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Abstract

Identifying dependences present in the body of sequentaram is used by paralleliz-
ing compilers to automatically extract parallelism frone fhrogram. Dependence detection
mechanisms for programs with scalar and static variablegilsexplored and have become
a standard part of parallelizing and vectorizing compilétswever, detecting dependences
in the presence of dynamic (heap) recursive data strucisireghly complex because of the
unbound and dynamic nature of the structure. The problemrbes more critical due to the
presence of pointer-induced aliasing .

This thesis addresses the aforementioned problem andayivegel approach for depen-
dence analysis of sequential programs in presence of héagtdacture. The novelty of our
technique lies in the two-phase mechanism, where the fiestepldentifies dependences for
whole procedure. It computes abstrhetp access pattier each heap accessing statement
in the procedure. The access paths approximate the losattessed by the statement. For
each pair of statements these access paths are checketefterence. The second phase
refines the dependence analysis in the context of loops. Hieaspect of the second phase
is the way we convert the precise access paths, for eacimstiateinto equations that can be
solved using traditional tests, e.g. GCD test, and Lampstt #he technique discovelsop
dependences.e. the dependence among two different iterations of émeesloop. Further,
we extend the intra-procedural analysis to inter-procaidume.
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Chapter 1
Introduction

In the recent arena of parallel architectures (multi-co@#3Us, etc.), software side lags be-
hind hardware. This is due to the reason that dealing withllgdism adds a new dimension
to the design of programs, therefore makes it complex. Opeoagh for efficient paral-
lelization of programs is to explicitly induce parallelisthincludes designing of concurrent
programming languages like Go, X10 etc., libraries, APte POSIX, OpenMP, Message
Passing Interface(MPI) etc. The main advantage of suchoapfris that it gives simple
and clear directions to the compiler to parallelize the cdlg the main drawbacks of such
approach is that the degree of parallelism totally depempds uhe efficiency of program-
mer and imposing external parallelism turns the code irjadg one. The other approach
Is to automatically parallelizing sequential programs bynpiler which extract parallelism
without violating correctness. This is a key step in incieguthe performance and efficiency.

1.1 Motivation

Over the past years, lot of work has been done on automatipahallelizing sequential
programs. These approaches have mainly been developedfirams having only static
data structures (fixed sized arrays) and written in langsiageh as FORTRAN [AK87,
BENP93, WL91, KA02]. Almost all programming languages todag the heap for dynamic
recursive data structures.

Therefore, any parallelization must also take into accthumtiata dependency due to the
access of common heap nodes of such structures. Findinggtianain sequential programs
written in languages, with dynamically allocated datadtites, such as C, C++, JAVA, LISP
etc., has been less successful. One of the reason beingetenpe of pointer-induced alias-
ing, which occurs when multiple pointer expressions refesdme storage location. Com-
pared to the analysis of static and stack data, analyzinggpties of heap data is challenging
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p void treeAdd(tree t) {
ift == NULL)
return;
S =t et
S2. treeAdd(tl);
| left | num| right| | left | num| right| S3. r=t *)I’Ight;
: ; : : S4. treeAddd(tr);
v v v v t—num =t —num + tr —num;
}
(a) Data structure (b) Function traversing the data structure.

Figure 1.1: Motivating example: function-call parallgtion

Sl p = list;
while (p —next != NULL) {
S2. g = p —next
p —® num | next num | next num | next S3. temp = g —num;
S4. r = q —next;
SS. r —num = temp;
S6. p=r
}
r —( =)=~
(a) Nodes read and written by code (b) Loop traversing the data structure.

Figure 1.2: Motivating example: loop parallelization

because the structure of heap is unknown at compile tims. dfso potentially unbounded
and the lifetime of a heap object is not limited by the scop¢ theates it. As a consequence,
properties of heap (including dependence) are approxanatey conservatively. The ap-
proximation of the heap data dependence information itéhthe parallelization.

The objective of our analysis is to detect both coarse-gdhparallelism in the context
of function calls, loops and fine-grained parallelism in tomtext of statements. We show
the following two examples as motivating examples of ourkwor

Example 1. Consider Figure 1.1 which gives a motivational example foajpaism in the
context of function calls. It shows the tree data structuekthe functiortreeAddtraversing
on the data structure. In the code fragment the two callsaduhctiontree Addrespectively
perform the additions of left and right subtrees recurgivéll the analysis can ensure that
the two function calls do not access any common region of hibey can be executed in
parallel. O

Example 2. Figure 1.2 shows an example of loop level parallelism. lghbist data struc-
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ture and the nodes of the structure being read and writtggethbyRead(RD andWrite
(WR access by the code fragment traversing the data strudiote that, the first node of
the structure is a special node which is neither read notemriy the code fragment. The
performance of the code can be improved if the loop can beuéean parallel. However,
without the knowledge of precise heap dependences, we bagstime worst case scenario,
i.e., the location read by the statem&8tin some iteration could be the same as the loca-
tion written by the statemer85 in some other iteration. In that case, it is not possible to
parallelize the loop.

Our dependence analysis can show that the locations re&8 dryd those written b5
are mutually exclusive. Further, it also shows the absehesy other dependences. This
information, along with the information from classical @t and data dependence analysis,
can be used by a parallelizing compiler to parallelize tloplo O

This report explains our approach for a practical heap depeiddence analysis. As it
is understood that we are only talking about data dependeneedrop the term data in the
rest of the report.

1.2 Contributions of our Work

Our work contributes in the area of heap based dependentgsignale present a novel
approach which identifies dependences and extracts peralléor a sequential program.
In particular, our approach finds out dependences betweesstatements. This enables us
to find out whether two procedure calls access disjoint sires, hence can be executed in
parallel. Then we refine this technique to work better in @neg of loops. We also extend
the work of loop analysis for static and scalar data to sugpeap intensive loops.

1.3 Organization of the Thesis

The rest of the thesis is organised as follows. We discusataketated work done in the
field of heap intensive dependence analysis in Chapter 2. @hagpecifies the imperative
programming model for which our analysis is defined and give®ther background details.
Chapter 4 through 6 provide a complete description of ourtwacdependence analysis
applied to dynamically allocated structure. Chapter 4 gitesdetailed explanation of the
intra-procedural dependence detection technique whigéragely works on each procedure
of a program. Chapter 5 presents our method to handle loopmoraspecific way. We also
give the inter-procedural framework for our analysis in Gkap. Chapter 7 demonstrates
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our whole method by extensively analysing few benchmarlesodVe conclude the report
in Chapter 8 by giving the direction for future research.



Chapter 2

Related Work

Data dependence analysis for sequential programs, wodkiranly static and stack related
data structure, such as array, is well explored in litemfAK87, WL91, BENP93, KA02,
PW86] etc. Our work extends the work to handle heap data steiciarious approaches
have been suggested for data flow analysis of programs inrdsepce of dynamic data
structures. Classic work done by Jones and Muchnick [JM81¢ saggested flow analysis
approach for lisp-like structures. It can not handle proces, and was designed to statically
distinguish among nodes which can be immediately deakagatodes which are garbage
collected and nodes which are referred. They have alsodntexd the notion of k-limited
graphs as finite approximation of unlimited length of linkstducture. This k-limited graph
can only keep paths of at most length k, and summarizes atiddes beyond length k. This
approach is not precise enough to be used in the contextasfenénce analysis and extract
parallelism.

Jones and Muchnick in [JM82] have proposed a general purfjpaseework for data
flow analysis of programs with recursive data structure.efiehds on tokens to designate
the points in a program where the dynamic recursive datatstelis either created or mod-
ified and approximates the values of these tokens. Retriematibn is used to represent the
inter-relationship among tokens and their correspondaiges. By efficient choice of token
sets and lattice sets, which approximate data values, leigred of exact data flow informa-
tion can be obtained. Although flexible the method is mostiyheoretical interest and is
potentially expensive in both time and space. Larus andrididfi [LH88] describe a dataflow
computation using alias graph that records aliases betvag@bles, structures, and pointers
of the underlying data structure. This information is fertlised to detect conflicts between
the locations accessed by the program statements.

The work by Hendren et al. in [HN90, Hen90] considers shaparimation and ap-
proximates the relationships between accessible nodesgderl aggregate data structures.
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These relationships are represented by path expressestscted form of regular expres-
sions, and are encoded in path matrices. Such matrices edle¢asleduce the interference
information between any two heap nodes. These informatiomfurther used to extract par-
allelism. Their method focuses on three levels of parakigion; (a)if two statements can be
executed in parallel, (b)identifies procedure-call pafilin, and (c)whether two sequences
of statements can be parallelized. They have further egtbtids work in [HHN92], where
they provide the programmer with a descriptor mechanisrh ssébstract Description of
Data Structures The properties of data structure, expressed by such gesgrare used to
increase the accuracy and effectiveness of alias analykis.efficient analysis is used for
transformation of programs with recursive pointer stroetu

The idea behind the work done by Hummel et. al. [HHN94] is ttedeprecise depen-
dences between two statements by collecting access pdthsespect to handle node and
deducing the interference of these paths by proving thesmgith the help of aliasing ax-
ioms. The axioms describe uniform properties of underlylata structures which precisely
works for even complex cyclic structures. Although this ry@eh precisely identifies de-
pendences between statements in sequence, iterationgpo&tal block of statements, this
technique is mainly of theoretical interest.

