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Abstract

Identifying dependences present in the body of sequential program is used by paralleliz-

ing compilers to automatically extract parallelism from the program. Dependence detection

mechanisms for programs with scalar and static variables iswell explored and have become

a standard part of parallelizing and vectorizing compilers. However, detecting dependences

in the presence of dynamic (heap) recursive data structuresis highly complex because of the

unbound and dynamic nature of the structure. The problem becomes more critical due to the

presence of pointer-induced aliasing .

This thesis addresses the aforementioned problem and givesa novel approach for depen-

dence analysis of sequential programs in presence of heap data structure. The novelty of our

technique lies in the two-phase mechanism, where the first phase identifies dependences for

whole procedure. It computes abstractheap access pathsfor each heap accessing statement

in the procedure. The access paths approximate the locations accessed by the statement. For

each pair of statements these access paths are checked for interference. The second phase

refines the dependence analysis in the context of loops. The main aspect of the second phase

is the way we convert the precise access paths, for each statement, into equations that can be

solved using traditional tests, e.g. GCD test, and Lamport test. The technique discoversloop

dependences, i.e. the dependence among two different iterations of the same loop. Further,

we extend the intra-procedural analysis to inter-procedural one.
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Chapter 1

Introduction

In the recent arena of parallel architectures (multi-cores, GPUs, etc.), software side lags be-

hind hardware. This is due to the reason that dealing with parallelism adds a new dimension

to the design of programs, therefore makes it complex. One approach for efficient paral-

lelization of programs is to explicitly induce parallelism. It includes designing of concurrent

programming languages like Go, X10 etc., libraries, APIs like POSIX, OpenMP, Message

Passing Interface(MPI) etc. The main advantage of such approach is that it gives simple

and clear directions to the compiler to parallelize the code. But the main drawbacks of such

approach is that the degree of parallelism totally depends upon the efficiency of program-

mer and imposing external parallelism turns the code into legacy one. The other approach

is to automatically parallelizing sequential programs by compiler which extract parallelism

without violating correctness. This is a key step in increasing the performance and efficiency.

1.1 Motivation

Over the past years, lot of work has been done on automatically parallelizing sequential

programs. These approaches have mainly been developed for programs having only static

data structures (fixed sized arrays) and written in languages such as FORTRAN [AK87,

BENP93, WL91, KA02]. Almost all programming languages today use the heap for dynamic

recursive data structures.

Therefore, any parallelization must also take into accountthe data dependency due to the

access of common heap nodes of such structures. Finding parallelism in sequential programs

written in languages, with dynamically allocated data structures, such as C, C++, JAVA, LISP

etc., has been less successful. One of the reason being the presence of pointer-induced alias-

ing, which occurs when multiple pointer expressions refer to same storage location. Com-

pared to the analysis of static and stack data, analyzing properties of heap data is challenging
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void treeAdd(tree t) {
if(t == NULL)

return;
S1. tl = t →left;
S2. treeAdd(tl);
S3. tr = t →right;
S4. treeAddd(tr);

t→num = tl →num + tr →num;
}

left num right

left num right left num right

    

p

(a) Data structure (b) Function traversing the data structure.

Figure 1.1: Motivating example: function-call parallelization

num next num next num nextp

...
S1. p = list;

while (p→next != NULL) {
S2. q = p →next;
S3. temp = q →num;
S4. r = q →next;
S5. r →num = temp;
S6. p = r;

}
...

RD WR RDp

(a) Nodes read and written by code (b) Loop traversing the data structure.

Figure 1.2: Motivating example: loop parallelization

because the structure of heap is unknown at compile time. It is also potentially unbounded

and the lifetime of a heap object is not limited by the scope that creates it. As a consequence,

properties of heap (including dependence) are approximated very conservatively. The ap-

proximation of the heap data dependence information inhibits the parallelization.

The objective of our analysis is to detect both coarse-grained parallelism in the context

of function calls, loops and fine-grained parallelism in thecontext of statements. We show

the following two examples as motivating examples of our work.

Example 1. Consider Figure 1.1 which gives a motivational example for parallelism in the

context of function calls. It shows the tree data structure and the functiontreeAddtraversing

on the data structure. In the code fragment the two calls to the functiontreeAddrespectively

perform the additions of left and right subtrees recursively. If the analysis can ensure that

the two function calls do not access any common region of heap, they can be executed in

parallel.

Example 2. Figure 1.2 shows an example of loop level parallelism. It shows list data struc-
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ture and the nodes of the structure being read and written, tagged byRead(RD) andWrite

(WR) access by the code fragment traversing the data structure.Note that, the first node of

the structure is a special node which is neither read nor written by the code fragment. The

performance of the code can be improved if the loop can be executed in parallel. However,

without the knowledge of precise heap dependences, we have to assume worst case scenario,

i.e., the location read by the statementS3 in some iteration could be the same as the loca-

tion written by the statementS5 in some other iteration. In that case, it is not possible to

parallelize the loop.

Our dependence analysis can show that the locations read byS3 and those written byS5

are mutually exclusive. Further, it also shows the absence of any other dependences. This

information, along with the information from classical control and data dependence analysis,

can be used by a parallelizing compiler to parallelize the loop.

This report explains our approach for a practical heap data dependence analysis. As it

is understood that we are only talking about data dependences, we drop the term data in the

rest of the report.

1.2 Contributions of our Work

Our work contributes in the area of heap based dependence analysis. We present a novel

approach which identifies dependences and extracts parallelism for a sequential program.

In particular, our approach finds out dependences between two statements. This enables us

to find out whether two procedure calls access disjoint structures, hence can be executed in

parallel. Then we refine this technique to work better in presence of loops. We also extend

the work of loop analysis for static and scalar data to support heap intensive loops.

1.3 Organization of the Thesis

The rest of the thesis is organised as follows. We discuss about related work done in the

field of heap intensive dependence analysis in Chapter 2. Chapter 3 specifies the imperative

programming model for which our analysis is defined and givesthe other background details.

Chapter 4 through 6 provide a complete description of our practical dependence analysis

applied to dynamically allocated structure. Chapter 4 givesthe detailed explanation of the

intra-procedural dependence detection technique which separately works on each procedure

of a program. Chapter 5 presents our method to handle loops in amore specific way. We also

give the inter-procedural framework for our analysis in Chapter 6. Chapter 7 demonstrates
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our whole method by extensively analysing few benchmark codes. We conclude the report

in Chapter 8 by giving the direction for future research.



Chapter 2

Related Work

Data dependence analysis for sequential programs, workingon only static and stack related

data structure, such as array, is well explored in literature [AK87, WL91, BENP93, KA02,

PW86] etc. Our work extends the work to handle heap data structure. Various approaches

have been suggested for data flow analysis of programs in the presence of dynamic data

structures. Classic work done by Jones and Muchnick [JM81] have suggested flow analysis

approach for lisp-like structures. It can not handle procedures, and was designed to statically

distinguish among nodes which can be immediately deallocated, nodes which are garbage

collected and nodes which are referred. They have also introduced the notion of k-limited

graphs as finite approximation of unlimited length of linkedstructure. This k-limited graph

can only keep paths of at most length k, and summarizes all thenodes beyond length k. This

approach is not precise enough to be used in the context of interference analysis and extract

parallelism.

Jones and Muchnick in [JM82] have proposed a general purposeframework for data

flow analysis of programs with recursive data structure. It depends on tokens to designate

the points in a program where the dynamic recursive data structure is either created or mod-

ified and approximates the values of these tokens. Retrieval function is used to represent the

inter-relationship among tokens and their corresponding values. By efficient choice of token

sets and lattice sets, which approximate data values, high degree of exact data flow informa-

tion can be obtained. Although flexible the method is mostly of theoretical interest and is

potentially expensive in both time and space. Larus and Hilfinger [LH88] describe a dataflow

computation using alias graph that records aliases betweenvariables, structures, and pointers

of the underlying data structure. This information is further used to detect conflicts between

the locations accessed by the program statements.

The work by Hendren et al. in [HN90, Hen90] considers shape information and ap-

proximates the relationships between accessible nodes in larger aggregate data structures.
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These relationships are represented by path expressions, restricted form of regular expres-

sions, and are encoded in path matrices. Such matrices are used to deduce the interference

information between any two heap nodes. These informationsare further used to extract par-

allelism. Their method focuses on three levels of parallelization; (a)if two statements can be

executed in parallel, (b)identifies procedure-call parallelism, and (c)whether two sequences

of statements can be parallelized. They have further extended this work in [HHN92], where

they provide the programmer with a descriptor mechanism such asAbstract Description of

Data Structures. The properties of data structure, expressed by such descriptor, are used to

increase the accuracy and effectiveness of alias analysis.This efficient analysis is used for

transformation of programs with recursive pointer structure.

