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ABSTRACT
Recent trends of the use of deep neural networks (DNNs)
in mission-critical applications have increased the threats
of microarchitectural attacks on DNN models. Recently, re-
searchers have proposed techniques for inferring the DNN
model based on microarchitecture-level clues. However, ex-
isting techniques require prior knowledge of victim models,
lack generality, or provide incomplete information of the vic-
tim model architecture. This paper proposes an attack that
leaks the layer-type of DNNs using hardware performance
monitoring counters (PMCs).

Our attack works by profiling low-level hardware events
and then analyzes this data using machine learning algo-
rithms. We also apply techniques for removing the class
imbalance in the PMC traces and for removing the noise. We
present microarchitectural insights (hardware PMCs such as
cache accesses/misses, branch instructions, and total instruc-
tions) that correlate with the characteristics of DNN layers.
The extracted models are also helpful for crafting adversarial
inputs. Our attack does not require any prior knowledge
of the DNN architecture and still infers the layer-types of
the DNN with high accuracy (above 90%). We have released
the traces for public use at https://github.com/bhargavarch/
DNN_RevEngg_PMC_Dataset.
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1 INTRODUCTION
In recent years, deep neural networks (DNNs) have attracted
significant interest from the research community and indus-
try for a wide range of application domains, e.g., autonomous
vehicle driving, speech recognition [28], and computer vision
[22]. However, this has also led to increased risks of attacks
on DNN models. The attacks on DNNs can be classified into
various types [1, 12, 15, 21, 25, 29], such as side-channel
attack, fault-injection attack, trojan-insertion attack, and
adversarial input attack, etc.
A side-channel attack (SCA) [30] uses side channel in-

formation leakage, such as time consumption [13], power
consumption [18], and electromagnetic radiation [7], etc. Re-
cent side-channel attacks on DNNs leak their architecture or
hyperparameters. Some of these works assume that the ad-
versary has physical access to the device, so high-resolution
side-channels about power consumption and accessed mem-
ory addresses can be exploited [2, 9, 27]. A few other works
that exploit cache side-channels in CPU assume that the
attacker accesses the DNN model remotely [6, 8, 29].

The scope: The fault-injection attacks seek to bring down
the accuracy of a DNN to that of a random guess. An SCA
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seeks to identify the architecture of a DNN. An SCA can
further help improve the efficacy of other attacks, such as
fault-injection attacks, by allowing the adversary to signifi-
cantly narrow down the attack space.

Threat model: We follow a black-box threat model in
an MLaaS (Machine Learning as a Service) setting, similar
to a previous work [29]. In a black-box attack, the DNN
model is accessible to attackers only via an official query
interface. The victim runs DNN algorithms on a CPU. Here
we have an additional assumption that the adversary is a
system administrator who has access to PAPI framework
[26] and can access the PID of the victim process. Since the
model files may be encrypted, the attacker may only be able
to query them. Also, despite the emergence of accelerators,
the CPU remains an important platform for executing DNN
algorithms [16].

Our goal: In practice, AI developers usually design their
models based on the existing, pre-trained, and publicly avail-
able architectures. Then, the models are fine-tuned based on
their own training sets. Therefore, by carefully analyzing the
performance monitoring counter (PMC) values, it is possible
to reveal the actual model architecture. Thus, we use an SCA
to infer the CNN architecture. The key questions we aim to
answer in this work are Q1) Feasibility of using PMCs for
launching a side-channel attack Q2) Do the microarchitec-
tural characteristics of DNN leave behind architectural traces
or signatures for side channels?. While we explore the PMC
related insights and contextual information, we attempt to
demystify the structural secret of DNN and recover the DNN
architecture by mounting an SCA.

Challenges: Extracting the DNN layer using performance
monitoring counters (PMCs) [5] presents several challenges:
C1) the transition between DNN layer operations happens
very quickly. Since PMCs provide data at a low sampling
rate, ascertaining the layer-boundaries is difficult; C2) the
execution time of different layers varies significantly, result-
ing in an uneven number of samples. This leads to a class
imbalance in the dataset, and finally, C3) the PMCs are noisy
by nature. These factors limit the generality and robustness
of previous works.