Ghiya et. al. [GHZ98] uses coarse characterization of theetying data structure as
Tree, DAG or Cycle. The work done by Ghiya computes completesg paths for each
statement in terms adnchor pointer, which points to a fixed heap node in the data struc-
ture within the whole body of the program. The test for ahigsof the access paths, relies
on connection and shape information that is automaticallpmuted. They have also ex-
tended their work to identify loop carried dependences dopllevel parallelism. Hwang
and Saltz [HS03] present a technique to identify paratelis programs with cyclic graphs.
The method identifies the patterns of the traversal of pragrade over the underlying data
structure. In the next step the shape of the traversal patteletected. If the traversal pattern
is acyclic, dependence analysis is performed to extraetlpasm from the program.

Navarro et. al. in [NCA04, TCNZO05] propose a intra-procedural dependence test
which intermixes shape analysis and dependence analygeshr. During the analysis,
the abstract structure of the dynamically allocated datamputed and is also tagged with
read/write tags to find out dependencies. The resultingyaisais very precise, but it is
costly. Further their shape analysis component is tigmiggrated within the dependence
analysis, while in our approach we keep the two separategageis us modularity and the
scope to improve the precision of our dependence analysissing a more precise shape
analysis, if available. They have extended their depereleelated work in [ACC08].

In this paper they have implemented a context-sensitiverpnbcedural framework which
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successfully detects dependences for both non-recunst/esgursive functions.

Work done by Marron et. al. in [MSKHO8] tracks a two prograncdtion, one read
and one write location, for each heap object field. The tepuses an explicit store heap
model which captures the tag information of objects for gaxdgram statement. The read
and write information are used to detect dependences. patesffective and time efficient
technique analyses bigger benchmarks in shorter time. Buffactiveness of this approach
lies in the use of predefined semantics for library functiZdkSHOG6], which recognizes a
traversal over a generic structure.

Our approach is closest to the technique proposed by Hoetital. [HPR89]. They
also associate read and write sets with each program stattéondetect heap dependencies.
They have also proposed technique to compute dependenaadads for loop constructs.
However, there technique requires iterating over a lobp fixed point is reached, which is
different from our method of computing loop dependences st af equations in a single
pass, and then solving these equations using classical test

Another recent approach for dependence detection andgdeation is using separation
logic. It has also been used in the area of shape analysisragdam verification. This
technique can not directly fit into parallelization as itypekpresses separation of memory
at a single program point which is not sufficient to determimependences between state-
ments. Raza et. al. [RCGO09] has presented a technique to eptradtelism from heap
intensive sequential programs. The objective behind tipeogeh is to record how parts of
the heap are disjointly accessed by different statemeriteeqfrogram. They have extended
the separation logic wittabels that keep track of memory regions throughout an execution
of the program. They have also proved the soundness of theagpfor simple list and tree
structure.
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Chapter 3
Background

In this chapter we present the background details requinedur heap intensive data depen-
dence analysis.

3.1 Programming Model

Each and every node of a heap recursive data structure cacéssad by access path, which
Is defined as pointer variable or variable followed by linkd# similar to languages like For-
tran 90, C. As an example, a noNecan be accessed by either pointer varigdtteor pointer
variable followed by link fields likgtr— f;— f2- - - fx, wherefy, fo, - -+, fx are pointer fields
of heap structure. All statements in the program are pregased to provide normalized bi-
nary access paths, defined as pointer variable followedryespointer field reference like
ptr—f. The model of the programming language to be analysed glossémbles the model
of imperative language like C. We are interested in analysimy heap related statements.
Here we enumerate with details the basic statements opgi@atiheap. Note that, arithmetic
operations of pointers, as in C, are not allowed.

e Heap allocating statements :

— p = malloc() : A new heap object is allocated, which is pointed to by paginte
p. Hence, this statement is called as memory allocationrataiée

e Pointers assigning statements :

— p = q : Pointerp points to the same heap location as pointed tqg.bly inherits
all the relations and properties @f Hence this statement resultspirmndq to be
alias.
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— p = g—f : This statement makes pointerto access the heap object which is
accessible by pointey through the pointer field. This type of statement is
mainly used to traverse the links of recursive dynamic datectire.

— p = NULL: This statement assigns pointer variapk® null, such thap does not
point to any heap location.

e Link defining/ structure updating statements :

— p—f = NULL : This statement breaks the liilkemanating from the heap node
pointed to by pointer variablg. After the execution of the statementan not
reach any other heap node through link field

— p—f = g : This statement first breaks the lihkof the heap node pointed to by
p and then resets such thatp through link fieldf access the same heap node
pointed to be pointer variabte

e Heap reading/ writing statements :

— ... = p—data : Data field of the heap node pointed to by pointer varigbig
accessed. Hence this statement is used to read the dataValesp node.

— p—data = ---: Data field of heap node, pointed to by heap directed pointer
variablep, is written by this statement. Hence this statement clearite into
heap nodes.

Our analysis mainly works on those statements which do ndatepor modify the struc-
ture of the underlying dynamic data structure. The statésn@hich only traverse the heap
structure, reading or writing the heap data, are main caelistatements of our dependence
analysis. The effects of the statements, which update thetste, are captured by shape
analysis explained in later section. Here we list the stateswhich are handled by our data
dependence analysis.

e p = g : aliasing statement.

e p = g—f : link traversing statement.

e --- = p—data : statement reading heap data.

e p—data = --.: statement writing into heap data.

Note that, only single-level of pointer dereferencing Isevaed. Other than basic heap related
statements, heap intensive procedure calls are also tatkezdcount. Hence procedure calls,
whose parameters point to heap nodes, are also analysed agpalysis.
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3.2 Dependence Analysis

Dependence analysis produces the execution order consttatween any two statements
in a program as described in literature [Muc97, KA02, CTO0%] €fwo classes of depen-

dences are present; (a)Control dependence, where the iexegtiat statement depends on
the control flow constructs, (b)Data Dependence, whicledretween two statemersand

T if there exists an execution path between these two statsraad they access or modify

same data resource.

3.2.1 Control Dependence

Use of control constructs in the program body imposes cbdegpendences. Statemeént

is said to be control dependent on a statenifi{a)there exists an execution path fr8n

to T and (b)the execution &f depends upon the outcome of statenterk typical example

of such dependence is the useifehen-elseconstruct. In this case the statements present
in then or else body can not be executed before the executidrs@atement. The other
examples of such dependence occurs due to control flow cah$ite while, do-whileetc.

3.2.2 Data Dependence

The other type of dependence is data related dependence81JBHL92, KA02], which
can be generally classified into following four categories.

1. Flow (True) Dependence(Read after Write): Stateniastflow dependent on state-
mentS if and only if an execution path exists frofto T andT reads a data which is
already modified b.

2. Anti Dependence(Write after Read): StatemEid antidependent on statemehif
and only if statement modifies a data which is already read gndS preceded in
execution.

3. Output Dependence(Write after Write): Statemierst output dependent on statement
Sif and only if bothS andT modify the same data ar&lpreceded in execution.

4. Input Dependence(Read after Read): A stateéninput dependent on statemént
if and only if S andT read the same data resource &meceded in execution.

Anti and output dependences are false dependence becayseathbe easily removed by
some techniques like variable renaming etc. Input deper@ldaes not impose any depen-
dence as it does not prohibit reordering of instructionsis Tata dependence analysis is



14 Background

extended to tackle dependencies within loops. The nextosegives an overview of loop
dependence analysis.

3.2.2.1 Loop Dependence

Loop dependence analysis is a task of determining wheth&rsents present in the loop
body form dependency within same iteration or across itarat These dependences can be
categorized into the following classes:

1. Loop-carried Dependence : If stateménin one iteration depends on statemént
executed in other iteration.

2. Loop-independent Dependence : If two statem&raad T depend on each other in
the same iteration of loop.

Different iterations of loop can be effectively executedparallel if the execution of itera-
tions do not depend on each other, i,e., no loop-carriedrikgece is present. To classify
dependence, compiler uses two parameters: (a)DistanterMetich indicates distance be-
tween two iterations dependent on each other, (b)Directémtor, indicates the sign of the
distance. Based on the direction vector different classetepéndence can be identified.
There exist several techniques which are used to tackledeppndence problem. For detect
whether a dependence exis®&CD, Lamport andBanerjeetests are most general tests in
use. Here we give brief details GCD andLamporttests.