The idea behind the work done by Hummel et. al. [HHN94] is to detect precise depen-

dences between two statements by collecting access paths with respect to handle node and

deducing the interference of these paths by proving theorems with the help of aliasing ax-

ioms. The axioms describe uniform properties of underlyingdata structures which precisely

works for even complex cyclic structures. Although this approach precisely identifies de-

pendences between statements in sequence, iterations of loop and block of statements, this

technique is mainly of theoretical interest.

Ghiya et. al. [GHZ98] uses coarse characterization of the underlying data structure as

Tree, DAG or Cycle. The work done by Ghiya computes complete access paths for each

statement in terms ofanchorpointer, which points to a fixed heap node in the data struc-

ture within the whole body of the program. The test for aliasing of the access paths, relies

on connection and shape information that is automatically computed. They have also ex-

tended their work to identify loop carried dependences for loop level parallelism. Hwang

and Saltz [HS03] present a technique to identify parallelism in programs with cyclic graphs.

The method identifies the patterns of the traversal of program code over the underlying data

structure. In the next step the shape of the traversal pattern is detected. If the traversal pattern

is acyclic, dependence analysis is performed to extract parallelism from the program.

Navarro et. al. in [NCA+04, TCNZ05] propose a intra-procedural dependence test

which intermixes shape analysis and dependence analysis together. During the analysis,

the abstract structure of the dynamically allocated data iscomputed and is also tagged with

read/write tags to find out dependencies. The resulting analysis is very precise, but it is

costly. Further their shape analysis component is tightly integrated within the dependence

analysis, while in our approach we keep the two separate as itgives us modularity and the

scope to improve the precision of our dependence analysis byusing a more precise shape

analysis, if available. They have extended their dependence related work in [ACC+08].

In this paper they have implemented a context-sensitive interprocedural framework which
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successfully detects dependences for both non-recursive and recursive functions.

Work done by Marron et. al. in [MSKH08] tracks a two program location, one read

and one write location, for each heap object field. The technique uses an explicit store heap

model which captures the tag information of objects for eachprogram statement. The read

and write information are used to detect dependences. This space effective and time efficient

technique analyses bigger benchmarks in shorter time. But the effectiveness of this approach

lies in the use of predefined semantics for library functions[MKSH06], which recognizes a

traversal over a generic structure.

Our approach is closest to the technique proposed by Horwitzet. al. [HPR89]. They

also associate read and write sets with each program statement to detect heap dependencies.

They have also proposed technique to compute dependence distances for loop constructs.

However, there technique requires iterating over a loop till a fixed point is reached, which is

different from our method of computing loop dependences as aset of equations in a single

pass, and then solving these equations using classical tests.

Another recent approach for dependence detection and parallelization is using separation

logic. It has also been used in the area of shape analysis and program verification. This

technique can not directly fit into parallelization as it only expresses separation of memory

at a single program point which is not sufficient to determineindependences between state-

ments. Raza et. al. [RCG09] has presented a technique to extractparallelism from heap

intensive sequential programs. The objective behind the approach is to record how parts of

the heap are disjointly accessed by different statements ofthe program. They have extended

the separation logic withlabels, that keep track of memory regions throughout an execution

of the program. They have also proved the soundness of the approach for simple list and tree

structure.
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Chapter 3

Background

In this chapter we present the background details required for our heap intensive data depen-

dence analysis.

3.1 Programming Model

Each and every node of a heap recursive data structure can be accessed by access path, which

is defined as pointer variable or variable followed by link fields, similar to languages like For-

tran 90, C. As an example, a nodeN can be accessed by either pointer variableptr or pointer

variable followed by link fields likeptr→ f1→ f2 · · · fk, where f1, f2, · · ·, fk are pointer fields

of heap structure. All statements in the program are pre-processed to provide normalized bi-

nary access paths, defined as pointer variable followed by single pointer field reference like

ptr→f. The model of the programming language to be analysed closely resembles the model

of imperative language like C. We are interested in analysingonly heap related statements.

Here we enumerate with details the basic statements operating on heap. Note that, arithmetic

operations of pointers, as in C, are not allowed.

• Heap allocating statements :

– p = malloc() : A new heap object is allocated, which is pointed to by pointer

p. Hence, this statement is called as memory allocation statement.

• Pointers assigning statements :

– p = q : Pointerp points to the same heap location as pointed to byq. It inherits

all the relations and properties ofq. Hence this statement results inp andq to be

alias.
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– p = q→f : This statement makes pointerp to access the heap object which is

accessible by pointerq through the pointer fieldf . This type of statement is

mainly used to traverse the links of recursive dynamic data structure.

– p = NULL : This statement assigns pointer variablep to null, such thatp does not

point to any heap location.

• Link defining/ structure updating statements :

– p→f = NULL : This statement breaks the linkf emanating from the heap node

pointed to by pointer variablep. After the execution of the statementp can not

reach any other heap node through link fieldf .

– p→f = q : This statement first breaks the linkf of the heap node pointed to by

p and then resetsf such thatp through link fieldf access the same heap node

pointed to be pointer variableq.

• Heap reading/ writing statements :

– · · · = p→data : Data field of the heap node pointed to by pointer variablep is

accessed. Hence this statement is used to read the data valueof heap node.

– p→data = · · · : Data field of heap node, pointed to by heap directed pointer

variablep, is written by this statement. Hence this statement clearlywrite into

heap nodes.

Our analysis mainly works on those statements which do not update or modify the struc-

ture of the underlying dynamic data structure. The statements which only traverse the heap

structure, reading or writing the heap data, are main candidate statements of our dependence

analysis. The effects of the statements, which update the structure, are captured by shape

analysis explained in later section. Here we list the statements which are handled by our data

dependence analysis.

• p = q : aliasing statement.

• p = q→f : link traversing statement.

• · · · = p→data : statement reading heap data.

• p→data = · · · : statement writing into heap data.

Note that, only single-level of pointer dereferencing is allowed. Other than basic heap related

statements, heap intensive procedure calls are also taken into account. Hence procedure calls,

whose parameters point to heap nodes, are also analysed by our analysis.
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3.2 Dependence Analysis

Dependence analysis produces the execution order constraints between any two statements

in a program as described in literature [Muc97, KA02, CT05] etc. Two classes of depen-

dences are present; (a)Control dependence, where the execution of a statement depends on

the control flow constructs, (b)Data Dependence, which arise between two statementsS and

T if there exists an execution path between these two statements and they access or modify

same data resource.

3.2.1 Control Dependence

Use of control constructs in the program body imposes control dependences. StatementT

is said to be control dependent on a statementS if (a)there exists an execution path fromS

to T and (b)the execution ofT depends upon the outcome of statementS. A typical example

of such dependence is the use ofif-then-elseconstruct. In this case the statements present

in then or else body can not be executed before the execution of if statement. The other

examples of such dependence occurs due to control flow construct likewhile, do-whileetc.

3.2.2 Data Dependence

The other type of dependence is data related dependences [JHL91, JHL92, KA02], which

can be generally classified into following four categories.

1. Flow (True) Dependence(Read after Write): StatementT is flow dependent on state-

mentS if and only if an execution path exists fromS to T andT reads a data which is

already modified byS.

2. Anti Dependence(Write after Read): StatementT is antidependent on statementS if

and only if statementT modifies a data which is already read byS andS precedesT in

execution.

3. Output Dependence(Write after Write): StatementT is output dependent on statement

S if and only if bothS andT modify the same data andS precedesT in execution.

4. Input Dependence(Read after Read): A statementT is input dependent on statementS

if and only if S andT read the same data resource andS precedesT in execution.

Anti and output dependences are false dependence because they can be easily removed by

some techniques like variable renaming etc. Input dependence does not impose any depen-

dence as it does not prohibit reordering of instructions. This data dependence analysis is
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extended to tackle dependencies within loops. The next section gives an overview of loop

dependence analysis.

3.2.2.1 Loop Dependence

Loop dependence analysis is a task of determining whether statements present in the loop

body form dependency within same iteration or across iterations. These dependences can be

categorized into the following classes:

1. Loop-carried Dependence : If statementS in one iteration depends on statementT

executed in other iteration.

2. Loop-independent Dependence : If two statementsS andT depend on each other in

the same iteration of loop.

Different iterations of loop can be effectively executed inparallel if the execution of itera-

tions do not depend on each other, i,e., no loop-carried dependence is present. To classify

dependence, compiler uses two parameters: (a)Distance Vector, which indicates distance be-

tween two iterations dependent on each other, (b)Directionvector, indicates the sign of the

distance. Based on the direction vector different classes ofdependence can be identified.

There exist several techniques which are used to tackle loopdependence problem. For detect

whether a dependence exists,GCD, Lamport, andBanerjeetests are most general tests in

use. Here we give brief details ofGCDandLamporttests.

GCD Test

A simple and sufficient test for the absence of loop carried dependences is the GCD test [KA02].

