
TwiSent: A Multistage System for Analyzing Sentimen t in
Twitter

Subhabrata Mukherjee †, Akshat Malu †, Balamurali A.R. †‡, Pushpak Bhattacharyya †

†Dept. of Computer Science and Engineering, IIT Bombay
‡IITB-Monash Research Academy, IIT Bombay

{subhabratam, akshatmalu, balamurali, pb} @cse.iitb.ac.in

ABSTRACT
In this paper, we present TwiSent, a sentiment analysis system for
Twitter. Based on the topic searched, TwiSent collects tweets
pertaining to it and categorizes them into the different polarity
classes positive, negative and objective. However, analyzing
micro-blog posts have many inherent challenges compared to the
other text genres. Through TwiSent, we address the problems of 1)
Spams pertaining to sentiment analysis in Twitter, 2) Structural
anomalies in the text in the form of incorrect spellings,
nonstandard abbreviations, slangs etc., 3) Entity specificity in the
context of the topic searched and 4) Pragmatics embedded in text.
The system performance is evaluated on manually annotated gold
standard data and on an automatically annotated tweet set based
on hashtags. It is a common practise to show the efficacy of a
supervised system on an automatically annotated dataset.
However, we show that such a system achieves lesser
classification accurcy when tested on generic twitter dataset. We
also show that our system performs much better than an existing
system.

Keywords: Sentiment Analysis, Twitter, Micro blogs, Spam,
Entity Specific Twitter Sentiment

1. INTRODUCTION
Social media sites, like Twitter, generate voluminous amounts of
data which can be leveraged to create applications that have a
social and an economic value. In this paper, we present a hybrid
system, TwiSent, to analyze the sentiment of tweets based on the
topic searched in Twitter. Even though Twitter generates a large
amount of data, a text limit of 140 characters per tweet makes it a
noisy medium for text analysis tasks. Compared to other text
genres like News, Blogs etc., it has a poor syntactic and semantic
structure. For example, consider the following tweet “Had Hella
fun today with the team. Y’all are hilarious! &Yes, i do need more
black homies...... ”. Apart from the irregular syntax, the following
sentence has other problems like slangs, ellipses, nonstandard
vocabulary etc. A direct analysis of such noisy text using
commonly applied Natural Language Processing (NLP) tools
would be futile, as it may not give the desired results. Further, the
problem is compounded by the increasing number of spams in
Twitter like promotional tweets, bot-generated tweets, random
links to other websites etc. In this paper, we tackle the following
problems which are exclusive to a micro-blog genre like Twitter
for assessing the sentiment content: Twitter based spam, Spell
checker for noisy text, Entity detection and Pragmatics.

2. RELATED WORK
[1] provides one of the first studies on sentiment analysis on
micro-blogging websites. [2] and [4] both cite noisy data as one of

the biggest hurdles in analyzing text in such media. [1] describes a
distant supervision-based approach for sentiment classification.
They use hashtags in tweets to create training data and implement
a multi-class classifier with topic-dependent clusters. [2] proposes
an approach to sentiment analysis in Twitter using POS-tagged n-
gram features and some Twitter specific features like hashtags.
Our system is inspired from C-Feel-IT, a Twitter based sentiment
analysis system [3]. However, TwiSent is an enhanced version of
their rule based system with specialized modules to tackle Twitter
spam, text normalization and entity specific sentiment analysis.

There has not been much work in the area of text normalization in
the social media, although some work has been done in the related
area of sms-es [5]. We follow the approach of [6] and attempt to
infuse linguistic rules within the minimum edit distance [7]. We
adopt this simpler approach due to lack of publicly available
parallel corpora for text normalization in Twitter.

Unlike in Twitter, there has been quite a few works on general
entity specific sentiment analysis. Many approaches have tried to
leverage dependency parsing in entity-specific SA. [8] exploits
dependency parsing for graph based clustering of opinion
expressions about various features to extract the opinion
expression about a target feature. We use dependency parsing for
entity specific SA as it captures long distance relations, syntactic
discontinuity and variable word order.