GCD Test

A simple and sufficient test for the absence of loop carrigebddences is the GCD test [KAO02].
A loop carried dependency can occur between any two accek#essame arra} such as
X[a*i+b] andX[c*i+d] , if greatest common divisor @fandc divides(d-b) . GCD test has
some limitations such that it does not consider loop bouadd,does not provide distance
and direction vectors. Beside these GCD ends up by produciygceaservative result as
GCD of any two integers is often one.

Lamport Test

Lamport test [Lam74] is a simple test for index expressiomslving a single index variable
and with a constraint that the coefficients of the index \@eianust be same. In this given
scenario, Lamport test can detect both loop-carried arut inodependent dependencies with
both distance and direction vector. Let us consider an elawmipere two accesses of same
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array such a¥[a*i + b] andX[a*i + c] form equation
axijt+b=axig+c=i;—i;=(b—c)/a

If the above equation returns an integer solution then ambgrpi@al dependence is reported.
Here dependence distangas (b-c)/a , if o exists between lower and upper bound of the
loop. It reports true dependencedit0, anti dependence whex0, and loop-independent
dependence i6=0.

3.3 Data Flow Analysis

Data flow analysis [KU76, Muc97, KSKQ9] is a technique forlgatng particular informa-
tion at each program point of a program. It is inherently flenstive, i,e., depends on the
order of statements of the program. The flow of analysis mditd into one of the follow-
ing three categories: (a)Forward flow analysis, where the dibanalysis propagate in the
forward direction, and exit or out state of a basic block &sfilmction of the entry or in state
of it, (b)Backward flow analysis, if the analysis move in thek®aard direction, and the
transfer function is applied to the exit state yielding th&agstate, (c)Bidirectional analysis,
if the flow of analysis move in both direction.

Transfer function is mainly the composition of the effectshe statements in the basic
block. Hence, for each blodktransfer functiortransy:

outp = transy(ing)

iny = joinpepred, (outy)

The join operation combines the out or exit states of thegueslsorge pred,, of b, return-
ing the entry state di. By solving this set of equations, the entry and/ or exit state used
to derive properties at each block boundary. Propertiesdoh statement inside a block can
also be derived separately by applying proper transfertiomc

Iterative analysis is one of the most widely used technifoedata flow analysis. In case
of forward flow analysis, it starts with an approximation leétin state for each basic block.
The transfer function computes the out state for each blowk fits in state. Again the in
states are updates by applying the join operations on thetatgs of its predecessors. These
steps, excluding initialization, are repeated until the slgstem is stabilized, i,e., reaches
fixed-point. The basicound-robin iterativealgorithm for forward flow analysis is given in
Figure 3.1. This classic round-robin iterative algorithompletely sweeps over the graph
such that it visits every node in a fixed-order. The time bofordthis algorithm is high
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initialize sets of Entry node
fori < 1 to N of basic blocks
initialize the sets of block i
change <« true
while (change)
change <« false
fori < 1 to N of basic blocks
] = Ujepreds (Outl)
Temp = trans(i)
if Outli] # Temp then
change <« true
Outl] <« Temp

Figure 3.1: Round-robin iterative analysis.

Worklist — «~ @
fori < 1 to N of basic blocks
initialize the sets of block i
add i to the Worklist
while (Worklist ~ # @)
remove a node i from the Worklist
recompute set at node i
if new set # old set for i then
add each successor of i to Worklist, uniquely

Figure 3.2: Worklist iterative analysis.

due to the fact that the algorithm evaluates some unnegessarputations. Thevorklist
iterative analysigpproach improves on the round-robin iterative algoritimberms of time,
by computing on regions in the graph where information isgivag. Figure 3.2 outlines the
worklist iterative algorithm. The algorithm initializedl the nodes accordingly and construct
an initial worklist. It then continues by removing a nodenfrthe worklist and updating its
data flow information. If the value of the node changes, tHeth@anodes that depend on the
changed information are added to the worklist. These dlyos can also be improved by
bit vector technique, where data sets are are represeriteidrfy asbit vectors in which
bit represents set membership of one particular element.
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3.4 Shape analysis

Shape analysis, as described in literature [SRW99, SRW02 6GERW96, SRWI8] etc.,

is used to statically analyse a program to determine varidaosmations regarding dynami-
cally allocated recursive data structures. It detectouarfeatures of the heap structure like
interfering and sharing of nodes, reachability of heap naliigointness of structures etc.
Shape analysis also gives a coarse classification of thes sifaynderlying recursive heap
structure. The shape is classified into one of the followitige: categories: ()ee in which

each node has at most one parent and no two paths can leadddsamnode, (DAG, in
which some node has more than one parent and two paths cass &eeee node, but it does
not contain any cycle, (€ycle structures having graph theoretic cycle, and a node can be
potentially accessed by infinite number of paths.

Figure 3.3: Structure of Tree and DAG

The potential for parallelism in programs that use recersitructures arises from the
following observation. If the underlying data structureofstype tree, then unrelated sub-
trees,T; andT;j, of treeT are guaranteed to share no common storage, hence computatio
onT; will not interfere with computation ofi; or any sub-tree of it. For the DAG structure,
sub-treeT; can potentially interfere with sub-trég. Hence parallelism can be extracted if
and only if it is ensured that the body of code do not accessshayed node. Parallelism
from cyclic structure can not be easily extracted due to teegnce of cyclic nature, hence
conservative decision is made.
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Chapter 4
Intra-Procedural Dependence Analysis

Recall from Section 3.2 that two stateme8tandT are said to be dependent on each other
if (a)there exists an execution path frdrto T and (b)both statements access same data.
As input dependence does not put any constraint on paraltin, our analysis takes into
account the other types of dependences like flow, anti angubutependences. Here we
redefine the general definition of data dependence in thexboott heap.

Definition 4.1. Two statementS andT are said to heap dependent on each other if (a) there
exists an execution path frofto T and (b)both statements access same heap location and
(c)at least one of the statements writes to that location.

We have developed a novel technique which finds out heap @tldependencies, be-
tween any two statements in the program. The novelty of oprageh lies in the separation
of shape analysis phase from the dependence detection phdthe workflow of our de-
pendence detection technique. Our intend is to identifyfeddpnces present in the program
following the algorithms outlined in this chapter. Notetthaur algorithms only deal with
normalized statements (refer to Section 3.1), having siteylel of pointer dereference.

In brief, our analysis works as follows: for each heap adogssatement in the program,
our approach computes set of states i,e., set of symboktityes potentially accessed by the
variables in the statement and then it computes sets ofidosatvhich is read or written by
each statement. These sets are then tested to identifydiEpees. This dependence analysis
technique identifies memory locations in terms of abstracess paths. The abstraction
scheme has been designed to reach the fixed-point for ourthlgo The details of such
abstraction scheme are given next. Section 4.2 gives dwadgakithms of our analysis with
details and presents the working of our algorithms with aamgxe.
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fun analyze(f, k) {
InitSet = initialize(); / % Initialize parameters and globals */
vV stmt § € HeapStmt[f]
tagStmt( S, tagDir(UsePtrSet, DefPtrSet, AccType, Accfield));
HeapState = stateAnalysis(CFGIf]:(N, E, Entry, Exit), k);
ReadWriteSet = computeReadWrite(HeapState);
detectDependence(ReadWriteSet);

Algorithm to analyze a functioh for dependence detection. Paramétex used for limiting
the length of access paths, to keep the analysis bounded.

Figure 4.1: Intra-procedural dep. detection for a function

4.1 Access Path Abstraction

An access path is either a symbolic locatigror location followed by a sequence of one
or more pointer field names likg — f1 — fo — ... — fx. Since an access path represents
a path in a memory graph, it can be used to identify a heap nibdée hard to handle full
length access path and the termination of the analysis bexonpossible. Hence we limit
the length of access path to length k i,e., maximum k levelndirection is allowed for
dereferencing. A special summary field **' is used to limiethccess paths, which stands
for any field dereferenced beyond length k.