A loop carried dependency can occur between any two accessesof the same arrayX such as

X[a*i+b] andX[c*i+d] , if greatest common divisor ofa andc divides(d-b) . GCD test has

some limitations such that it does not consider loop bounds,and does not provide distance

and direction vectors. Beside these GCD ends up by producing very conservative result as

GCD of any two integers is often one.

Lamport Test

Lamport test [Lam74] is a simple test for index expressions involving a single index variable

and with a constraint that the coefficients of the index variable must be same. In this given

scenario, Lamport test can detect both loop-carried and loop- independent dependencies with

both distance and direction vector. Let us consider an example where two accesses of same
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array such asX[a*i + b] andX[a*i + c] form equation

a∗i1+b= a∗i2+c≡ i2−i1 = (b−c)/a

If the above equation returns an integer solution then any potential dependence is reported.

Here dependence distanceσ is (b-c)/a , if σ exists between lower and upper bound of the

loop. It reports true dependence ifσ>0, anti dependence whenσ<0, and loop-independent

dependence ifσ=0.

3.3 Data Flow Analysis

Data flow analysis [KU76, Muc97, KSK09] is a technique for gathering particular informa-

tion at each program point of a program. It is inherently flow sensitive, i,e., depends on the

order of statements of the program. The flow of analysis mainly fits into one of the follow-

ing three categories: (a)Forward flow analysis, where the flow of analysis propagate in the

forward direction, and exit or out state of a basic block is the function of the entry or in state

of it, (b)Backward flow analysis, if the analysis move in the backward direction, and the

transfer function is applied to the exit state yielding the entry state, (c)Bidirectional analysis,

if the flow of analysis move in both direction.

Transfer function is mainly the composition of the effects of the statements in the basic

block. Hence, for each blockb transfer functiontransb:

outb = transb(inb)

inb = joinp∈predb(outp)

The join operation combines the out or exit states of the predecessorsp∈ predb of b, return-

ing the entry state ofb. By solving this set of equations, the entry and/ or exit states are used

to derive properties at each block boundary. Properties foreach statement inside a block can

also be derived separately by applying proper transfer function.

Iterative analysis is one of the most widely used techniquesfor data flow analysis. In case

of forward flow analysis, it starts with an approximation of the in state for each basic block.

The transfer function computes the out state for each block from its in state. Again the in

states are updates by applying the join operations on the outstates of its predecessors. These

steps, excluding initialization, are repeated until the the system is stabilized, i,e., reaches

fixed-point. The basicround-robin iterativealgorithm for forward flow analysis is given in

Figure 3.1. This classic round-robin iterative algorithm completely sweeps over the graph

such that it visits every node in a fixed-order. The time boundfor this algorithm is high
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initialize sets of Entry node
for i ← 1 to N of basic blocks

initialize the sets of block i
change ← true
while (change)

change ← false
for i ← 1 to N of basic blocks

In[i] =
⋃

j∈pred[i](Out[j])
Temp = transi(i)
if Out[i] 6= Temp then

change ← true
Out[i] ← Temp

Figure 3.1: Round-robin iterative analysis.

Worklist ← φ
for i ← 1 to N of basic blocks

initialize the sets of block i
add i to the Worklist

while (Worklist 6= φ)
remove a node i from the Worklist
recompute set at node i
if new set 6= old set for i then

add each successor of i to Worklist, uniquely

Figure 3.2: Worklist iterative analysis.

due to the fact that the algorithm evaluates some unnecessary computations. Theworklist

iterative analysisapproach improves on the round-robin iterative algorithm,in terms of time,

by computing on regions in the graph where information is changing. Figure 3.2 outlines the

worklist iterative algorithm. The algorithm initializes all the nodes accordingly and construct

an initial worklist. It then continues by removing a node from the worklist and updating its

data flow information. If the value of the node changes, then all the nodes that depend on the

changed information are added to the worklist. These algorithms can also be improved by

bit vector technique, where data sets are are represented efficiently asbit vectors, in which

bit represents set membership of one particular element.
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3.4 Shape analysis

Shape analysis, as described in literature [SRW99, SRW02, GH96, SRW96, SRW98] etc.,

is used to statically analyse a program to determine variousinformations regarding dynami-

cally allocated recursive data structures. It detects various features of the heap structure like

interfering and sharing of nodes, reachability of heap node, disjointness of structures etc.

Shape analysis also gives a coarse classification of the shape of underlying recursive heap

structure. The shape is classified into one of the following three categories: (a)Tree, in which

each node has at most one parent and no two paths can lead to same heap node, (b)DAG, in

which some node has more than one parent and two paths can access same node, but it does

not contain any cycle, (c)Cycle, structures having graph theoretic cycle, and a node can be

potentially accessed by infinite number of paths.

Figure 3.3: Structure of Tree and DAG

The potential for parallelism in programs that use recursive structures arises from the

following observation. If the underlying data structure isof type tree, then unrelated sub-

trees,Ti andTj, of treeT are guaranteed to share no common storage, hence computation

onTi will not interfere with computation onTj or any sub-tree of it. For the DAG structure,

sub-treeTi can potentially interfere with sub-treeTj. Hence parallelism can be extracted if

and only if it is ensured that the body of code do not access anyshared node. Parallelism

from cyclic structure can not be easily extracted due to the presence of cyclic nature, hence

conservative decision is made.
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Chapter 4

Intra-Procedural Dependence Analysis

Recall from Section 3.2 that two statementsS andT are said to be dependent on each other

if (a)there exists an execution path fromS to T and (b)both statements access same data.

As input dependence does not put any constraint on parallelization, our analysis takes into

account the other types of dependences like flow, anti and output dependences. Here we

redefine the general definition of data dependence in the context of heap.

Definition 4.1. Two statementsS andT are said to heap dependent on each other if (a) there

exists an execution path fromS to T and (b)both statements access same heap location and

(c)at least one of the statements writes to that location.

We have developed a novel technique which finds out heap induced dependencies, be-

tween any two statements in the program. The novelty of our approach lies in the separation

of shape analysis phase from the dependence detection phaseand the workflow of our de-

pendence detection technique. Our intend is to identify dependences present in the program

following the algorithms outlined in this chapter. Note that, our algorithms only deal with

normalized statements (refer to Section 3.1), having single level of pointer dereference.

In brief, our analysis works as follows: for each heap accessing statement in the program,

our approach computes set of states i,e., set of symbolic locations potentially accessed by the

variables in the statement and then it computes sets of locations which is read or written by

each statement. These sets are then tested to identify dependences. This dependence analysis

technique identifies memory locations in terms of abstract access paths. The abstraction

scheme has been designed to reach the fixed-point for our algorithm. The details of such

abstraction scheme are given next. Section 4.2 gives overall algorithms of our analysis with

details and presents the working of our algorithms with an example.
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fun analyze(f, k) {
InitSet = initialize(); / ⋆ Initialize parameters and globals ⋆/
∀ stmt Si ∈ HeapStmt[f]

tagStmt( Si , tagDir(UsePtrSet, DefPtrSet, AccType, Accfield));
HeapState = stateAnalysis(CFG[f]:(N, E, Entry, Exit), k);
ReadWriteSet = computeReadWrite(HeapState);
detectDependence(ReadWriteSet);

}

Algorithm to analyze a functionf for dependence detection. Parameterk is used for limiting
the length of access paths, to keep the analysis bounded.

Figure 4.1: Intra-procedural dep. detection for a function

4.1 Access Path Abstraction

An access path is either a symbolic locationl0 or location followed by a sequence of one

or more pointer field names likel0→ f1→ f2→ ...→ fk. Since an access path represents

a path in a memory graph, it can be used to identify a heap node.It is hard to handle full

length access path and the termination of the analysis becomes impossible. Hence we limit

the length of access path to length k i,e., maximum k level of indirection is allowed for

dereferencing. A special summary field ‘*’ is used to limit the access paths, which stands

for any field dereferenced beyond length k.

Example 3. For k = 1, all the access paths in the set{l0→ next → next , l0→ next →

next → next , l0→ next → next → next · · · → next } can be abstracted as single summa-

rized pathl0→next → ∗. Similarly assuming a data structure has two reference fields left

andright , the summarized pathl0→ left → right →∗ could stand for any of the access

pathsl0→ left → right → left , l0→ left → right → right , l0→ left → right →

left → left , l0→ left → right → left → right and more such paths.

