacity models by augmenting the model’s
architecture to accommodate new information.

Considering growing access to low latency and large storage de-
vices, we feel that constraint of limited memory to store data or
models can be relaxed to a certain extent. Hence, more focus should
be towards algorithms which exploit past experiences to provide su-
perior performance along with reduced training time and resources.
Our discussions have been limited to methods which use a single
monolithic network to perform training and inference over all the
tasks. Perhaps, it might be infeasible to solve tasks with different
syntactic or semantic structure using a common architecture. Neu-
ral Module Networks [2] and End to End module networks [5] learn
to compose question specific neural networks for Visual Question
Answering. Efforts in similar directions to tailor task specific net-
works could be insightful. Many existing methods for continual
learning focus on ways to overcome catastrophic forgetting. Over-
coming catastrophic forgetting is necessary but not sufficient for
scaling continual learning algorithms to a larger number of tasks.
Efforts to enable re-usability of learned models at a level higher
than per-trained embeddings deserve a special focus to enhance
scalability. Evaluation of continual learning algorithms is mostly
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confined to toy datasets. Hence, applicability of many proposed
algorithms in a real world setting remains largely unexplored.

Natural language Processing seems to be a promising domain to
evaluate and leverage continual learning algorithms. It would be
interesting to explore ways to sequentially learn a group of re-
lated NLP tasks like those in decaNLP [8], by using the knowledge
obtained from previously learned tasks. Semantics and syntax of
phrases in different tasks described by a same natural language
remains broadly the same, thus making room for reusing learned
information.

A major part of research in NLP is currently restricted to a handful
languages which enjoy availability of abundant corpora for training.
Efforts in continual learning should open doors for efficient ways
to learn in resource scarce domains.
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