Example 3. For k = 1, all the access paths in the $kf — next — next ,lg — next —
next — next ,lp — next — next — next --- — next } can be abstracted as single summa-
rized pathlp—next — x. Similarly assuming a data structure has two referencesfieftd
andright , the summarized patllg — left — right — x could stand for any of the access
pathslp — left —right —left | lop—left —right —right | lp—left —right —

left —left | lo—left —right —left —right and more such paths. O

4.2 Dependence Detection Framework

Our method investigates if there is any heap dependencyeeetany two statements in
the program and the type of the dependencies following tger#éihm analyze that we
have outlined in Figure 4.1. The algorithm works on each fioncseparately resulting in
intra-procedural analysis. It takes as parameter theifumt be analysed and the maximum
length of access path, which has been set at prior. Summgyikie algorithm can be divided
into the following steps:
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] Statement \ Annotation directive \

p=q tagDir({q}, p, AliasStmt, null)
p = g—next tagDir({g}, p, LinkTraverseStmt, next)
--- = p—data tagDir({p}, null, ReadStmt, null)
p—data = --- tagDir({p}, null, WriteStmt, null)

Table 4.1: Example showing different tagging directives

All global variables and parameters of the function undealysis are initialized with
proper values such that the correctness of the functiontigiolated. As our technique looks
at only heap related statements, initialization of onlybglovariables and parameters access-
ing heap is sufficient. The functionitialize returnsinitSet , a set okheap directed
pointer variable, symbolic location> pairs after initialization. The symbolic loca-
tions are identified in terms of access paths as describédreadfor reasons of efficiency,
length of access paths are limited to 1.

Each statement in the function is annotated with a taggiregtivetagDir . It consists of
four attributes which give information regarding the heapessing statemest : (a)Used
pointer setUsePtrSet is the set of heap directed pointer variables which are usebe
statemens; ; (b)Defined pointer séefPtrSet is the set of pointer variables defined by the
statemensB;; (C)Access typdccType identifies the pattern of heap access by statergent
which can be categorized into following six classes (redeBéction 3.1).

e AliasStmt : aliasing statement.

LinkTraverseStmt . link traversing statement.

ReadStmt : statement reading heap.

WriteStmt  : statement writing into heap.

FunCallStmt : function call statement.

OtherStmt : any other statement.

(d) The access fieldccField is the pointer field accessed by the statensgntTable 4.1
shows example statements and corresponding taggingid@gct

4.2.1 State Analysis

This subsection introduces state analysis for heap dde@gable. State analysis for heap
variable involves computing a safe approximation of thellrig of pointer variable to a set
of symbolic memory locations that can be potentially acedss the variable at a particular
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program point. This binding is referred as state of the \wdeiand is represented asagti-
able {set of symbolic locations. This analysis is essentially used by dependence arsalysi
in future.

Definition 4.2. The state of variabl@ at a program poinu is the set of symbolic memory
locations such that some paths from t@ry point tou result in the access of symbolic
locations by the variable.

The analysis works on multiple symbolic execution of thection. It follows general
data flow analysis algorithm described in literature [KUN&4c97, CHKO02, KSK09] etc. It
involves the following steps: (a) computation of local infation, set of states after sym-
bolic execution of each statement. At each program pointatipces a set of states such
that it contains all local and global variables and condemapproximation of symbolic
locations accessed by each variable in the set. (b) conpuiait global information, set of
possible states just before and after the execution of & loibstatements. The control of the
analysis flows in forward direction. Equations for statelgsia follow the traditional data

flow form:
InB]= [ J Out[P] (4.1)
Pepred[B|
Out[B] = £5(In[B]), fp is block leveltransfer function oB 4.2)

f5(In[B]) = gs, (- - (gs,(In[B]))), gs, - - - gs, arestatement levelrransfer functions (4.3)

Transfer functiontg is a composition of series of transfer functignapplied to each state-
ment present in the block. The first statem@mif block B hasin set same as the set to
the block. Each statement locally generéfdls andGen sets which are used by function
gs to produceDut set for each statement. Table 4.2 shows the local effecteddtatements
handled by our analysis. Hence the statement level eqsdostate analysis are:

Out[Si] = gs, (In[Si]), In andOut sets for statemersy (4.4)

gs,; (In[Si]) = (In[Si] —Kill[Si]) UGen[S;], GenandKill are local teS; (4.5)

Figure 4.2 demonstrates both block level and statementtlewesfer functions. As statement
Sis the first statement in the basic blo8kn[S] has been set tin[B] . AgainOut[B] will
beOut[T] asT is the last statement in the bloBk

The overall algorithm for state analysis is outlined in Feyd.3. Out[Entry] s ini-
tialized tolnitSet  to set the boundary condition. Thehile loop in the algorithm iterates
until it reaches the fixed-poinstateTrans  gives the algorithm for transfer function which
works on each block. ThougbenandKill informations are local to each statement they are
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In[B]
In[S]=In[B]
Bésic Block B
Stmt S
In[B] ut[S]=g(In[S])
In[T]=0ut[S]
l Stmt T
Basic Block B
l Out[B]=Out[T]
v
Out[B] = f(In[B]) Out[B]

Figure 4.2: Transfer function for basic block

] Statement \ Gen set \ Kill set \
1.p=q {<pm> | <q,m> €In[S]} {<p> | <pl> €[S}
2.p = g—next {<p,m —next> | <q,m> €In[S]} {<pI> | <p,> €In[S]}
3.--- = p—data ()] (0}

4. p—data = --- [0) [0)
5. fun(p, q) @ ®

Table 4.2:GenandKill set for each statement



24 Intra-Procedural Dependence Analysis

fun stateAnalysis(CFG[f]:(N, E, Entry, Exit), k) {

Out[Entry] = InitSet; / * Boundary condition */
for each basic block B other than Entry
I = Initialization for iterative algorithm */
OutB] = @
while (changes to any Out[ ] occur) { / * lterate */

for each basic block B other than Entry {
In[B] = U(Out[P]), for all predecessors P of B;
Out[B] = stateTrans(B, In[B], k);
}
}
}

Figure 4.3: Algorithm defining state analysis.

computed in each iteration of the analysis, conflicting gelngata flow analysis algorithm.

Example 4. We illustrate via an example the way our algorithm works.’d_ebnsider the
code fragment shown in Figure 1.2(b). Global variables ardmeters of the code are ini-
tialized tolnitSet  consisting of<list, lo>} . Table 4.3 shows the set of states produced
by each statement in the code and demonstrates how the igrralgshes fixed-point. Note
that the length of access path is limited to 1. In this exar@oleset for each basic block in
iteration number 2 is same @sit set produced by each block in iteration number 3. Hence
in third iteration the algorithm reaches fixed-point. 0O

4.2.2 Read/Write State Computation

For each statement we intend to compute two sets of heapsapatiss: (dRead setthe
set of paths which are accessed to read a heap location amiitghbxet the set of paths
which are accessed to write to a heap location. These setbt@iaed from the set of states,
generated by the state analysis, in a single pass over tbedanThe read and write sets are
used later to identify dependences.

FunctioncomputeReadWrite  referred in Figure 4.8 computes such sets in a single sym-
bolic execution of the function. FunctidimdStateUseVar  is used to generateead and
Write sets for statements reading/writing heap. Function caidhandled by conservative
read/write sets that over approximate the heap locatioaiscibuld potentially be read or
written inside the called function. Read and write sets foeostatements are setgo

Example 5. Consider the code fragment shown in Figure 4.9(b) which tegethe Tree
data structure shown in Figure 4.9(a). Our analysis coasigely approximates read and
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fun stateTrans(Basic Block:BB, In set of BB:In[BB], k) {
TempState = In[BB];
for each Stmt § € HeapStmt[BB] { / x HeapStmt[BB] contains */
| x heap intensive statements of BB */
In[ §] = TempState;
Killl S] = findStateDefVar(TempState, S);
Gen[ S] = computeState(In[ S, S);
Ouf S] = (In[ S] - Kll[ ~ S)) U Gen[S];
tempState = Out[ S];

}
return tempState;
}
Figure 4.4: Algorithm for block level transfer function.
fun findStateDefVar(Set of States:TempState, Statement: S) {
Set of States : CurrState, LocalState = (0}
for each variable V; € DefPtrSet {
Find the state CurrState of V; from TempState;
LocalState = LocalState U CurrState;
}
return LocalState;
}

Figure 4.5: Computing(ill set.
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fun computeState(In set of stmt:In[Stmt], Statement:Stmt ) {
UseVarSet = findStateUseVar(In[Stmt], Stmt);
if Stmt =p=q
Gen[Stmt] = { <p, lp> | <q, lo> € UseVarSet }
VvV {<p, lp—sel> | <q, lg—sel> € UseVarSet }
VvV { <p, lp—sel =*> | <q, lp—sel —*> € UseVarSet },
else if Stmt = p = g—next
Gen[Stmt] = { <p, lop—next> | <q, lop> € UseVarSet }
Vv { <p, lg—sel —*> | <q, lg—sel> € UseVarSet };

else if Stmt = ... = p—data
Gen[Stmt] = In[Stmt];
else if Stmt = p—data =
Gen[Stmt] = In[Stmt];
else if Stmt = f(p,q)
Gen[Stmt] = In[Stmt];
else Gen[Stmt] = (0}
}
Figure 4.6: Computingenset.
fun findStateUseVar(Set of States:TempState, Statement: S) {
Set of States : CurrState, LocalState = (0}
for each variable Vi € UsePtrSet {
Find the state CurrState of V; from TempState;
LocalState = LocalState U CurrState;
}
return LocalState;
}