4.2 Dependence Detection Framework

Our method investigates if there is any heap dependency between any two statements in

the program and the type of the dependencies following the algorithm analyze that we

have outlined in Figure 4.1. The algorithm works on each function separately resulting in

intra-procedural analysis. It takes as parameter the function to be analysed and the maximum

length of access path, which has been set at prior. Summarizing, the algorithm can be divided

into the following steps:
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Statement Annotation directive

p = q tagDir({q}, p, AliasStmt, null)
p = q→next tagDir({q}, p, LinkTraverseStmt, next)
· · · = p→data tagDir({p}, null, ReadStmt, null)
p→data = · · · tagDir({p}, null, WriteStmt, null)

Table 4.1: Example showing different tagging directives

All global variables and parameters of the function under analysis are initialized with

proper values such that the correctness of the function is not violated. As our technique looks

at only heap related statements, initialization of only global variables and parameters access-

ing heap is sufficient. The functioninitialize returnsInitSet , a set of<heap directed

pointer variable, symbolic location> pairs after initialization. The symbolic loca-

tions are identified in terms of access paths as described earlier. For reasons of efficiency,

length of access paths are limited to 1.

Each statement in the function is annotated with a tagging directivetagDir . It consists of

four attributes which give information regarding the heap accessing statementSi : (a)Used

pointer setUsePtrSet is the set of heap directed pointer variables which are used in the

statementSi; (b)Defined pointer setDefPtrSet is the set of pointer variables defined by the

statementSi; (c)Access typeAccType identifies the pattern of heap access by statementSi

which can be categorized into following six classes (refer to Section 3.1).

• AliasStmt : aliasing statement.

• LinkTraverseStmt : link traversing statement.

• ReadStmt : statement reading heap.

• WriteStmt : statement writing into heap.

• FunCallStmt : function call statement.

• OtherStmt : any other statement.

(d) The access fieldAccField is the pointer field accessed by the statementSi. Table 4.1

shows example statements and corresponding tagging directives.

4.2.1 State Analysis

This subsection introduces state analysis for heap directed variable. State analysis for heap

variable involves computing a safe approximation of the binding of pointer variable to a set

of symbolic memory locations that can be potentially accessed by the variable at a particular
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program point. This binding is referred as state of the variable and is represented as <vari-

able, {set of symbolic locations}>. This analysis is essentially used by dependence analysis

in future.

Definition 4.2. The state of variablex at a program pointu is the set of symbolic memory

locations such that some paths from theEntry point to u result in the access of symbolic

locations by the variablex .

The analysis works on multiple symbolic execution of the function. It follows general

data flow analysis algorithm described in literature [KU76,Muc97, CHK02, KSK09] etc. It

involves the following steps: (a) computation of local information, set of states after sym-

bolic execution of each statement. At each program point it produces a set of states such

that it contains all local and global variables and conservative approximation of symbolic

locations accessed by each variable in the set. (b) computation of global information, set of

possible states just before and after the execution of a block of statements. The control of the

analysis flows in forward direction. Equations for state analysis follow the traditional data

flow form:

In[B] =
⋃

P∈pred[B]

Out[P] (4.1)

Out[B] = fB(In[B]), fB is block level transfer function ofB (4.2)

fB(In[B]) = gSk(· · ·(gS1(In[B]))), gS1 · · ·gSk arestatement leveltransfer functions (4.3)

Transfer functionfB is a composition of series of transfer functiongS applied to each state-

ment present in the block. The first statementS of block B hasIn set same as theIn set to

the block. Each statement locally generatesKill andGen sets which are used by function

gS to produceOut set for each statement. Table 4.2 shows the local effects of the statements

handled by our analysis. Hence the statement level equations for state analysis are:

Out[Si] = gSi(In[Si]), In andOut sets for statementSi (4.4)

gSi(In[Si]) = (In[Si]−Kill[Si])∪Gen[Si], Gen andKill are local toSi (4.5)

Figure 4.2 demonstrates both block level and statement level transfer functions. As statement

S is the first statement in the basic blockB In[S] has been set toIn[B] . AgainOut[B] will

beOut[T] asT is the last statement in the blockB.

The overall algorithm for state analysis is outlined in Figure 4.3. Out[Entry] is ini-

tialized toInitSet to set the boundary condition. Thewhile loop in the algorithm iterates

until it reaches the fixed-point.stateTrans gives the algorithm for transfer function which

works on each block. ThoughGen andKill informations are local to each statement they are
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Basic Block B

Out[B] = f(In[B])

In[B]

Basic Block B

Stmt S

Stmt T

Out[S]=g(In[S])
In[T]=Out[S]

Out[B]

Out[B]=Out[T]

In[B]

In[S]=In[B]

Figure 4.2: Transfer function for basic block

Statement Gen set Kill set

1. p = q {<p,m> | <q,m> ∈In[S]} {<p,l> | <p,l> ∈In[S]}
2. p = q→next {<p,m →next> | <q,m> ∈In[S]} {<p,l> | <p,l> ∈In[S]}
3. · · · = p→data φ φ
4. p→data = · · · φ φ
5. fun(p, q) φ φ

Table 4.2:GenandKill set for each statement
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fun stateAnalysis(CFG[f]:(N, E, Entry, Exit), k) {
Out[Entry] = InitSet; / ⋆ Boundary condition ⋆/
for each basic block B other than Entry

/ ⋆ Initialization for iterative algorithm ⋆/
Out[B] = φ;

while (changes to any Out[ ] occur) { / ⋆ Iterate ⋆/
for each basic block B other than Entry {

In[B] =
⋃

(Out[P]), for all predecessors P of B;
Out[B] = stateTrans(B, In[B], k);

}
}

}

Figure 4.3: Algorithm defining state analysis.

computed in each iteration of the analysis, conflicting general data flow analysis algorithm.

Example 4. We illustrate via an example the way our algorithm works. Let’s consider the

code fragment shown in Figure 1.2(b). Global variables and parameters of the code are ini-

tialized toInitSet consisting of{<list, l0>} . Table 4.3 shows the set of states produced

by each statement in the code and demonstrates how the analysis reaches fixed-point. Note

that the length of access path is limited to 1. In this exampleOut set for each basic block in

iteration number 2 is same asOut set produced by each block in iteration number 3. Hence

in third iteration the algorithm reaches fixed-point.

4.2.2 Read/Write State Computation

For each statement we intend to compute two sets of heap access paths: (a)Read set: the

set of paths which are accessed to read a heap location and (b)Write set: the set of paths

which are accessed to write to a heap location. These sets areobtained from the set of states,

generated by the state analysis, in a single pass over the function. The read and write sets are

used later to identify dependences.

FunctioncomputeReadWrite referred in Figure 4.8 computes such sets in a single sym-

bolic execution of the function. FunctionfindStateUseVar is used to generateRead and

Write sets for statements reading/writing heap. Function calls are handled by conservative

read/write sets that over approximate the heap locations that could potentially be read or

written inside the called function. Read and write sets for other statements are set toφ.

Example 5. Consider the code fragment shown in Figure 4.9(b) which traverses the Tree

data structure shown in Figure 4.9(a). Our analysis conservatively approximates read and
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fun stateTrans(Basic Block:BB, In set of BB:In[BB], k) {
TempState = In[BB];
for each Stmt Si ∈ HeapStmt[BB] { / ⋆ HeapStmt[BB] contains ⋆/

/ ⋆ heap intensive statements of BB ⋆/
In[ Si ] = TempState;
Kill[ Si ] = findStateDefVar(TempState, Si);
Gen[ Si ] = computeState(In[ Si ], Si);
Out[ Si ] = (In[ Si ] - Kill[ Si ]) ∪ Gen[ Si ];
tempState = Out[ Si ];

}
return tempState;

}

Figure 4.4: Algorithm for block level transfer function.

fun findStateDefVar(Set of States:TempState, Statement: Si ) {
Set of States : CurrState, LocalState = φ;
for each variable Vi ∈ DefPtrSet {

Find the state CurrState of Vi from TempState;
LocalState = LocalState ∪ CurrState;

}
return LocalState;

}

Figure 4.5: ComputingKill set.
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fun computeState(In set of stmt:In[Stmt], Statement:Stmt ) {
UseVarSet = findStateUseVar(In[Stmt], Stmt);
if Stmt ≡ p = q

Gen[Stmt] = { <p, l0> | <q, l0> ∈ UseVarSet }
∨ { <p, l0→sel> | <q, l0→sel> ∈ UseVarSet }
∨ { <p, l0→sel →*> | <q, l0→sel →*> ∈ UseVarSet };

else if Stmt ≡ p = q→next
Gen[Stmt] = { <p, l0→next> | <q, l0> ∈ UseVarSet }

∨ { <p, l0→sel →*> | <q, l0→sel> ∈ UseVarSet };
else if Stmt ≡ ·· · = p→data

Gen[Stmt] = In[Stmt];
else if Stmt ≡ p→data = · · ·

Gen[Stmt] = In[Stmt];
else if Stmt ≡ f(p,q)

Gen[Stmt] = In[Stmt];
else Gen[Stmt] = φ;

}

Figure 4.6: ComputingGenset.

fun findStateUseVar(Set of States:TempState, Statement: Si ) {
Set of States : CurrState, LocalState = φ;
for each variable Vi ∈ UsePtrSet {