The works [1][12][13] evaluate their system on a dataset crawled
and auto-annotated based on emoticons while [14] annotate the
crawled data based on hashtags. We show, in this work, that a
good performance on such a dataset does not ensure a similar
performance in a general setting.

3. SYSTEM ARCHITECTURE
In this section, we give an overview of the complete system and
define the functionality of each module. Figure 1 presents the
architecture of the system.

Figure 1. TwiSent Architecture Diagram

3.1 Tweet Fetcher and Polarity Detector
A Twitter API is used to obtain live feeds from Twitter. Based on
the search string, we retrieve the latest 200 tweets in English. The

tweets are in XML format which needs to be parsed to extract the
tweet bodies. The tweet polarity is determined by a majority
voting of four sentiment lexicons, following the approach in [3],
namely, SentiWordNet, Subjectivity, Inquirer and Taboada.

3.2 Spam Filter
The Spam is the use of electronic messaging systems to send
unsolicited bulk messages indiscriminately. [9] identifies three
types of spam: Untruthful opinions, reviews on brands only and
non-reviews. However, we provide a more detailed categorization
of Twitter spams as: Re-tweets, Promotional tweets, Tweet
containing links, Tweets in foreign language or having incomplete
text, Bot-generated tweets, Tweets with excessive off-topic
keywords or hashtags and Multiple tweets with same template.

The list is not exhaustive as new categories of spams are
generated regularly. Thus, adaptation of the algorithm to these
new instances of spam requires human supervision. We adopt a
partially supervised approach to alleviate this problem. In this
setting, we have labeled training examples of only one category
namely, the non-spam class and a mixed set of unlabeled
examples containing spams as well as non-spams. A classifier is
trained on these sets, which tries to identify the non-spam tweets
out of the mixed bag. The approach discussed here (Algorithm 1)
uses Naive Bayesian text classification to implement a partially
supervised learning based on Expectation Maximization [10].

Input: Build an initial naive bayes classifier NB- C, using the

tweet sets M and P

1: Loop while classifier parameters change

2: for each tweet ti ∈ M do

3: Compute Pr[c1 |ti], Pr[c2 |ti] using the current NB

 //c1 - non-spam class , c2 - spam class

4: Pr[c2 |ti]= 1 - Pr[c1 |ti]

5: Update Pr[fi,k|c1] and Pr[c1] given the probabilistically

 assigned class for all ti (Pr[c1|ti]). //f denotes the feature set

 (a new NB-C is being built in the process)
Algorithm 1. Spam Filter Algorithm

The following set of features is used in the spam filter module:

1. Number of Words / Tweet

2. Average Word Length

3. Freq. of “?” and “!”

4. Numeral Character Freq.

5. Frequency of hashtags

6. Frequency of @users

7. Extent of Capitalization

8. Freq. of First POS Tag

9. Freq. of Foreign Words

10. Validity of First Word

11. Presence / Absence of links

12. Freq. of POS Tags

13. Character Elongation

14. Frequency of Slang Words
Table 1. Spam Filter Features

The algorithm begins with assigning all the samples in the non-
spam class P as non-spam, and all the samples in the mixed
unlabeled set M as spam. In the first iteration, all the feature
values are calculated using the above set of features. The class
probabilities are calculated considering individual feature weights
leading to probabilities for each tweet to be in either class. All the
tweets in the mixed set M, which are more probable to be in the
non-spam class than in spam class, are reassigned to the set P. A
tweet is reassigned from the spam category to one of the three
classes (positive, negative and objective) for which the probability
is highest, if the difference between the probability for this class

and the spam class is greater than a threshold. The algorithm halts
when there is no further reassignment to any other category.