Figure 4.7: Computing states of used variables.
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] Statement Iteration 1 Iteration 2
S1:p = list In = {<list, lo>} In = {<list, lo>}
Gen = {<p, lo>} Gen = {<p, lo>}
Kill ={ o} Kill ={ o}
Out = {<list, lg><p, lo>} Out = {<list, lg><p, lo>}
while() { In = {list, lo>,<p, lp>} In = {<list, lo>,<p, lo>,
<p, lg —next —*>,
<q, lg —next>,
<r, lo —next —*>} = C (say)
Out = {<list, lp><p, lp>} Out = C
S2:q = p—next In = {<list, lo>,<p, lo>} In=2C¢C

Gen = {<q, lp —next>}

Gen = {<q, lp —next>,
<q, lo —next —*>}

<p, lo —next —*>,
<q, lo —next>,
<1, lg —next —*>}

Kill = @ Kill = {<g, lg—next>}
Out = {<list, lo>,<p, lo>, Out = {C<q, lg—next —*}
<q, lp —next>} = A (say) = D(say)
S3:temp = g —num In = A In =D
Out = A Out =D
S4:r = q —next In = A In =D
Gen = {<r, lp —next —*>} Gen = {<r, lp —next —*>}
Kill = o Kill = {<r, lg—next —*>}
Out = {A<r, lg—next —*>} Out =D
= B(say)
S5:r —num = temp In = B In =D
Out = B Out =D
S6:p =7 In = B In =D
Gen = {<p, lg —next —*>} Gen = {<p, lg —next —*>}
Kill = {<p, lo>} Kill = {<p, lo>,
<p, lop —next —*>}
Out = {<list, >, Out = {<list,  lg>,

<p, lo —next —*>,
<q, lg —next>,

<q, lo —next —*>,

<r, lg —next —*>}

Table 4.3: Set of states for each statement of an example code
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Set of States :
for each stmt

if(§ = -

ReadSet
WriteSet

}

ifelse ( §
ReadSet
WriteSet

}

if else ( §
ReadSet
WriteSet

}

else {
ReadSet
WriteSet

fun computeReadWrite(Set of States:HeapStates) {
CurrState, LocalState = 0}
S {
= p—num) { | % statement reading heap */
= findStateUseVar (HeapStates| S, 9)
= ¢
= p—num = --.) { /| * statement writing into heap x/
= (p,
= findStateUseVar (HeapStates| Sl S);
= f(p,q)) { I % function call statement */
= findStateUseVar (HeapStates| S, S);
= findStateUseVar (HeapStates| S, S);
= (p,
= (p,

Figure 4.8: computing Read and Write sets.
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S11. p = tree;

| left | num| right| | left | num| right| while (p —left = NULL) {
: ; : ; S12. newFunc (p);
v v Y v s13. p=p —left

}

(a) Tree data structure. (b) Code fragment traversing the data structure.

Figure 4.9: Program with function call.

Statement Read set Write set
S1:p=list (0} (0}
S2:g=p—next 0] (0]
S3:temp=q —num | {<q, lp —next>, [0)
<q, lo —next —*>}

S4:r=q —next (0} (0]

S5:r —num=temp [0} {<r, lg —next —*>}
S6: p=r (0} (0}

Table 4.4: Read and write sets accessed by each statement

write sets for statemer@l2 which is a function call statement. The analysis generdes t
read and write sets dsp, o>, <p,
such sets. O

lo—*>} which is the worst case approximations of

Our approach is conservative in the sense that the readdetrda set we compute for a
statement are over approximations of the actual locatiwatsatre read or written by the state-
ment. Therefore it is possible that our analysis reportsdtatement to be dependent when
they are not really dependent on each other. However, timsndabit some parallelizing
optimization but can not result in an incorrect paralldima.

4.2.3 Dependence Detection

Our approach identify memory locations in terms of accefizgas mentioned earlier. Multi-
ple access paths can exist at a time leading to same locatente we need some method to
detect whether two paths access same location or not. Olysaaeeds to know if any two
access paths potentially share a common heap object. Shalysia as referred in [Das11]
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produces an interfaasinterfering(p, a, q, P) to detect such interference. For heap
pointersp, g and field sequencas, 3,a’, 3, this function returns true if the patlpsa’ and
g. B’ interfere (potentially reach the same heap node at run}tiamela and3 are prefixes
of a’ andf’ respectively.

Read and write sets thus generated are tested to detectsrdepandences (flow, anti or
output). LetS andT be statements in the program such that there exists an exeqatth
from Sto T. Then the dependence Dbn S can be defined as follows:

interfere(set, seb) = isiInterferindp,a,q,B); wherep.a € set AQ.3 € seb
flow-depgST) = interfere(write(S), readT))
anti-degS,T) = interfere(reads), write(T))
output-degS,T) = interfere(write(S), write(T))

where isInterfering is the function provided by shape asialy

Example 6. Table 4.4 shows the read and write sets for each statemerg example code
of Figure 1.2(b). From the table, we can infer all the depends of which few are listed
here:

1. loop independent anti-dependence from statement Satensent S5

2. loop carried flow-dependence from statement S5 to staie&8

3. loop independent output-dependence from statement S&tement S6
4. loop carried anti-dependence from statement S6 to state85

Due to presence of loop carried dependences differentidasof the loop can not be ex-
ecuted in parallel. Next we explain how we can further refine aependence analysis to
filter out some spurious dependences. 0



Chapter 5
Loop Sensitive Dependence Analysis

This chapter focuses on detecting the presence of depesglendoops which traverse re-
cursive heap data structure. Two statemeéhgd T may induce (aloop Independent
Dependence (LID), where statementS andT access same memory location in a single iter-
ation of the loop, (b).oop Carried Dependence (LCD), if the memory location accessed
by statemen§ in a given iteration, is accessed by statenieit other iteration. In either
case at least one of the accesses must be write access.

Our approach for dependence analysis, as explained eddes not work well for loops.
This is because it combines the paths accessed in difféezations of a loop. To get better
result in presence of loops we need to keep the accesses maliiéebent iterations of a
loop separate. To do so, we have devised another novel agppreliich works as follows:
Given a loop, we first identify the navigators for the loopeniby a single symbolic traversal
over the loop, we compute the read and write accesses madachyseatement in terms
of the values of the navigators. The read and write sets thtaned are generalized to
represent arbitrary iteration of the loop, using the iteranumber as a parameter. These
generalized sets, in terms of equations, are teste@®K or Lamporttest to find out any
integer solution of those equations. Presence of loop adkpmes indicates that the iterations
are not independent, hence can not be executed in parafeltop level algorithm of loop
analysis is outlined in Figure 5.1.

We assume that the loop under analysis is heap intensiyegggls/writes heap and the
execution of the loop does not stop prematurely using ifeegrontrol flow constructs such
asreturn, continue break statements or function calls likexit, abort Hence testing loop
condition is the only way to exit control from the loop.

The rest of the chapter is organised as follows: Section vdsa brief description of

finding navigator of the loop. Section 5.3 explains about howompute read and wriets
sets of access paths and how our approach identifies botlindependent and loop carried
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fun loopAnalyse(Loop) {
<NavigatorVar, NavigatorExpr> = identifyNavigator(Loop );
ReadWriteSet = generateReadWrite(NavigatorVar);
identifyDep(ReadWriteSet);

}

Figure 5.1: Dep. detection for loop.

dependences.

5.1 Identifying Navigator

Dependence analysis for loops relies on the computatiorad and write sets, in terms
of access path, for each statement in a single symboliditeraf the loop. Access paths
are computed with respect tvigatoras mentioned in [GHZ98]. A navigator consists of
(a)navigator variableNavigatorVar , pointer variable used to traverse the loop anddljgator
expressiomMavigatorExpr , ordered set of pointer field references. Navigator vagiabhs-
sociation with the navigator expression, iterates the koayersing the data structure.

Navigator variable is closely related to the variabéstVar used to test the stopping
criteria for the loop in the program. The algorithm genesdlte definition chaiefChain
of TestVar using statements inside the loop. If the definition chaifestVar encounters
a loop resident statement twice, recurrence is reportelder@tse the creation of definition
chain returns null if it fails to find a loop resident staterien DefChain . HenceDefChain ,
thus generated for the later case returns an access paibtocunsf a pointer variable fol-
lowed by an ordered sequence of pointer field referencesbd$e pointer variable obtained
from the access path is potential candidate to be navigatahie and the sequence of field
references results in navigator expression. The detaildéntifying navigator can be found
in [GHZ98].