Find the state CurrState of Vi from TempState;
LocalState = LocalState ∪ CurrState;

}
return LocalState;

}

Figure 4.7: Computing states of used variables.
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Statement Iteration 1 Iteration 2

S1: p = list In = {<list, l0>} In = {<list, l0>}
Gen = {<p, l0>} Gen = {<p, l0>}

Kill = { φ} Kill = { φ}
Out = {<list, l0>,<p, l0>} Out = {<list, l0>,<p, l0>}

while() { In = {<list, l0>,<p, l0>} In = {<list, l0>,<p, l0>,
<p, l0→next →*>,

<q, l0→next>,
<r, l0→next →*>} = C (say)

Out = {<list, l0>,<p, l0>} Out = C
S2: q = p→next In = {<list, l0>,<p, l0>} In = C

Gen = {<q, l0→next>} Gen = {<q, l0→next>,
<q, l0→next →*>}

Kill = φ Kill = {<q, l0→next>}
Out = {<list, l0>,<p, l0>, Out = {C,<q, l0→next →*}

<q, l0→next>} = A (say) = D(say)
S3: temp = q→num In = A In = D

Out = A Out = D
S4: r = q→next In = A In = D

Gen = {<r, l0→next →*>} Gen = {<r, l0→next →*>}
Kill = φ Kill = {<r, l0→next →*>}

Out = {A,<r, l0→next →*>} Out = D
= B(say)

S5: r→num = temp In = B In = D
Out = B Out = D

S6: p = r In = B In = D
Gen = {<p, l0→next →*>} Gen = {<p, l0→next →*>}

Kill = {<p, l0>} Kill = {<p, l0>,
<p, l0→next →*>}

Out = {<list, l0>, Out = {<list, l0>,
<p, l0→next →*>, <p, l0→next →*>,

<q, l0→next>, <q, l0→next>,
<r, l0→next →*>} <q, l0→next →*>,

<r, l0→next →*>}

Table 4.3: Set of states for each statement of an example code
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fun computeReadWrite(Set of States:HeapStates) {
Set of States : CurrState, LocalState = φ;
for each stmt Si {

if ( Si ≡ ·· · = p→num) { / ⋆ statement reading heap ⋆/
ReadSet = findStateUseVar (HeapStates[ Si ], Si);
WriteSet = φ;

}
if else ( Si ≡ p→num = · · ·) { / ⋆ statement writing into heap ⋆/

ReadSet = φ;
WriteSet = findStateUseVar (HeapStates[ Si ], Si);

}
if else ( Si ≡ f(p,q)) { / ⋆ function call statement ⋆/

ReadSet = findStateUseVar (HeapStates[ Si ], Si);
WriteSet = findStateUseVar (HeapStates[ Si ], Si);

}
else {

ReadSet = φ;
WriteSet = φ;

}
}

}

Figure 4.8: computing Read and Write sets.
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left num right

left num right left num right

    

p

...
S11. p = tree;

while (p→left != NULL) {
S12. newFunc (p);
S13. p = p →left;

}
...

(a) Tree data structure. (b) Code fragment traversing the data structure.

Figure 4.9: Program with function call.

Statement Read set Write set
S1: p=list φ φ
S2: q=p→next φ φ
S3: temp=q→num {<q, l0→next>, φ

<q, l0→next →*>}
S4: r=q→next φ φ
S5: r→num=temp φ {<r, l0→next →*>}
S6: p=r φ φ

Table 4.4: Read and write sets accessed by each statement

write sets for statementS12 which is a function call statement. The analysis generates the

read and write sets as{<p, l0>, <p, l0→*>} which is the worst case approximations of

such sets.

Our approach is conservative in the sense that the read set and write set we compute for a

statement are over approximations of the actual locations that are read or written by the state-

ment. Therefore it is possible that our analysis reports twostatement to be dependent when

they are not really dependent on each other. However, this can inhibit some parallelizing

optimization but can not result in an incorrect parallelization.

4.2.3 Dependence Detection

Our approach identify memory locations in terms of access paths as mentioned earlier. Multi-

ple access paths can exist at a time leading to same location.Hence we need some method to

detect whether two paths access same location or not. Our analysis needs to know if any two

access paths potentially share a common heap object. Shape analysis as referred in [Das11]
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produces an interfaceisInterfering(p, α, q, β) to detect such interference. For heap

pointersp, q and field sequencesα,β,α′,β′, this function returns true if the pathsp. α′ and

q. β′ interfere (potentially reach the same heap node at run-time), andα andβ are prefixes

of α′ andβ′ respectively.

Read and write sets thus generated are tested to detect various dependences (flow, anti or

output). LetS andT be statements in the program such that there exists an execution path

from S to T. Then the dependence ofT on S can be defined as follows:

interfere(set1, set2) ≡ isInterfering(p,α,q,β);wherep.α ∈ set1∧q.β ∈ set2

flow-dep(S,T) ≡ interfere(write(S), read(T))

anti-dep(S,T) ≡ interfere(read(S), write(T))

output-dep(S,T) ≡ interfere(write(S), write(T))
where isInterfering is the function provided by shape analysis.

Example 6. Table 4.4 shows the read and write sets for each statement in the example code

of Figure 1.2(b). From the table, we can infer all the dependences of which few are listed

here:

1. loop independent anti-dependence from statement S3 to statement S5

2. loop carried flow-dependence from statement S5 to statement S3

3. loop independent output-dependence from statement S5 tostatement S6

4. loop carried anti-dependence from statement S6 to statement S5

Due to presence of loop carried dependences different iterations of the loop can not be ex-

ecuted in parallel. Next we explain how we can further refine our dependence analysis to

filter out some spurious dependences.
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Loop Sensitive Dependence Analysis

This chapter focuses on detecting the presence of dependences on loops which traverse re-

cursive heap data structure. Two statementsS and T may induce (a)Loop Independent

Dependence (LID), where statementsS andT access same memory location in a single iter-

ation of the loop, (b)Loop Carried Dependence (LCD), if the memory location accessed

by statementS in a given iteration, is accessed by statementT in other iteration. In either

case at least one of the accesses must be write access.

Our approach for dependence analysis, as explained earlier, does not work well for loops.

This is because it combines the paths accessed in different iterations of a loop. To get better

result in presence of loops we need to keep the accesses made by different iterations of a

loop separate. To do so, we have devised another novel approach, which works as follows:

Given a loop, we first identify the navigators for the loop, then by a single symbolic traversal

over the loop, we compute the read and write accesses made by each statement in terms

of the values of the navigators. The read and write sets thus obtained are generalized to

represent arbitrary iteration of the loop, using the iteration number as a parameter. These

generalized sets, in terms of equations, are tested byGCD or Lamport test to find out any

integer solution of those equations. Presence of loop dependences indicates that the iterations

are not independent, hence can not be executed in parallel. The top level algorithm of loop

analysis is outlined in Figure 5.1.

We assume that the loop under analysis is heap intensive i,e., reads/writes heap and the

execution of the loop does not stop prematurely using irregular control flow constructs such

asreturn, continue, breakstatements or function calls likeexit, abort. Hence testing loop

condition is the only way to exit control from the loop.

The rest of the chapter is organised as follows: Section 5.1 gives a brief description of

finding navigator of the loop. Section 5.3 explains about howto compute read and wriets

sets of access paths and how our approach identifies both loopindependent and loop carried
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fun loopAnalyse(Loop) {
<NavigatorVar, NavigatorExpr> = identifyNavigator(Loop );
ReadWriteSet = generateReadWrite(NavigatorVar);
identifyDep(ReadWriteSet);

}

Figure 5.1: Dep. detection for loop.

dependences.

5.1 Identifying Navigator

Dependence analysis for loops relies on the computation of read and write sets, in terms

of access path, for each statement in a single symbolic iteration of the loop. Access paths

are computed with respect tonavigatoras mentioned in [GHZ98]. A navigator consists of

(a)navigator variableNavigatorVar , pointer variable used to traverse the loop and (b)navigator

expressionNavigatorExpr , ordered set of pointer field references. Navigator variable in as-

sociation with the navigator expression, iterates the looptraversing the data structure.

Navigator variable is closely related to the variableTestVar used to test the stopping

criteria for the loop in the program. The algorithm generates the definition chainDefChain

of TestVar using statements inside the loop. If the definition chain ofTestVar encounters

a loop resident statement twice, recurrence is reported. Otherwise the creation of definition

chain returns null if it fails to find a loop resident statement for DefChain . HenceDefChain ,

thus generated for the later case returns an access path consisting of a pointer variable fol-

lowed by an ordered sequence of pointer field references. Thebase pointer variable obtained

from the access path is potential candidate to be navigator variable and the sequence of field

references results in navigator expression. The details for identifying navigator can be found

in [GHZ98].