Our approach: This work proposes a novel SCA that uti-
lizes the CPU’s hardware PMCs to predict the model struc-
ture based on a pre-trained classifier. Our attack works by
profiling microarchitectural events. We analyze these event-
counters with appropriate machine learning techniques. To
address challenge C1, we insert a sleep layer in the DNN.
We do this in the pre-training (i.e., labeling) phase only, and
remove all sleep layers before training. Thus, there are no
sleep layers during inference. Also, to improve the resolu-
tion, we disable the hardware flags. To address challenge C2,

we use techniques for handling the class-imbalance prob-
lem. Further, to remove noise in PMC readings, we apply
Savitzky–Golay [24] filter. This addresses challenge C3.

A PMC trace keeps the counts of microarchitectural events
through PMCs. We collect the PMC trace of a DNN over an
inference of a query. It is possible to collect a PMC trace on
several microarchitectural event counters (typically more
than 30 in number). However, due to the limited (i.e., typ-
ically four) number of hardware registers, we choose four
relevant events through which the DNN characteristics can
be analyzed. The selection of these relevant events is vital in
order to capture the behavior of individual layers so that the
classifier can learn. We manually select these events after
observing the PMC traces for all possible PMC events taken
one after the other in batches of four. Our future work will fo-
cus on using machine-learning tools to more precisely select
the hardware events to track. We visualized all the hardware
event traces by using data visualization tools to arrive at the
selection. We did not use PCA or ML-based approach, our
selection was manual. However, our goal was to prove the
hypothesis that PMCs do leak significant information for
a SCA to work. it might be possible to arrive at similar or
even better results with an even more precise selection of
hardware events.

We utilize these PMC traces to train a classifier. Then, this
classifier is used to launch an SCA on an unknown DNN
for identifying and classifying its layers. The evaluation is
based on the percentage of the execution time of respective
constituent layers. To the best of our knowledge, our work is
the first to demonstrate the use of PMCs to reverse-engineer
the layer-type of an unknown DNN in a black-box setup.

Overall, our contributions are as follows:
(i) We create an automatically labeled dataset on the traces

of three DNN models from their PMC traces (Section 2.4).
We have evaluated multiple frameworks including Keras,
PyTorch and TensorFlow. In all the frameworks, the traces
remain similar.

(ii) We correlate PMC values to the characteristics of DNN
layers. We train a machine-learning classifier to learn this
correlation and use this classifier to infer the DNN layer
being executed on a CPU. We overcome several challenges
in the use of a machine-learning classifier on PMC traces,
such as noise-filtering and class-imbalance (Section 2.4).

(iii) We train the classifier on a group of DNNs and test it
on these and other unknown DNNs. We define the prediction
accuracy of our machine-learning (ML) classifiers in terms
of how many of the data points in the trace are predicted to
belong to the correct layer type. The experimental results
show that our attack can decode the layers of the DNN with
high accuracy (Section 3).
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2 THE PROPOSED ATTACK
2.1 Threat model
The existing adversarial attacks include white-box attack
[17, 20] and black-box attack [25][4] [19], respectively. A
white-box attack requires the complete knowledge of the
target model, such as parameter values, network structure,
and training dataset. Unlike a white-box attack, a black-box
attack assumes that the target model is unknown. Naturally,
a white-box attack is more effective and easier to implement
[14]. However, in real-world applications, most AI devices
are considered black-boxes. In general, a black-box attack is
less effective but is easier to launch. This paper proposes an
SCA in a black-box setup.

We assume a cloud-based setup, where the adversary, who
is an administrator posing as a user, can query a DNN model
offered as a service. The adversary issues just one query with
any arbitrary input. During this execution, he records the
available PMCs and creates a PMC trace of the DNN. The
PMCs track the following events: the number of branch in-
structions, the number of L1 cache misses, the total number
of CPU instructions being executed, and the total number
of L3 cache references. The adversary does not know any
internal details of the DNN, such as its layer-count, hyper-
parameters, inputs, etc.