Example 7. Consider the code shown in Figure 1.2(b). We idenpifgs loop condition
test variable. Definition chain fgg comes from the sequence of following loop-resident
statements§7: p =r ,S4 r =q —next,S2. q =p —next andS7: p =r . Note
that statemen$7 is encountered twice, leading to recurrence. Hence thers&ttsS7, S4,

S2 are added t@efChain which returns access path@as-next —next . Hence the resulting
navigator consists of navigator varialpl@nd navigator expressio®xt — next 0O
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fun generateReadWrite(NavigatorVar) {
for each statement S in Loop {
UseVar = UseVarSet[ S;
DefChain[ S] = findDefChain(UseVar, NavigatorVar);
AccPath[ S] = findAccPath(DefChain| S);
if (Tag[ S] == ReadStmt) {
ReadSet[ S] = AccPath[ S];
WriteSet] S] = @
}
else if (Tag[ §] == WriteStmt) {
WriteSet] S§] = AccPath] S];
ReadSet] S] = ¢

}
else {
ReadSet[ S] = @
WriteSet] S] = @
}

}
}

Figure 5.2: Generating Read and Write sets.

5.2 Computing Read/Write Sets

As mentioned earlier, our analysis computes read and wettefer each statement residing
in the loop in a single symbolic execution of the loop. Readarite sets consist of paths
that access heap locations for reading or writing. Unlile/us analysis, full length access
paths are used by loop dependence analysis. For each Isiojgestatement full length
access paths, referredAPath , are computed in terms of navigator variable. Access paths
AccPath are computed from definition chains, that are evaluated byrsevely traversing

all the reaching definitions of the pointer variable usedh®y $tatement until the navigator
variable is encountered.

These access paths, thus constructed, return read/wiStbased on statements reading
or writing heap data. FunctiogenerateReadWrite ~ showed in Figure 5.2 computes such
sets of access paths with respect to navigator varisbVgaotrvVar . Definition chain,
DefChain , produced by functiofindDefChain , is processed by functiomdAccPath  to
compute access patReadSet /WriteSet  sets, for each statement, are then computed from
AccPath . The access paths, thus obtained, are generalized byaaylteration of the loop,
using iteration number as parameter, for further procgssin

Example 8. Let us again consider the example given in Figure 1.2(b).idéawor variable
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| Statement Read Sef  Write Set |

S2 (0} (0]
S3 p—next (0]
S4 (0] (0]
S5 (0] p—next —next
S6 (0] (0]

Table 5.1: Read and write sets for each loop residing statemen

and navigator expression for the loop @arandnext —next respectively. Table 5.1 shows
the read and write sets of full access paths constructectdrleop residing statement. Note
that, the access paths are not abstracted and are condtrutéems ofp. =

5.3 Loop Dependence Detection

Let SandT be two statements inside a loop. Furtherplete(S,i) denote the set of access
paths written by statemestin the iteration numbeir, and letread(T,)  denote the set of
access paths read by statemein the iteration number. Predicatesharing (Seti, Sets)
returns true if two access patliscPath; € Set; andAccPath, € Set, share a common
heap node. Then

e T is loop independent flow dependent 8iif there is an execution path frosito T
that does not cross the loop boundary and there exigthin loop bounds such that
sharing(write(S,i), read(T,i)) is true.

e T is loop carried flow dependent ¢hif there existi andj within loop bounds such
thatj >i , andsharing(write(S,i), read(T,j)) is true.

Note that, in case loop bounds can not be computed at compie we can assume them to
be (<0,0). We can similarly define loop independent and loop carrigd@pendence and
output-dependence. Read and write sets of access pathgltaused for each statement
inside a loop are tested for both loop independent and loopedadependences.

5.3.1 Identifying Loop Independent Dependence

Loop independent dependences can be detected for any ti@mstats by checking for any
sharing of node by their respective read/write sets. Sganfra node, in this level, occurs
due to the shape of the underlying data structure. Shapgsigives the probable shape
attribute of the navigator variable traversing dynami@dstucture. Based on the shape we
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can figure out whether there exists any dependence due iogkathin the underlying data
structure.

Observation 1: If the shape attribute of navigator variable is Tree, themdlexist no shar-
ing of nodes by different access paths rooted at the navigatiable. Two access
paths can only visit a common node if the paths are equivaletp be the navigator
variable. Hencdp —f andlp —f are equivalent paths leading to a common node,
whereadp —f andlp —g lead to different nodes.

Observation 2: If the shape attribute is DAG, the navigator expression \edld navigator
variable to a distinct node in each iteration of the loop. nfaacess path is a proper
subpath of another access path then they surely visit distiodes. However, paths
being either equivalent or distinct, having different geifield references may access
a common node. For example,—f is a proper subpath ¢f —f —g whereaslp —f
andlp —g are not. Hence in the former case they do not share a commas nod
whereas in later case they might result in sharing of node.

Observation 3: If shape attribute of navigator variable is Cycle, we makeseovative de-
cision such that the loop can not be executed in parallel.

To detect various types of LIDs, read and write sets of difierstatements are tested ac-
cordingly for detecting sharing of node. Let two statemehtnd T access pathBathS
andPathT respectively andead(S) = {PathS}  andwrite(T) = {PathT} . Hence there
Is loop independent flow dependence fr8rto T if sharing(PathS, PathT) returns true.
We check for the shape of the underlying data structure astdhe paths as follows:

1. If the pathsPathS andPathT are equivalent and the data structure is either Tree or
DAG, the paths will access same node. Hence,

sharing(PathS,PathT) = True
for both Tree and DAG structure.

2. If PathS is subpath oPathT then these paths do not lead to any common node for
both Tree and DAG data structure. Hence,

sharing(PathS,PathT) = False

for both Tree and DAG structure.
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3. If PathS andPathT are not equivalent and one is not subpath of other, then thwese
paths share a common node only if shape of the underlyingtatelis DAG. For Tree
structure they lead to disjoint nodes.

sharing(PathS,PathT) = False
if shape attribute is TREE.
sharing(PathS,PathT) = True

if shape attribute is DAG.

Example 9. Consider the loop shown in Figure 1.2(b) and the correspgaiad and write
sets for each statement in Table 5.1. Read set of state®3esmid write set of statement
S5 are checked for sharing of any node. As the shape attributieeafiavigator variable
is Tree, and the paths—next andp—next —next are not equivalent the following will
result.

sharing(p — next,p — next — next) = False

Hence no loop independent dependence is detected. O

5.3.2 lIdentifying Loop Carried Dependence

Loop carried dependence is incurred in the loop when twestants from different itera-
tions access same memory location. LCDs can be introduced thbestatements in a single
iteration of loop access both current node and neighboys hedes. Current node means
the node which is being currently accessed by the navigatoable, whereas, neighbour
nodes mean nodes other than the one being currently accessed

Example 10. Let the shape attribute of the navigator varidplde Tree and a loop is travers-
ing a list using navigator variablp and navigator expressioext . Statemenlp —num++
will not incur any loop carried dependence as the locatiantpd to bylp can’t be accessed
in consecutive iterations. However, statement lgkes>num = Ip —next —numwill still in-
troduce an LCD because both current and neighbour nodesaassad in the same iteration
and neighbour node is visited using pointer fieéstt which is also a navigator expression.

O
As mentioned earlier, LCDs are only introduced by differéatations of loop, provided

there is no sharing of nodes hidden in the data structure.edMeryDAG has sharing within
the structure, it can be traversed by a loop in a manner satkltared nodes are not accessed
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p = list; p = list;
while (p —next = NULL) { while (p —next != NULL) {
S11. .= P —num; S21. L= P —num;
S12. p —next —num = ..; S22. p —next —num = ..
S13. p = p —next —next; S23. p = p —next
} }
(a) List-1: Loop without Dependence (b) List-2: Loop with Dependence

Figure 5.3: Identifying Loop Dependences

by loop and access pattern of the structure is Tree. Henaps lbaving this type of access
pattern can also be tested for loop carried dependencies.

The read-write sets computed by each loop resident statsras:ngeneralized for arbi-
trary iteration number, resulting in a set of equations. éalization is done using random
times of navigator expression, that is used by the navigatoable to traverse over the un-
derlying data structure. These equations are then test6@EKA02] or Lamport [Lam74]
test, as explained before. If the equations have any insgjation, dependence is reported.
Here we demonstrate two examples to show the novelty lyiragirapproach.