Example 7. Consider the code shown in Figure 1.2(b). We identifyp as loop condition

test variable. Definition chain forp comes from the sequence of following loop-resident

statements,S7: p = r , S4: r = q →next , S2: q = p →next andS7: p = r . Note

that statementS7 is encountered twice, leading to recurrence. Hence the statementsS7, S4,

S2 are added toDefChain which returns access path asp→next →next . Hence the resulting

navigator consists of navigator variablep and navigator expressionnext →next
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fun generateReadWrite(NavigatorVar) {
for each statement Si in Loop {

UseVar = UseVarSet[ Si ];
DefChain[ Si ] = findDefChain(UseVar, NavigatorVar);
AccPath[ Si ] = findAccPath(DefChain[ Si ]);
if (Tag[ Si ] == ReadStmt) {

ReadSet[ Si ] = AccPath[ Si ];
WriteSet[ Si ] = φ;

}
else if (Tag[ Si ] == WriteStmt) {

WriteSet[ Si ] = AccPath[ Si ];
ReadSet[ Si ] = φ;

}
else {

ReadSet[ Si ] = φ;
WriteSet[ Si ] = φ;

}
}

}

Figure 5.2: Generating Read and Write sets.

5.2 Computing Read/Write Sets

As mentioned earlier, our analysis computes read and write sets for each statement residing

in the loop in a single symbolic execution of the loop. Read andwrite sets consist of paths

that access heap locations for reading or writing. Unlike previous analysis, full length access

paths are used by loop dependence analysis. For each loop-residing statement full length

access paths, referred asAccPath , are computed in terms of navigator variable. Access paths

AccPath are computed from definition chains, that are evaluated by recursively traversing

all the reaching definitions of the pointer variable used by the statement until the navigator

variable is encountered.

These access paths, thus constructed, return read/write sets based on statements reading

or writing heap data. FunctiongenerateReadWrite showed in Figure 5.2 computes such

sets of access paths with respect to navigator variableNavigaotrVar . Definition chain,

DefChain , produced by functionfindDefChain , is processed by functionfindAccPath to

compute access path.ReadSet /WriteSet sets, for each statement, are then computed from

AccPath . The access paths, thus obtained, are generalized by arbitrary iteration of the loop,

using iteration number as parameter, for further processing.

Example 8. Let us again consider the example given in Figure 1.2(b). Navigator variable
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Statement Read Set Write Set

S2 φ φ
S3 p→next φ
S4 φ φ
S5 φ p→next →next
S6 φ φ

Table 5.1: Read and write sets for each loop residing statement

and navigator expression for the loop arep andnext →next respectively. Table 5.1 shows

the read and write sets of full access paths constructed for each loop residing statement. Note

that, the access paths are not abstracted and are constructed in terms ofp.

5.3 Loop Dependence Detection

Let S andT be two statements inside a loop. Further, letwrite(S,i) denote the set of access

paths written by statementS in the iteration numberi , and letread(T,j) denote the set of

access paths read by statementT in the iteration numberj . Predicatesharing (Set1, Set2)

returns true if two access pathsAccPath1 ∈ Set1 andAccPath2 ∈ Set2 share a common

heap node. Then

• T is loop independent flow dependent onS if there is an execution path fromS to T

that does not cross the loop boundary and there existi within loop bounds such that

sharing(write(S,i), read(T,i)) is true.

• T is loop carried flow dependent onS if there existi and j within loop bounds such

that j >i , andsharing(write(S,i), read(T,j)) is true.

Note that, in case loop bounds can not be computed at compile time, we can assume them to

be (-∞,∞). We can similarly define loop independent and loop carried anti-dependence and

output-dependence. Read and write sets of access paths, thusobtained for each statement

inside a loop are tested for both loop independent and loop carried dependences.

5.3.1 Identifying Loop Independent Dependence

Loop independent dependences can be detected for any two statements by checking for any

sharing of node by their respective read/write sets. Sharing of a node, in this level, occurs

due to the shape of the underlying data structure. Shape analysis gives the probable shape

attribute of the navigator variable traversing dynamic data structure. Based on the shape we
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can figure out whether there exists any dependence due to sharing within the underlying data

structure.

Observation 1: If the shape attribute of navigator variable is Tree, then there exist no shar-

ing of nodes by different access paths rooted at the navigator variable. Two access

paths can only visit a common node if the paths are equivalent. Let lp be the navigator

variable. Hencelp →f and lp →f are equivalent paths leading to a common node,

whereaslp →f andlp →g lead to different nodes.

Observation 2: If the shape attribute is DAG, the navigator expression willlead navigator

variable to a distinct node in each iteration of the loop. If an access path is a proper

subpath of another access path then they surely visit distinct nodes. However, paths

being either equivalent or distinct, having different pointer field references may access

a common node. For example,lp →f is a proper subpath oflp →f→g whereas,lp →f

and lp →g are not. Hence in the former case they do not share a common node,

whereas in later case they might result in sharing of node.

Observation 3: If shape attribute of navigator variable is Cycle, we make conservative de-

cision such that the loop can not be executed in parallel.

To detect various types of LIDs, read and write sets of different statements are tested ac-

cordingly for detecting sharing of node. Let two statementsS and T access pathsPathS

andPathT respectively andread(S) = {PathS} andwrite(T) = {PathT} . Hence there

is loop independent flow dependence fromS to T if sharing(PathS, PathT) returns true.

We check for the shape of the underlying data structure and test the paths as follows:

1. If the pathsPathS andPathT are equivalent and the data structure is either Tree or

DAG, the paths will access same node. Hence,

sharing(PathS,PathT) = True

for both Tree and DAG structure.

2. If PathS is subpath ofPathT then these paths do not lead to any common node for

both Tree and DAG data structure. Hence,

sharing(PathS,PathT) = False

for both Tree and DAG structure.



36 Loop Sensitive Dependence Analysis

3. If PathS andPathT are not equivalent and one is not subpath of other, then thesetwo

paths share a common node only if shape of the underlying structure is DAG. For Tree

structure they lead to disjoint nodes.

sharing(PathS,PathT) = False

if shape attribute is TREE.

sharing(PathS,PathT) = True

if shape attribute is DAG.

Example 9. Consider the loop shown in Figure 1.2(b) and the corresponding read and write

sets for each statement in Table 5.1. Read set of statementS3 and write set of statement

S5 are checked for sharing of any node. As the shape attribute ofthe navigator variablep

is Tree, and the pathsp→next andp→next →next are not equivalent the following will

result.

sharing(p→ next,p→ next→ next) = False

Hence no loop independent dependence is detected.

5.3.2 Identifying Loop Carried Dependence

Loop carried dependence is incurred in the loop when two statements from different itera-

tions access same memory location. LCDs can be introduced when the statements in a single

iteration of loop access both current node and neighbour heap nodes. Current node means

the node which is being currently accessed by the navigator variable, whereas, neighbour

nodes mean nodes other than the one being currently accessed.

Example 10.Let the shape attribute of the navigator variablelp be Tree and a loop is travers-

ing a list using navigator variablelp and navigator expressionnext . Statementlp →num++

will not incur any loop carried dependence as the location pointed to bylp can’t be accessed

in consecutive iterations. However, statement likelp →num = lp→next →num will still in-

troduce an LCD because both current and neighbour nodes are accessed in the same iteration

and neighbour node is visited using pointer fieldnext which is also a navigator expression.

As mentioned earlier, LCDs are only introduced by different iterations of loop, provided

there is no sharing of nodes hidden in the data structure. However, DAG has sharing within

the structure, it can be traversed by a loop in a manner such that shared nodes are not accessed
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...
p = list;
while (p→next != NULL) {

S11. ...= p →num;
S12. p →next →num = ...;
S13. p = p →next →next;

}
...

...
p = list;
while (p→next != NULL) {

S21. ...= p →num;
S22. p →next →num = ...;
S23. p = p →next;

}
...

(a)List-1: Loop without Dependence (b) List-2: Loop with Dependence

Figure 5.3: Identifying Loop Dependences

by loop and access pattern of the structure is Tree. Hence, loops having this type of access

pattern can also be tested for loop carried dependencies.

The read-write sets computed by each loop resident statements are generalized for arbi-

trary iteration number, resulting in a set of equations. Generalization is done using random

times of navigator expression, that is used by the navigatorvariable to traverse over the un-

derlying data structure. These equations are then tested byGCD[KA02] or Lamport [Lam74]

test, as explained before. If the equations have any integersolution, dependence is reported.

Here we demonstrate two examples to show the novelty lying inour approach.