3.3 Spell Checker and Text Normalization
Multiple spell-checkers are available today, but they are not
effective in handling noisy text present in the social media. We
give an overview of some of the most prevalent abbreviations and
noisy text in Twitter. The list is compiled from the tagged tweets
for this work and from [11]: 1. Dropping of Vowels - Example:
btfl (beautiful), lvng (loving). 2. Vowel Exchange - Exchange
between pairwise vowels due to phonetic similarity. Example:
good vs. gud (o,u). 3. Mis-spelt words - Example: redicule
(ridicule), magnificant (magnificent). 4. Text Compression -
Example: shok (shock), terorism (terrorism). 5. Phonetic
Transformation - Example: be8r (better), gud (good), fy9 (fine),
gr8 (great). 6. Normalization and Pragmatics - Example:
hapyyyyyy (happy), guuuuud (good). 7. Segmentation with
Punctuation - Example: beautiful, (beautiful). 8. Segmentation
with Compound Words - Example: breathtaking (breath-taking),
eyecatching (eye-catching), good-looking (good looking). 9.
Hashtags - Example: #notevenkidding, #worthawatch. 10.
Combination of all - Example: #awsummm (awesome), gr88888
(great), amzng,btfl (amazing, beautiful)
We implement a minimum edit distance based spell checker to
resolve all the identified errors.

Input: For string s, let S be the set of words in the lexicon
starting with the initial letter of s.

/* Module Spell Checker */
for each word w ∈ S do
 w’=vowel_dropped(w)
 s’=normalize(s)
/*diff(s,w) gives difference of length between s and w*/
 if diff(s’ , w’) < offset then
 score[w]=min(edit_distance(s,w),edit_distance(s,w’),
 edit_distance(s’ , w))
 else
 score[w]=max_centinel
 end if
end for
Sort score of each w in the Lexicon and retain the top m
entries in suggestions(s) for the original string s
for each t in suggestions(s) do
 edit1=edit_distance(s’ , s)
 /*t.replace(char1,char2) replaces all occurrences of char1
 in the string t with char2*/
 edit2=edit_distance(t.replace(a , e), s’)
 edit3=edit_distance(t.replace(e , a), s’)
 edit4=edit_distance(t.replace(o , u), s’)
 edit5=edit_distance(t.replace(u , o), s’)
 edit6=edit_distance(t.replace(i , e), s’)
 edit7=edit_distance(t.replace(e, i), s’)
 count=overlapping_characters(t, s’)
 min_edit= min(edit1,edit2,edit3,edit4,edit5,edit6,edit7)
 if (min_edit ==0 or score[s’] == 0) then
 adv=-2 /* for exact match assign advantage score */
 else
 adv=0
 end if
 final_score[t]=min_edit+adv+score[w]-count;
end for
return t with minimum final_score;

Algorithm 2. Spell Checker Algorithm

3.4 Handling Pragmatics
Pragmatics is a subfield of linguistics which studies how the
transmission of meaning depends not only on the linguistic
knowledge (e.g. grammar, lexicon etc.) of the speaker and
listener, but also on the context of the utterance, knowledge about
the status of those involved, the inferred intent of the speaker etc.
We identified the different forms of pragmatics in Twitter as:
1. Happiness, joy or excitement is often expressed by elongating a
word, repeating alphabets multiple times - Example:
happppyyyyyy, goooooood. 2. Use of Hashtags - Example:
#overrated, #worthawatch. 3. Use of Emoticons is common in
social media and micro-blogging sites where the users express
their sentiment in the form of accepted symbols. Example: ☺
(happy), � (sad). 4. Happiness, joy, sorrow, hatred, enthusiasm,
excitement, bewilderment etc. are also commonly expressed by
capitalization where words are written in capital letters to express
intensity of user sentiments. Full Caps - Example: I HATED that
movie. Partial Caps- Example: She is a Loving mom. All these
forms are given more weightage than other commonly occurring
words by repeating them twice.