Example 11. Let us consider Figure 5.3. The code snippet in Figure 5i8(dne reformu-
lation of code given in Figure 1.2(b). The navigator varafir both the loops ip. For

the code in Figure 5.3(a), the navigator expressiomis —next . Usingi to represent the
iteration number, the generalized access path read by $12isxt?* and the generalized
access path written by S12ds+next?3*1. Clearly there is no loop independent dependence
as the shape of the data structure is Tree and statements gemerate equivalent access
paths. To find out loop carried dependence, we have to find bather for iterations and

| andi #j , the two paths point to the same heap location. This redodasding out if there

Is a possible solution to the following equation:

p— next? = p— next?J 1

In other words, we have to find out if integer solutions to thiéofving equation are possible

2x1i=2xj+1

GCD or Lamport test tell Usthat this equation can not have integer solutions. Thusetise
no dependence among the statements.

LIn this example, visual inspection tells us that for angndj LHS is even number while RHS is an odd
number. Hence the equation can not have a solution. In getleeaequations are more complicated and we
need to use standard tests as mentioned.
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For the code in Figure 5.3(b), the navigator expressiomxs . In this case the equation
to find out the loop carried dependences among statement@rs2322 reduces to :

i=j+1

which has integer solutions. So we have to conservativglgrtadependence between the
two statements O



Chapter 6
Inter-Procedural Dependence Analysis

In the previous chapter we have given detailed explanatfomeap dependence analysis
specified within each procedure. This intra-proceduralysisdoes not cross procedure
boundary. When the symbolic execution within a procedurehes a procedure call, the
analysis approximates the worst case summary for the cphecedure which conserva-
tively approximates the read and write sets of states foptheedure being called. In this
chapter we explain how the intra-procedural dependendgsasiaan be extended into a flow
sensitive inter-procedural analysis.

Our inter-procedural approach is based on computing altgtuanmary for each proce-
dure at prior. Before analysing the whole program, the calpgrof the program is prepro-
cessed such that it does not contain any recursion. The psmat outlined in Figure 6.1
gives a top level algorithm of inter-procedural analysise #liscuss each step of such anal-
ysis in the following sections. Section 6.1 detects anyns&on present in the program and
processes the call graph accordingly. Section 6.2 givedealaals of the analysis which in-
cludes preparing abstract summary for each procedure anid$6.3 presents the technique
to effectively use abstract summary of each procedure ferHorocedural analysis.

6.1 Processing and Ordering of Call Graph

Our inter-procedural analysis works on call graph of thegpan under analysis. Call graph
G(V, E) is a directed graph that represents calling relationshgis/een caller and callee
procedures. Specifically, each noge= V represents a procedure and each directed edge
(f, g)€ E indicates that procedurfecalls procedurg. Thus, a cycle in the graph indicates
recursive procedure calls.

Our approach needs to transform the cyclic call graph intectied acyclic graph (DAG)
for efficient computation of abstract summary. The call gragthout any recursion is always



40 Inter-Procedural Dependence Analysis

fun interProcAnal(P) {

G(V, E) = callGraph(P); / * G is call graph of program P */
if (cyclic(G) = TRUE) I % Check for recursion */
G'(V, E) = findDAG(G); / * Transform cyclic graph into DAG x/
else
G = G
G” = topologicalSort(G’); / * Find topological order of DAG */

for each v; €V following reverse topological order of G” {
Summary[vi] = findSummary( v;);
| x Find abstract summary for each procedure */
}
progAnal(P, Summary);
I = Use summaries for inter procedural analysis */

Figure 6.1: Top level algorithm for inter-procedural arsdy

Sl procedure f() S10. procedure k()
S2. begin S11. begin

S3. call g(); S12. call g();
sS4, call h(); S13. end

S5. end S14. procedure h()
S6. procedure g() S15. begin

ST. begin S16. call i();
S8. call k(); S17. call j();
S9. end S18. end

Figure 6.2: Skeleton of a program with procedure calls

DAG. To transform cyclic directed call graph into DAG, thecka&dges from the cyclic graph
are removed and a summary node is introduced. This summaley aygproximates all the
remaining levels of recursion and abstracts the worst aasensry of the functions present
in the recursion. The nodes of directed acyclic call grapts tobtained, are ordered using
topological sort. Each node in the acyclic call graph will dssigned a sequence order
following which the procedures are processed.

Example 12. Consider the program shown in Figure 6.2. In this examplequoef calls
procedure and procedurk, whereas, proceduheagain calls proceduresand; . Procedure

g calls procedur& which in turn calls procedurg, resulting in indirect recursive procedure
calls. Figure 6.3(a) shows the corresponding directedycapih. The shadowed cyclic region
in the graph indicates recursion in the program. The cyditgraph is then transformed
into acyclic graph by removing the back edge showed as dettgd. Figure 6.3(b) presents
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(a) Cyclic call graph (b) Corresponding DAG

Figure 6.3: Example showing call graph

corresponding acyclic graph with topological order. O

6.2 Computing Abstract Summary

For each callee procedure, we need to obtain an abstract ayntinat summarizes the pro-
cedure. By abstract summary, we meanReadandWrite sets of symbolic heap locations
which are accessed for reading and writing operations otispdy inside the procedure. The
motivation behind the technique is to summarize effect 8édaprocedure for callers, which

in turn is used by the callers to summarize effect for calletedure. Summaries, thus ob-
tained for each procedure are stored in a table for later lnsthis analysis propagation of

summaries follows the bottom-up approach. Hence, absttexcinary for all the procedures
are computed following the reverse topological order ofesokh the call graph.

All heap directed global pointer variables throughout tihegpam are initialized once
with proper symbolic memory locations. During computatdrabstract summary for each
procedure, the heap directed pointer variables passedraglfparameters to the called
procedure are initialized with random symbolic memory tara As summary, our analysis
computes read and write sets of access paths with respdet tootresponding symbolic
memory locations. This process of computation follows thtearprocedural analysis as
explained before. The same procedure is followed by thercptbcedure to summarize its
effect.
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Sl procedure f(p)
S2. begin R SdurFmG}ry[fF }
_ . ead={<q,|->next>},

S3. q = p—next Write={<q,|->next->*>}}
S4. 9(a);
S5. end :
S6. procedure g(r) direction of . direction of
s7. begin procedure ca_l_tsummary propagatio
S8. oo = r—num; -
S9. S = I —next, Summary(g]=

S10. s —num=--; {Read={<r,m>},

S11. end Write={<s,m->next>}}

(a) Example program with procedure cal(b) Call graph showing summary of procedures

Figure 6.4: Example showing computation of abstract surgmar

6.3 Evaluating Procedure Call

Abstract summary for each callee procedure should be usédebgaller procedure in the
current calling context. Summary of each called procedhbres obtained by intra-procedural
analysis, contains information in the local context of thegedure. When the symbolic exe-
cution inside the caller function reaches a proceduretbelcontext of the actual parameters
Is mapped to the respective formal parameters of the cafezedure. The summary of the
callee is translated accordingly to be used in the contezaliér procedure.

Summary of a procedure, as mentioned earlier, returns neddvete sets of paths ac-
cessed by corresponding pointer variables. Access path=anputed with respect to sym-
bolic memory locations local to the callee under analysise Tocal symbolic memory lo-
cations used in the summary of callee are mapped into symloaations accessed by the
caller procedure. Such modified summary of caller is usechbyctllee to summarize its
effect. Evaluating summary for recursive function doesdiffér significantly than evaluat-
ing non-recursive function. If a recursive function is emctered, the analysis will go deep
inside the function upto the depth of recursion dependiranupe precision of analysis.

Example 13. Let us consider the example program and the correspondihgraph shown

in Figure 6.4. In the example program procedtirealls procedurgy. The solid line in
the call graph gives the direction for calling subroutinekereas, the dotted line shows the
direction for propagation of summary information. Summanfprmation of proceduré
andg are also shown in the call graph. At first, summary of proceduis computed in
the local context of itself. The summary consists of read arite sets ag<r,m>} and
{<s,m —next>} respectively, where pointer variableis initialized to symbolic memory
locationm At the call site of procedurg, the actual parametey takes valud —next ,

if formal parametemp of proceduref points to memory locatioh. The value of actual
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parameteq modifies the summary of proceduye This modified summary is further used
to summarize the information of proceddre
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Chapter 7
Experimental Results

In this chapter we discuss about some experimental resutisrcanalysis. We have de-
veloped a prototype model of heap dependence analysis aletets: One at the intra-
procedural level, which works for each procedure sepasadal the other at the loop level,
where the intra-procedural analysis is refined in the cdra€loop. The model is imple-
mented in the Static Single Assignment (SSA) intermediatellof GCC (version 4.3.0)
framework. The guideline for building and installing GCCrfrsource, with newly added
pass is given in Appendix A. We have conducted experimergs twwo example programs
and two benchmark programs. The example programs are usédwohow our loop-based
approach successfully detects loop-carried dependeiitese simple programs are based
on single linked-list data structure presented in Figu@ 50ther benchmark programs
TreeAddand Bisort are drawn from Olden Suite. The prototype model, with mamusal
tervention, successfully identifies the dependences pr@sbenchmark programs

We have manually pre-processed the programs to be anatsgldthat the heap access-
ing statements are normalized into binary statements.elnéxt step, based on type of heap
access, the normalized statements are tagged accordimgthe same step informations
regarding pointers, used and defined by the statement anubthter field used to access
the heap object are attached to each statement along witittiess type. In the following
sections we explain the experimental results for intrazpdoral analysis and loop sensitive
analysis.