Example 11. Let us consider Figure 5.3. The code snippet in Figure 5.3(a)is the reformu-

lation of code given in Figure 1.2(b). The navigator variable for both the loops isp. For

the code in Figure 5.3(a), the navigator expression isnext →next . Using i to represent the

iteration number, the generalized access path read by S11 isp→next2i and the generalized

access path written by S12 isp→next2j+1. Clearly there is no loop independent dependence

as the shape of the data structure is Tree and statements do not generate equivalent access

paths. To find out loop carried dependence, we have to find out whether for iterationsi and

j andi 6=j , the two paths point to the same heap location. This reduces to finding out if there

is a possible solution to the following equation:

p→ next2i = p→ next2j+1

In other words, we have to find out if integer solutions to the following equation are possible

:

2∗i= 2∗j+1

GCD or Lamport test tell us1 that this equation can not have integer solutions. Thus, there is

no dependence among the statements.

1In this example, visual inspection tells us that for anyi and j LHS is even number while RHS is an odd
number. Hence the equation can not have a solution. In general, the equations are more complicated and we
need to use standard tests as mentioned.
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For the code in Figure 5.3(b), the navigator expression isnext . In this case the equation

to find out the loop carried dependences among statements S21and S22 reduces to :

i= j+1

which has integer solutions. So we have to conservatively report dependence between the

two statements



Chapter 6

Inter-Procedural Dependence Analysis

In the previous chapter we have given detailed explanation of heap dependence analysis

specified within each procedure. This intra-procedural analysis does not cross procedure

boundary. When the symbolic execution within a procedure reaches a procedure call, the

analysis approximates the worst case summary for the calledprocedure which conserva-

tively approximates the read and write sets of states for theprocedure being called. In this

chapter we explain how the intra-procedural dependence analysis can be extended into a flow

sensitive inter-procedural analysis.

Our inter-procedural approach is based on computing abstract summary for each proce-

dure at prior. Before analysing the whole program, the call graph of the program is prepro-

cessed such that it does not contain any recursion. The pseudo code outlined in Figure 6.1

gives a top level algorithm of inter-procedural analysis. We discuss each step of such anal-

ysis in the following sections. Section 6.1 detects any recursion present in the program and

processes the call graph accordingly. Section 6.2 gives thedetails of the analysis which in-

cludes preparing abstract summary for each procedure and Section 6.3 presents the technique

to effectively use abstract summary of each procedure for inter-procedural analysis.

6.1 Processing and Ordering of Call Graph

Our inter-procedural analysis works on call graph of the program under analysis. Call graph

G(V, E) is a directed graph that represents calling relationshipsbetween caller and callee

procedures. Specifically, each nodevi ∈ V represents a procedure and each directed edge

(f, g)∈ E indicates that proceduref calls procedureg. Thus, a cycle in the graph indicates

recursive procedure calls.

Our approach needs to transform the cyclic call graph into directed acyclic graph (DAG)

for efficient computation of abstract summary. The call graph without any recursion is always
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fun interProcAnal(P) {
G(V, E) = callGraph(P); / ⋆ G is call graph of program P ⋆/
if (cyclic(G) = TRUE) / ⋆ Check for recursion ⋆/

G’(V, E’) = findDAG(G); / ⋆ Transform cyclic graph into DAG ⋆/
else

G’ = G;
G” = topologicalSort(G’); / ⋆ Find topological order of DAG ⋆/
for each vi ∈V following reverse topological order of G” {

Summary[ vi ] = findSummary( vi );
/ ⋆ Find abstract summary for each procedure ⋆/

}
progAnal(P, Summary);

/ ⋆ Use summaries for inter procedural analysis ⋆/
}

Figure 6.1: Top level algorithm for inter-procedural analysis

S1. procedure f()
S2. begin
S3. call g();
S4. call h();
S5. end
S6. procedure g()
S7. begin
S8. call k();
S9. end

S10. procedure k()
S11. begin
S12. call g();
S13. end
S14. procedure h()
S15. begin
S16. call i();
S17. call j();
S18. end

Figure 6.2: Skeleton of a program with procedure calls

DAG. To transform cyclic directed call graph into DAG, the back edges from the cyclic graph

are removed and a summary node is introduced. This summary node approximates all the

remaining levels of recursion and abstracts the worst case summary of the functions present

in the recursion. The nodes of directed acyclic call graph, thus obtained, are ordered using

topological sort. Each node in the acyclic call graph will beassigned a sequence order

following which the procedures are processed.

Example 12. Consider the program shown in Figure 6.2. In this example proceduref calls

procedureg and procedureh, whereas, procedureh again calls proceduresi andj . Procedure

g calls procedurek which in turn calls procedureg, resulting in indirect recursive procedure

calls. Figure 6.3(a) shows the corresponding directed callgraph. The shadowed cyclic region

in the graph indicates recursion in the program. The cyclic call graph is then transformed

into acyclic graph by removing the back edge showed as dottededge. Figure 6.3(b) presents



41 Inter-Procedural Dependence Analysis

f
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i j

(a) Cyclic call graph (b) Corresponding DAG

Figure 6.3: Example showing call graph

corresponding acyclic graph with topological order.

6.2 Computing Abstract Summary

For each callee procedure, we need to obtain an abstract summary that summarizes the pro-

cedure. By abstract summary, we mean theReadandWrite sets of symbolic heap locations

which are accessed for reading and writing operations respectively inside the procedure. The

motivation behind the technique is to summarize effect of called procedure for callers, which

in turn is used by the callers to summarize effect for called procedure. Summaries, thus ob-

tained for each procedure are stored in a table for later use.In this analysis propagation of

summaries follows the bottom-up approach. Hence, abstractsummary for all the procedures

are computed following the reverse topological order of nodes in the call graph.

All heap directed global pointer variables throughout the program are initialized once

with proper symbolic memory locations. During computationof abstract summary for each

procedure, the heap directed pointer variables passed as formal parameters to the called

procedure are initialized with random symbolic memory location. As summary, our analysis

computes read and write sets of access paths with respect to the corresponding symbolic

memory locations. This process of computation follows the intra-procedural analysis as

explained before. The same procedure is followed by the caller procedure to summarize its

effect.
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S1. procedure f(p)
S2. begin
S3. q = p →next;
S4. g(q);
S5. end
S6. procedure g(r)
S7. begin
S8. · · · = r→num;
S9. s = r →next;

S10. s →num=· · ·;
S11. end

Summary[f]=
{Read={<q,l->next>},

Write={<q,l->next->*>}}

Summary[g]=
{Read={<r,m>},

Write={<s,m->next>}}

direction of
procedure call

direction of
summary propagation

(a) Example program with procedure call(b) Call graph showing summary of procedures

Figure 6.4: Example showing computation of abstract summary

6.3 Evaluating Procedure Call

Abstract summary for each callee procedure should be used bythe caller procedure in the

current calling context. Summary of each called procedure,thus obtained by intra-procedural

analysis, contains information in the local context of the procedure. When the symbolic exe-

cution inside the caller function reaches a procedure call,the context of the actual parameters

is mapped to the respective formal parameters of the called procedure. The summary of the

callee is translated accordingly to be used in the context ofcaller procedure.

Summary of a procedure, as mentioned earlier, returns read and write sets of paths ac-

cessed by corresponding pointer variables. Access paths are computed with respect to sym-

bolic memory locations local to the callee under analysis. The local symbolic memory lo-

cations used in the summary of callee are mapped into symbolic locations accessed by the

caller procedure. Such modified summary of caller is used by the callee to summarize its

effect. Evaluating summary for recursive function does notdiffer significantly than evaluat-

ing non-recursive function. If a recursive function is encountered, the analysis will go deep

inside the function upto the depth of recursion depending upon the precision of analysis.

Example 13. Let us consider the example program and the corresponding call graph shown

in Figure 6.4. In the example program proceduref calls procedureg. The solid line in

the call graph gives the direction for calling subroutines,whereas, the dotted line shows the

direction for propagation of summary information. Summaryinformation of proceduref

andg are also shown in the call graph. At first, summary of procedure g is computed in

the local context of itself. The summary consists of read andwrite sets as{<r,m>} and

{<s,m →next>} respectively, where pointer variabler is initialized to symbolic memory

location m. At the call site of procedureg, the actual parameterq takes valuel →next ,

if formal parameterp of proceduref points to memory locationl . The value of actual
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parameterq modifies the summary of procedureg. This modified summary is further used

to summarize the information of proceduref .
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Chapter 7

Experimental Results

In this chapter we discuss about some experimental results of our analysis. We have de-

veloped a prototype model of heap dependence analysis at twolevels: One at the intra-

procedural level, which works for each procedure separately, and the other at the loop level,

where the intra-procedural analysis is refined in the context of loop. The model is imple-

mented in the Static Single Assignment (SSA) intermediate level of GCC (version 4.3.0)1

framework. The guideline for building and installing GCC from source, with newly added

pass is given in Appendix A. We have conducted experiments over two example programs

and two benchmark programs. The example programs are used toshow how our loop-based

approach successfully detects loop-carried dependences.These simple programs are based

on single linked-list data structure presented in Figure 5.3. Other benchmark programs

TreeAddand Bisort are drawn from Olden Suite. The prototype model, with manualin-

tervention, successfully identifies the dependences present in benchmark programs

We have manually pre-processed the programs to be analysed,such that the heap access-

ing statements are normalized into binary statements. In the next step, based on type of heap

access, the normalized statements are tagged accordingly.In the same step informations

regarding pointers, used and defined by the statement and thepointer field used to access

the heap object are attached to each statement along with theaccess type. In the following

sections we explain the experimental results for intra-procedural analysis and loop sensitive

analysis.