2.2 Background on PMCs
Modern microprocessors contain dedicated registers, named
hardware PMCs. These registers count hardware events such
as cache misses, CPU cycles, branch instructions. The pri-
mary utility of these counters is to help performmicroarchitecture-
level profiling of workloads. Hardware PMCs have higher
resolution than software-based PMCs.

Modern Intel processors provide four dedicated registers
for reading PMC values. Intel processors provide an instruc-
tion, namely RDPMC in its instruction set, through which one
can read the hardware PMCs at a very high resolution. AMD
and ARM processors also provide similar functionality in
hardware and instruction sets. For instance, Intel processors
allow counting multiple (typically more than 30) events us-
ing the counters. However, they are limited by the number
of available hardware registers.

2.3 Correlating PMC values to DNN layer
characteristics

Themicroarchitectural characteristics of a DNN are represen-
tative of the constituent layers and the operations performed
by them [11]. The core computation of a convolution opera-
tion is matrix multiplication. In the convolution operation,
the same kernel revolves over the entire input feature map.
Due to this, convolution operation has significant data reuse,

which leads to relatively low cache misses, provided the
working set fits in the cache memory. By contrast, in a fully
connected layer, the size of the working set is large. Also,
there is no data reuse in the absence of batching; hence, FC
layers show a very high number of cache references. Table 1
summarizes our observations on the execution patterns of
typical DNN layers.

Table 1: Relative count of microarchitectural events
in typical DNNs. Refer Figure 4 for an example from
VGG16.

Layer #Instructions #Branches #L3 Cache refs #L1 Cache misses
Conv High Low Medium High
Pool Medium High Medium Medium
Act Low Medium Low Low
FC Low Low High Low

We extract the fine-grained structural secret of a DNN,
including its layer composition, through PMC profiling. A
trained classifier model utilizes PMC traces to estimate each
layer of an unknown DNN architecture with high accuracy.
By virtue of drastically reducing the search space of target
models, our attack can make it easy to further launch ad-
versarial attacks. There are two main phases in the attack
framework: a training phase and an inference phase as shown
in Figure 1 and 2. Note that these phases pertain to the ML
classifier and not the victim DNN.

Figure 1: Training phase of the ML classifier.

Figure 2: Inference phase of ML classifier: leaking
DNN layer-profile.
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2.4 Training phase of the classifier
Figure 1 shows the training phase for the proposed attack.
The training phase involves three steps: (i) collection of PMC
trace of known DNNs, (ii) automated labeling of the collected
PMC trace data from the model architecture summary, and
(iii) training a classifier on the labeled dataset. The steps
performed by us and the challenges addressed are as follows.

Automated labeling: While the DNN runs, we seek to
record both the DNN layer-type and the PMC values. It is
well-known that ascertaining the layer-boundaries of DNNs
is challenging [15]. To overcome this issue, either a manual
approach or application-level hints are required. Since a
manual approach is cumbersome, we prefer an automated
approach for labeling the PMC traces. Hence, we insert a
sleep() function between two subsequent layers, which acts
as a separationmarker. This automated approach allows us to
scale the size of created dataset seamlessly. Also, it improves
the accuracy and robustness of the SCA. Note that sleep()
function is inserted only during the training phase and not
during inference. Once the training is done, we remove the
sleep() functions.

Creation of PMC trace dataset:We run the DNNs using
the TensorFlow framework, but we have also verified that
the traces are similar in other DNN frameworks. For various
DNN architectures, there is no publicly available dataset of
hardware event traces. Hence, we collect traces of known
and popular DNNs to create a repository. We collect the PMC
trace using the “PAPI library framework” [26] available on
the Linux platform. PAPI has native implementations for
returning the PMC values at a minimum interval of 1µs. All
our traces are collected at 1µs interval. However, for ease of
illustration, the figures in this paper use a 1ms interval. We
enhance the resolution of our traces by setting the CPU to
the minimum supported clock of 1.2GHz. Furthermore, we
also disable hardware prefetchers to enhance the details of
cache misses and related events.