3.5 Entity Specificity
A tweet may have multiple entities and the user may express a
different opinion expression regarding each entity there. Thus, it
is of utmost importance to extract the specific opinion expression
relating to a particular entity. Consider the tweet, “The film
bombed at the box office although the actors put up a reasonable
performance”. Here the sentiment of the tweet with respect to film
is negative whereas that with respect to the actors is positive. [8]
proposes a Dependency Parsing based method to capture the
association between any specific feature and the expressions of
opinion that come together to describe that feature. The
underlying hypothesis is that: More closely related words come
together to express an opinion about a feature..

Consider a sentence S and 2 consecutive words �� , ���� ∈ �. If
�� , ���� ∉ �	
��
��_���	, then they are directly related. This
helps to capture short range dependencies. Let
Dependency_Relation be the list of significant dependency
parsing relations (like nsubj, dobj, advmod, amod etc.). Any 2
words wi and wj in S are directly related, if ∃��	�. 		����� , ��� ∈
����������_�� !	�
�. Through this long range dependencies
are captured. The direct neighbor and dependency relations are
combined to form the master relation set R. Given a sentence S,
let W be the set of all words in the sentence. A Graph "(�, $) is
constructed such that any �� , �� ∈ � are directly connected by
�& ∈ $, if ∃�� 	�. 		�����, ��� ∈R. All the Nouns in the given
tweet are extracted by a POS-Tagger which form the feature set F.
Let ft ∈ F be the target feature i.e. the feature with respect to
which we want to evaluate the sentiment of the sentence.

Let there be ‘n’ features where n is the dimension of F. We
initialize ‘n’ clusters Ci, corresponding to each feature '� ∈ (s.t.
fi is the clusterhead of Ci. We assign each word �� ∈ � to the
cluster whose clusterhead is closest to it. The distance is measured
in terms of the number of edges in the shortest path, connecting
any word and a clusterhead. Any 2 clusters are merged if the
distance between their clusterheads is less than some threshold.
Finally, the set of words in the cluster Ct, corresponding to the
target feature ft gives the opinion about ft.

4. EXPERIMENTAL EVALUATION
Twitter was crawled using Tweet Fetcher module and 8507 tweets
(Dataset 1) were collected based on a total of around 2000

different entities from over 20 different domains. These were
manually annotated by 4 annotators into four classes: positive,
negative, objective-not-spam and objective-spam. The Twitter
API was used to collect another set of 15,214 tweets (Dataset 2)
based on hashtags. Hashtags #positive, #joy, #excited, #happy etc
were used to collect tweets bearing positive sentiment, whereas
hashtags like #negative, #sad, #depressed, #gloomy,
#disappointed etc. were used to collect negative sentiment tweets.

The crawled tweets were pre-processed before the spam filtering
phase. All the links (urls) in the tweets were replaced by “#link”.
All the user id’s in the tweets were replaced by “#user”. A
dictionary [15] was used to map the standard abbreviations and
slangs to their proper words in the lexical resources. An emoticon
dictionary was used to map each emoticon to positive or negative
class. The following negation operators like no, never, not, neither
and nor were used and the polarity of all words in the forward
context window of five from the occurrence of any of these
operators were reversed.

We compare our system performance on both the datasets to C-
Feel-It [3], which is a rule-based system, using a weighted
polarity scoring based on four sentiment lexicons, like ours. C-
Feel-It has the same Tweet Fetcher and Polarity Detector module
as TwiSent, but lacks the remaining modules.

Manually Annotated Dataset
#Positive #Negative #Objective

Not Spam
#Objective

Spam
Total

2548 1209 2757 1993 8507
Automatically Annotated Dataset

#Positive #Negative Total
7348 7866 15214

Table 2. Dataset Statistics

Spam Filter module is evaluated in Dataset 1 as an independent
module. It achieved an accuracy of 71.50% for a four-class
classification (pos, neg, obj-not-spam and obj-spam) as opposed
to 54.45% for two-class (obj- spam vs. rest) classification.