7.1 Benchmarks

Benchmark progranireeAddoperates on binary tree and recursively adds the values of
tree. ThetreeAddfunction from benchmark prograifreeAddis analysed. This function

LAvailable from http://gcc.gnu.org/
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int bisort(root,sprval,dir)

*| .
int treeAdd(tree *t) { HANDLE *root;

if (t == NULL) { int sprval, dir;

| reEurn 0 HANDLE *I;

else h
tleft = t  —left; lH/iNzttE ; -

leftval = treeAdd(tleft);
tright = t  —right;
rightval = treeAdd(tright);
value = t —val;

return leftval+rightval+value;

r = root —right;

val = root —wvalue;

root —value=bisort(l,val,dir);
ndir = !dir;
sprval=bisort(r,sprval,ndir);
sprval=bimerge(root,sprval,dir);
return sprval;

(a) FunctiontreeAdd (b) Functionbisort

Figure 7.1: Functions of benchmark programs

recursively calls itself to compute values of its left anghtisubtrees. Left and right subtree
values, thus computed are added to the value of the root t@utenthe value of whole
tree. Figure 7.1(a) shows the functitmreAdd The main objective behind the analysis is
to find out whether the recursive function calls on left andensubtrees can be executed in
parallel. The functiorbisort from the benchmark prograBisortis also analysed to extract
function call level parallelism. Functiohisort performs bitonic sort over binary tree by
recursively calling itself on left and right subtrees of tto®t. The analysis is fine tuned
in the context of loops. The experiments for loop sensitigpethdence analysis are done
on example programkist-1 and List-2 shown in Figure 5.3. Both the programs traverse
single-linked list and in each iteration the functions refda from the current heap node
and write the same data into the next node. But the fundtistil navigates iterations
using two occurrences of pointer fiaiéxt whereas, functiohist-2 navigates using a single
occurrence ohextpointer field. Hence by manual inspection it is clear thatfiom List-1
does not have any loop dependence, but fundtisti2 poses loop dependences.

7.2 Results of Intra-Procedural Analysis

The prototype model for intra-procedural dependence tleteperforms the state analysis
which computes the set of pairs, consisting of pointer Wéeiaand path accessing corre-
sponding symbolic heap location. In the next pass over tbhgram, the model successfully
computes the read and write sets of access paths for eaclabeegsing statement in the
program. Next we manually check for each pair of heap acegssatements to find out any
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| Program | Traversal pattern | Potential Dependence Type of dependence

TreeAdd 2 nested No No dep.
rec. function

Bisort 2 nested No No dep.
rec. function

List-1 single loop Yes Anti dep.

List-2 single loop Yes Anti dep.

Table 7.1: Result of programs tested by intra-procedurdyaisa

conflict in terms of data access. The interference predishterfering , produced by
shape analysis returns true if the access paths underiobjézad to common heap location.
In the Table 7.1 we have given results of intra-proceduralyais. It reports no dependence
at function call level fottreeAddandbisort. However, the analysis reports dependencies of
type anti dependence for both example programsl1 andList-2.

7.3 Results of Loop-Sensitive Analysis

The basic prototype model identifies navigator variableraawlgator expression, used by the
loop to traverse over the data structure. It then comput$ulhlength access paths being
read or written by each statement within the body of the |ddye programs.ist-1andList-2
are further analysed to refine dependence analysis. Theopseanalysis detects spurious
dependencies in case of loop. Both example programs workngtesinked list, which is
of type Tree. As there exists no sharing within the undedylata structure, the generalized
equations, formed by the access paths, are tested for lnojed dependencies. Lamport test
successfully reports no dependence for functit-1 and dependence of type anti depen-
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Chapter 8
Conclusion and Future Work

In this report we have presented our work on heap inducedndiepee analysis that can
be utilized by a parallelizing compiler to extract both figiined and coarse-grained par-
allelism from sequential programs. Our method gives an &aayplement technique for
the same. Itis divided into two phases: the intra-procddigpendence analysis phase and
loop based analysis phase, with carefully chosen intesfaeaveen phases to combine work
done by individual phases. The first phase is helpful to fiqgeddences in both statement
level and function call level, whereas, the second phaseethe analysis in the context
of loop. This modularity gives us flexibility to work on testj and improving each phase
independently.

Our intra-procedural analysis abstracts each actual feegtidn by symbolic location,
which is defined by set of access paths leading to same heap hadiccessfully computes
the read and write sets of heap access paths at each prognaivapd identifies depen-
dences based on the aliasing information produced by tha@fspshape analysis frame-
work [Das11]. Our loop dependence analysis abstracts thendience information in forms
of linear equations, that can be solved using traditionpeddence analysis tests like GCD,
Lamport tests that already exist for finding array dependenOur intra-procedural analy-
Sis use conservative approximation of function calls assgmworst case scenario. We give
a direction to extend the intra-procedural analysis toriptecedural one, which is able to
precise function calls more precisely.

Our analysis is too conservative for complex cyclic strugsuand can not extract any
parallelism between any two statements or function caltsfarent iterations of loop body .
We have to further develop our shape analysis techniquendi&é@anore frequently occurring
complex and cyclic structures and programming patternsitbdiecise dependences. In this
work the analysis only keeps information about the first filgkd of the access paths and
blindly summarizes the rest of the path. Hence it losses gmodunt of information for
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interference analysis. We want to improve the summariaaéohnique for better abstraction
of access paths. In case of loop sensitive dependence snalys technique assumes the
loops without any irregular control flow constructs. We cartlier extend our technique to
automatically detect good loops [GHZ98] which do not camtamy irregular control flow
constructs.

We have implemented a basic prototype model for intra-mho and loop based de-
pendence analysis. This prototype model with manual ietgren detects dependences from
heap intensive sequential programs. We have tested thel mittiea very few number
of heap intensive C benchmark programs. It can be furtheeldped to implement inter-
procedural dependence analysis and to show its effecggemelarge benchmarks.



Appendix A

Guideline for Adding New Pass in GCC

Pre-requisities for Configuring GCC-4.3.0

1. GMP-4.3.2 and MPFR-2.4.1 should be installed.

2. Build GMP and MPFR in $GMPBUILD and $MPFRBUILD directory pestively.

How to Configure and Build GCC

1. Let $SOURCEDIR be the source directory for GCC and $HOME béntimee direc-
tory where $SOURCEDIR is present.

2. Create another directory $BUILDDIR in $HOME and follow tledowing steps.
3. cd $BUILDDIR

4. ../I$SOURCEDIR/configure —enable-languages=c
—with-gmp=/home/user/$GMPBUILD —with-mpfr=/home/u§PFRBUILD

5. make
6. make install

7. make all-gcc TARGET-gcc=/home/$BUILDDIR/gcc/ccl

How to Register Pass in GIMPLE SSA level in GCC

1. Place the new file nameugke-loop-distribution.én $SOURCEDIR/gcc/.

2. Adding the pass in pass hierarchy : Add NEXT_PASS (pasg_ldistribution); after
NEXT_PASS(pass_linear_transform); in file passes.c

3. Add extern struct tree_opt_pass pass_loop_distribyiticfile named tree-pass.h
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Guideline for Adding New Pass in GCC

4.

Add the following lines in file named common.opt
ftree-loop-distribution

Common Report Var(flag_tree_loop_distribution)
Enable loop distribution on trees

Add DEFTIMEVAR (TV_TREE_LOOP_DISTRIBUTION, “tree loop sliributio”)
after DEFTIMEVAR (TV_TREE_LINEAR_TRANSFORM, “tree loop lin€q in file
timevar.def

Edit Makefile.in : Add following rules tree-loop-disttibon.o
tree-loop-distribution.o : tree-loop-distribution.cCCXPNFIG_H)
$(SYSTEM_H) coretypes.h $(TM_H) $(GCC_H) $(OPTABS_H)
$(TREE_H) $(RTL_H) $(BASIC_BLOCK_H) $(DIAGONSTIC_H)
$(TREE_FLOW_H) $(TREE_DUMP_H) $(TIMEVAR_H) $(CFGLOOP_H)
tree-pass.h $(TREE_DATA_REF_H) $(SCEV_H) $(EXPR_H) $(TARGH] _
tree-chrec.h

make

make install

. gcc -0 -ftree-loop-distribution -fdump-tree-ldist tes

Results dump file named test.c.103t.Idist
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