7.1 Benchmarks

Benchmark programTreeAddoperates on binary tree and recursively adds the values of

tree. ThetreeAddfunction from benchmark programTreeAddis analysed. This function

1Available from http://gcc.gnu.org/



46 Experimental Results

int treeAdd(tree *t) {
if (t == NULL)

return 0;
else {

tleft = t →left;
leftval = treeAdd(tleft);
tright = t →right;
rightval = treeAdd(tright);
value = t →val;
return leftval+rightval+value;

}
}

int bisort(root,sprval,dir)
HANDLE *root;
int sprval, dir;

{
HANDLE *l;
HANDLE *r;
l = root →left;
r = root →right;
val = root →value;
root →value=bisort(l,val,dir);
ndir = !dir;
sprval=bisort(r,sprval,ndir);
sprval=bimerge(root,sprval,dir);
return sprval;

}

(a) FunctiontreeAdd (b) Functionbisort

Figure 7.1: Functions of benchmark programs

recursively calls itself to compute values of its left and right subtrees. Left and right subtree

values, thus computed are added to the value of the root to compute the value of whole

tree. Figure 7.1(a) shows the functiontreeAdd. The main objective behind the analysis is

to find out whether the recursive function calls on left and write subtrees can be executed in

parallel. The functionbisort from the benchmark programBisort is also analysed to extract

function call level parallelism. Functionbisort performs bitonic sort over binary tree by

recursively calling itself on left and right subtrees of theroot. The analysis is fine tuned

in the context of loops. The experiments for loop sensitive dependence analysis are done

on example programsList-1 andList-2 shown in Figure 5.3. Both the programs traverse

single-linked list and in each iteration the functions readdata from the current heap node

and write the same data into the next node. But the functionList-1 navigates iterations

using two occurrences of pointer fieldnext, whereas, functionList-2navigates using a single

occurrence ofnextpointer field. Hence by manual inspection it is clear that function List-1

does not have any loop dependence, but functionList-2poses loop dependences.

7.2 Results of Intra-Procedural Analysis

The prototype model for intra-procedural dependence detection performs the state analysis

which computes the set of pairs, consisting of pointer variable and path accessing corre-

sponding symbolic heap location. In the next pass over the program, the model successfully

computes the read and write sets of access paths for each heapaccessing statement in the

program. Next we manually check for each pair of heap accessing statements to find out any
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Program Traversal pattern Potential Dependence Type of dependence

TreeAdd 2 nested No No dep.
rec. function

Bisort 2 nested No No dep.
rec. function

List-1 single loop Yes Anti dep.
List-2 single loop Yes Anti dep.

Table 7.1: Result of programs tested by intra-procedural analysis

conflict in terms of data access. The interference predicateisInterfering , produced by

shape analysis returns true if the access paths under objection lead to common heap location.

In the Table 7.1 we have given results of intra-procedural analysis. It reports no dependence

at function call level fortreeAddandbisort. However, the analysis reports dependencies of

type anti dependence for both example programsList-1 andList-2.

7.3 Results of Loop-Sensitive Analysis

The basic prototype model identifies navigator variable andnavigator expression, used by the

loop to traverse over the data structure. It then computes the full length access paths being

read or written by each statement within the body of the loop.The programsList-1andList-2

are further analysed to refine dependence analysis. The previous analysis detects spurious

dependencies in case of loop. Both example programs work on single linked list, which is

of type Tree. As there exists no sharing within the underlying data structure, the generalized

equations, formed by the access paths, are tested for loop-carried dependencies. Lamport test

successfully reports no dependence for functionList-1 and dependence of type anti depen-
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dence for functionList-2.



Chapter 8

Conclusion and Future Work

In this report we have presented our work on heap induced dependence analysis that can

be utilized by a parallelizing compiler to extract both fine-grained and coarse-grained par-

allelism from sequential programs. Our method gives an easyto implement technique for

the same. It is divided into two phases: the intra-procedural dependence analysis phase and

loop based analysis phase, with carefully chosen interfaces between phases to combine work

done by individual phases. The first phase is helpful to find dependences in both statement

level and function call level, whereas, the second phase refines the analysis in the context

of loop. This modularity gives us flexibility to work on testing and improving each phase

independently.

Our intra-procedural analysis abstracts each actual heap location by symbolic location,

which is defined by set of access paths leading to same heap node. It successfully computes

the read and write sets of heap access paths at each program point and identifies depen-

dences based on the aliasing information produced by the specific shape analysis frame-

work [Das11]. Our loop dependence analysis abstracts the dependence information in forms

of linear equations, that can be solved using traditional dependence analysis tests like GCD,

Lamport tests that already exist for finding array dependences. Our intra-procedural analy-

sis use conservative approximation of function calls assuming worst case scenario. We give

a direction to extend the intra-procedural analysis to inter-procedural one, which is able to

precise function calls more precisely.

Our analysis is too conservative for complex cyclic structures and can not extract any

parallelism between any two statements or function calls ordifferent iterations of loop body .

We have to further develop our shape analysis technique to handle more frequently occurring

complex and cyclic structures and programming patterns to find precise dependences. In this

work the analysis only keeps information about the first linkfield of the access paths and

blindly summarizes the rest of the path. Hence it losses goodamount of information for
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interference analysis. We want to improve the summarization technique for better abstraction

of access paths. In case of loop sensitive dependence analysis, our technique assumes the

loops without any irregular control flow constructs. We can further extend our technique to

automatically detect good loops [GHZ98] which do not contain any irregular control flow

constructs.

We have implemented a basic prototype model for intra-procedural and loop based de-

pendence analysis. This prototype model with manual intervention detects dependences from

heap intensive sequential programs. We have tested the model with a very few number

of heap intensive C benchmark programs. It can be further developed to implement inter-

procedural dependence analysis and to show its effectiveness on large benchmarks.



Appendix A

Guideline for Adding New Pass in GCC

Pre-requisities for Configuring GCC-4.3.0

1. GMP-4.3.2 and MPFR-2.4.1 should be installed.

2. Build GMP and MPFR in $GMPBUILD and $MPFRBUILD directory respectively.

How to Configure and Build GCC

1. Let $SOURCEDIR be the source directory for GCC and $HOME be thehome direc-

tory where $SOURCEDIR is present.

2. Create another directory $BUILDDIR in $HOME and follow thefollowing steps.

3. cd $BUILDDIR

4. ../$SOURCEDIR/configure –enable-languages=c

–with-gmp=/home/user/$GMPBUILD –with-mpfr=/home/user/$MPFRBUILD

5. make

6. make install

7. make all-gcc TARGET-gcc=/home/$BUILDDIR/gcc/cc1

How to Register Pass in GIMPLE SSA level in GCC

1. Place the new file namedtree-loop-distribution.cin $SOURCEDIR/gcc/.

2. Adding the pass in pass hierarchy : Add NEXT_PASS (pass_loop_distribution); after

NEXT_PASS(pass_linear_transform); in file passes.c

3. Add extern struct tree_opt_pass pass_loop_distribution; in file named tree-pass.h



52 Guideline for Adding New Pass in GCC

4. Add the following lines in file named common.opt

ftree-loop-distribution

Common Report Var(flag_tree_loop_distribution)

Enable loop distribution on trees

5. Add DEFTIMEVAR (TV_TREE_LOOP_DISTRIBUTION, “tree loop distributio”)

after DEFTIMEVAR (TV_TREE_LINEAR_TRANSFORM, “tree loop linear”) in file

timevar.def

6. Edit Makefile.in : Add following rules tree-loop-distribution.o

tree-loop-distribution.o : tree-loop-distribution.c $(CONFIG_H)

$(SYSTEM_H) coretypes.h $(TM_H) $(GCC_H) $(OPTABS_H)

$(TREE_H) $(RTL_H) $(BASIC_BLOCK_H) $(DIAGONSTIC_H)

$(TREE_FLOW_H) $(TREE_DUMP_H) $(TIMEVAR_H) $(CFGLOOP_H)

tree-pass.h $(TREE_DATA_REF_H) $(SCEV_H) $(EXPR_H) $(TARGET_H)

tree-chrec.h

7. make

8. make install

Test

1. gcc -O -ftree-loop-distribution -fdump-tree-ldist test.c

2. Results dump file named test.c.103t.ldist
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