For the overall system, we perform a 2-class and a 3-class
classification using TwiSent. In the 2-class classification, we
consider only positive and negative tweets. In the 3-class setting,
we consider positive, negative and all objective tweets as one
separate class. Tables 3 and 4 show the accuracy comparison
between TwiSent and C-Feel-It in Datasets 1 and 2, under a 2-
class and a 3-class classification setting. Ablation tests (refer to
Table 5) are performed by removing one module at a time and
noting the resulting accuracy of the remaining system. This is
done to find the sensitivity of each module. These tests are
performed under the 2-class classification setting using lexicon
based classification. A/B significance test [16] was done and the
confidence with which the accuracy changes were accepted to be
statistically significant is shown in Table 5.

Classification C-Feel-It Accuracy TwiSent Accuracy

2-class 52.58% 66.69%

3-class 47.23% 56.17%
Table 3. C-Feel-It and TwiSent Comparison using Dataset 1

System
(2-Class)

Positive
Precision

Negative
Precision

Overall
Accuracy

C-Feel-It 69.06 48.2 58.24
TwiSent 88.06 88.97 88.53

Table 4: C-Feel-It and TwiSent Comparison using Dataset 2

Module Removed Accuracy Statistical Sig. Conf.
Entity-Specificity 65.14 95%
Spell-Checker 64.2 99%
Pragmatics Handler 63.51 99%
Complete System 66.69 -

Table 5. Ablation Test Results Removing One Module at a Time

5. DISCUSSIONS

5.1 Overall Accuracy
Given a mixed bag of spam and non-spam tweets, the Spam
Filter’s performance improved in a 4-class setting with an overall
precision of 71.50% as opposed to 54.45% in case of a 2-class
classification. This is because merging positive, negative and
objective classes into a single class is undesirable as the 3 classes
are unique and have different properties altogether. TwiSent
achieved a much better accuracy over the baseline system under
all the settings. In the 2-class setting the accuracy improvement is
over 14% whereas in the 3-class setting, it is 8.94%. TwiSent
achieves a higher negative precision improvement than positive
precision improvement (refer to Table 4) over C-Feel-It, which
indicates it can capture negative sentiment strongly. Supervised
system accuracy suffers due to sparse feature space due to
inherent text limit of tweets.

5.2 Ablation Test
The accuracy changes after removing the Entity Specific module,
Spell-Checker and Pragmatics Handler are statistically significant
at 95%, 99% and 99% confidence respectively. The Ablation test
shows that removing the Pragmatics Handler decreases the system
accuracy most. This indicates that Pragmatism is a very strong
feature in the Social Media, but not much work has been done on
it. The Spell-Checker also proved to be an important module
owing to the tendency of people to mix and match shortenings and
abbreviations which cannot be captured in standard lexicons.
Hence, without this module, any lexicon-based system would miss
out on many important cue words. The entity-specific module,
though important conceptually, do not contribute greatly because
of lack of context due to very short length of tweets, where people
express opinions directly to the point unlike in reviews or blogs.
The accuracy also gets affected due to the incorrect dependency
relations given by the parser due to noisy text (mis-spelt words).

5.3 Effect of Artificial Training Data
There has been a lot of work in Twitter that collect data based on
specific features like hashtags [1], [12], [13], emoticons [14] etc.
and auto-annotate the tweets based on these features. Although
these systems achieve a very high accuracy, they remain biased
towards these special features. In this work, we showed that
although a system may work very well on a dataset based on a
specialized feature set with hashtags (Dataset 2), it does not
necessarily work well in a general setting (Dataset 1). This is
evident in the performance of TwiSent in Dataset 2 (created based
on hashtags) where it attains a high accuracy of 88.53% compared
to the overall accuracy of 66.69% in Dataset 1 (manually
annotated general purpose data). This shows that the specialized
set of features used to crawl the data actually give away the
sentiment explicitly, unlike in the general dataset which may have
latent sentiment based out of sarcasm, jokes, teasers and other
implicit sentiment, which is quite difficult to detect.

