
DYNGAN: GENERATIVE ADVERSARIAL NETWORKS FOR DYNAMIC NETWORK EMBEDDING

Ayush Maheshwari†, Ayush Goyal#, Manjesh Kumar Hanawal†, Ganesh Ramakrishnan†

Indian Institute of Technology Bombay, India†
Samsung Research, Bengaluru, India#

DYNGAN: GENERATIVE ADVERSARIAL NETWORKS FOR DYNAMIC NETWORK EMBEDDING

Ayush Maheshwari†, Ayush Goyal#, Manjesh Kumar Hanawal†, Ganesh Ramakrishnan†

Indian Institute of Technology Bombay, India†
Samsung Research, Bengaluru, India#

The Problem

• Embedding large graphs in a low-dimensional space has proven useful in
various applications. However, there is a limited focus on real-world networks
that are dynamic in nature and continuously evolving with time.

• In this work, we propose a novel adversarial algorithm to learn representation
of dynamic networks. We leverage generative adversarial networks and re-
current networks to capture temporal and structural information. We conduct
extensive experiments on the task of graph reconstruction, link prediction and
graph prediction. Experimental results demonstrate consistent, stable, and
better results against state-of-the-art methods in many cases.

GAN Model

Dynamic network. A series of undirected graphs G1, G2 . . . GT where Gt =
(Vt, Et) represents a graph at time t.

• Our goal is to learn low-dimensional stable representation of vertices vi over
time such that temporal and structural properties of the series of graph are
effectively captured. In essence, consecutive embeddings should differ little
if graph structure does not change much.

• Generator captures the data distribution and learns a parameter θg such that
G(v|vc; θg) can approximate the true distribution. v and vc are the sampled
vertices in the generator [3, 5].

• Discriminator estimates a probability to differentiate the samples arriving
from the generator and true distribution. It learns a parameter θd such that
D(vi, vj; θd) can discriminate between the presence or absence of an edge
between vi and vj.

• The minimax game with objective function V (G,D) can be formalised as
min
θG

max
θD

V (G,D) where V (G,D) is given as

V∑
c=1

(
Ev∼ptrue(·|vc)

[
logD(v, vc; θD, wD)

]
+ Ev∼G(·|vc;θG,wG)

[
log
(
1 −

D(v, vc; θD, wD)
)])

Dynamic GAN

• GAN is initialized with random embedding Uraw. For each time step t, our
model generates embedding Ut that is fed as an input to the next GAN com-
ponent.

• Such an architecture is capable of handling evolving graphs due to preserva-
tion of weights from previous time step. Additionally, it ensures the stability
of embeddings due to initialization of current time step embeddings with the
previous time step output embeddings.

• However, DynGAN fails to capture temporal sequence in the network due to
its limited capability to capture previous time-step information.

GAN GAN GAN GAN

G1 G2 Gt Gt+l

At+l+1

U1 U2 Ut
Uraw

Fig. 1: Architecture of Dynamic GAN

DynGAN-LSTM

GAN GAN GAN GAN

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

G1 G2 Gt Gt+l

At+l+1

Fig. 2: Architecture of Dynamic GAN - LSTM

We use the DynGAN model to learn embeddings at each time step and pass them through
a sequence of LSTM networks to capture sequential information.
Given an adjacency matrix At at time t our model optimizes the following loss function,

Lt+1 = ||Ât+l+1 − At+1+1 � β||2F
= ||(f (yt, ..., yt+l)− At+l+1)||||(f (At, ..., At+1)− A′t+l+1)� β||

2
F

Here, β is a hyperparameter penalizing observed edges that gives higher weights to ob-
served edges than unobserved edges([laplacian]), l is the temporal look back factor that
controls the range of sequential dependency in our model and � represents elementwise
product.

Results

We run our experiments on HEP-TH that contains 136 time steps and the number of nodes
range from 150 to 14446 and Autonomous Systems(AS) dataset contains 733 time steps
with a fixed number of nodes but number of edges ranges from 487 to 26467.
Graph Reconstruction In this task, we attempt to accurately reconstruct the graph from
the learned embeddings of nodes. We reconstruct the edges between pair of nodes using
DynGAN model.

Task Graph Reconstruction Link Prediction
Algorithm AS HEP-TH AS HEP-TH
SDNE [4] 0.214 0.51 0.09 0.1

dynGEM [2] 0.216 0.491 0.21 0.26
DynGAN 0.465 0.65 0.464 0.636

Fig. 3: Average MAP for the task of graph reconstruction and link prediction

Graph Prediction - In this task, we train the model with {G1, G2..., Gt−1} snapshots of
graphs to predictGt. Instead of predicting over all time-steps, we consider last 50 snapshots
of the datasets. We observe that change in the number of nodes and edges are more
frequent in last snapshots of the graph (refer supplementary material). We remark that the
efficiency of the models must be tested when a sudden change in the nodes and edge
occurs. We train our model with a lookback factor of 2 and embedding dimension of 32.

Comparison

MAP Estimate Precision@alledges
Algorithm AS HEP-TH AS HEP-TH
dynGEM 0.097 0.258 0.0613 0.073

dyngraph2vecAE [1] 0.182 0.395 0.018 0.003
dyngraph2vecRNN 0.235 0.545 0.438 0.402

dyngraph2vecAERNN 0.275 0.595 0.002 0.005
DynGAN 0.26 0.376 0.152 0.1811

DynGANLSTM 0.232 0.45 0.637 0.262
Fig. 4: Average MAP & Precision@all edges for last 50 snapshots of AS & HEP-TH.

In the last 50 snapshots, when nodes and edges are changing by a large num-
ber in consecutive snapshots, our model performs marginally lower than dyn-
graph2vec. However, our model performs better on AS dataset when precision
metric is considered and predicts consistently across various scenarios, unlike
other models.

Conclusion

• We introduced DynGAN and DynGAN-LSTM, a model for capturing tempo-
ral and structural information in the dynamic networks. It learns the evolution
pattern in an adversarial manner and predicts node embeddings.

• We conduct extensive experiments on benchmark datasets containing large
timesteps and high variations. Our model demonstrates superiority and con-
sistency of results in graph reconstruction, link prediction, and graph predic-
tion and outperforms state-of-the-art methods.

References

[1] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. “dyngraph2vec: Capturing net-
work dynamics using dynamic graph representation learning”. In: Knowledge-Based Systems
(2019).

[2] Palash Goyal et al. “Dyngem: Deep embedding method for dynamic graphs”. In: arXiv
preprint arXiv:1805.11273 (2018).

[3] Ayush Maheshwari et al. “Representation Learning on Graphs by Integrating Content and
Structure Information”. In: (2019), pp. 88–94.

[4] Daixin Wang, Peng Cui, and Wenwu Zhu. “Structural deep network embedding”. In: (2016),
pp. 1225–1234.

[5] Hongwei Wang et al. “GraphGAN: Graph representation learning with generative adversarial
nets”. In: arXiv preprint arXiv:1711.08267 (2017).