6. Conclusions and Future Work
In this paper, we introduced a Twitter based sentiment analysis
system, TwiSent. It is a multistage system with specialized

modules to tackle the nuances of micro-blogging genres. Our
results suggest that we outperform a similar Twitter based
sentiment application by 14%. One of the major contributions of
our work is in introducing Twitter based spams in the context of
sentiment analysis. Our Spam Filter performs well not only as a
part of the system but also as a stand-alone application. The Spell-
Checker module helps in handling the noisy text, whereas the
Pragmatics Handler can loosely capture the pragmatics in text
which assists in improving the classification performance. The
Entity-Specific module helps in capturing sentiment pertaining to
the search entity. A more sophisticated approach to Spell-
Checker, in presence of a parallel corpora, and Pragmatics
Handler may add to the system performance. The system cannot
capture sarcasm or implicit sentiment due to the usage of a
generic lexicon in the final stage for classification. Overall, the
paper not only highlights the issues associated with the micro-
blogs but also presents an effective system to handle many of
them. We also show that a superlative system performance on an
auto-annotated dataset does not guarantee a similar or comparable
performance on real-life micro-blog data.

7. REFERENCES
1. Alec, G.; Lei, H.; and Richa, B. 2009. Twitter sentiment

classification using distant supervision. Technical report,
Standford University.

2. Barbosa, L., and Feng, J. 2010. Robust sentiment detection
on twitter from biased and noisy data. In Proceedings of the
Computational Linguistics Posters, 36–44.

3. Joshi, A.; Balamurali, A. R.; Bhattacharyya, P.; and
Mohanty, R. 2011. C-feel-it: a sentiment analyzer for
microblogs. In Proceedings of ACL Demo Papers, HLT ’11,
127–132.

4. Bermingham, A., and Smeaton, A. 2010. Classifying
sentiment in microblogs: Is Brevity an Advantage, ACM
1833–1836.

5. Raghunathan, K., and Krawczyk, S. 2009. Investigating sms
text normalization using statistical machine translation.
CS224NProject Report, Stanford University.

6. Church, K. W., and Gale, W. 1991. Probability scoring for
spelling correction. Statistics and Computing 1(2):91–103.

7. Levenshtein, V. I. 1966. Binary codes capable of correcting
deletions, insertions, and reversals. Technical Report 8.

8. Mukherjee, S., and Bhattacharyya, P. 2012. Feature specific
sentiment analysis for product reviews. Part 1, Lecture Notes
in Computer Science, Springer 7181:475–487.

9. Jindal, N. and Liu, B. 2008. Opinion spam and analysis. In
Proceedings of the 2008 WSDM. pp. 219-229.

10. Liu, B., Lee, W., Yu S., and Li X. 2002. Partially supervised
classification of text documents. In Proceedings of ICML.

11. Bieswanger, M. 2007. 2 abbrvi8 or not 2 abbrevi8: A
contrastive analysis of different shortening strategies in
English and german text messages. SALSA XIV.

12. Jonathon Read. 2005. Using emoticons to reduce dependency
in machine learning techniques for sentiment classification.
In Proceedings of the ACL Student Research Workshop.

13. Pak, Alexander and Paroubek, Patrick. 2010. Twitter as a
Corpus for Sentiment Analysis and Opinion Mining. In
Proceedings of the LREC.

14. Gonzalez-Ibanez, Roberto and Muresan, Smaranda and
Wacholder, Nina. 2011. Identifying sarcasm in Twitter: a
closer look, In Proceedings ofACL Short Papers.

15. Website. http://chat.reichards.net/. Retrieved Aug. 11, 2012
16. In Wikipedia. Retrieved on August 11, 2012, from Website

http://en.wikipedia.org/wiki/A/B_testing