Handlingnoise in raw-data andData-imbalance prob-
lem: Different layers have different execution times; how-
ever, the PMC samples are taken at a fixed interval. Hence,
from the perspective of an ML classifier, there is a class im-
balance in the traces of DNNs. We use SMOTE [3] based
oversampling to balance out the class imbalance issue and
also perform normalization to scale the data. We use Sav-
itzky–Golay filter [24] to smooth out the intermittent spikes.
We have verified that these changes improve the overall
performance of the classifier. Figure 3 shows the effect of
Savitzky–Golay filter on the trace.
From the trace shown on the right side of Figure 3, our

technique can identify different layers of the CNN. Figure
4 shows the right side of Figure 3 after tagging the layer

Figure 3: Left part: Raw PMC trace for VGG16. Right
part: the trace after preprocessing using the Sav-
itzky–Golay filter.

names in the convolutional block. Here, each convolutional
block in VGG16 contains two convolution layers followed
by a pooling layer, where convolutional layers have higher
cache misses than a pooling layer. Similarly, when we see
the characteristics of fully connected layers, we find that the
cache misses are low and references are high, and there is a
reduction in the number of CPU instructions executed.

Figure 4: A PMC trace showing the typical execution
phases in VGG16.

Training the classifiers: The classifier learns the vari-
ous classes labeled in our dataset. Each class represents one
type of layer from a known DNN. For example, in the VGG16
network, the classifier can differentiate between the convo-
lutional layer, pooling layer, activations, and fully connected
layers.

2.5 Inference phase of the classifier
Once a classifier is trained, we proceed to the inference phase,
as shown in Figure 2. It involves three steps, (i) collection
of PMC trace of unknown DNN, (ii) feeding the PMC trace
to the pre-trained classifier, (iii) The classifier predicts the
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labels of the layers belonging to the PMC trace. Based on the
classifier predictions, the unknown DNN’s architecture is
reconstructed. We evaluate the performance of the classifiers
with accuracy scores.

3 RESULTS AND DISCUSSION
We perform all our experiments on a Linux OS (kernel 5.0)
environment with an x86 architecture. We use Core™ i9 -
7900X processor with a clock frequency of 3.3GHz and 64GB
of RAM. The kernel supports the PAPI [26] library frame-
work, which is the main utility we use for collecting the data
from PMCs. We train our ML classifiers with three DNNs:
DenseNet [10], VGG19 and MobileNetV2 [23]. These DNNs
are reasonably complex, and this helps in making the classi-
fiers robust and versatile. Further, Alexnet can be considered
the forerunner of deep learning, VGGNet uses a smaller con-
volution kernel, and ResNet uses skip-connection. Thus, we
have chosen a diverse set of DNNs for training as well as
testing.

3.1 Choice of ML classifier
We evaluate three classification algorithms viz., decision tree,
random forest, and KNN (K-Nearest Neighbors). We train our
classifier with the dataset, which has labels for more than
10 types of layers, such as convolution, pooling, activation,
fully connected, flatten, batch normalization, dropout, and
even additional operation layers like add and concatenate.
Though we perform training on so many kinds of layers, for
the sake of clarity, we show results only prominent layers
such as convolution layer, FC layer, activation layers. We do
not show the results on infrequent layers such as add and
concatenate since they execute too fast to allow accurate
measurement or prediction.

We train and test the classifier with a train-test split of 2:1,
and our accuracy scores represent the testing done on the
split test data. We also validate the scores with three-fold
cross-validation. The choice of 2:1 train-test split is based on
the standard practice to split the dataset typically into 2:1 or
3:1 ratios of training and test data. The scores represent how
well the classifier predicts each data input with four features,
viz. the PMC register count of a particular interval. The
accuracy of different classifiers was found to be as follows:
decision tree-95.6%, random forest-97.7%, KNN-93.5%. With
higher PMC-trace granularity, the accuracy of the classifiers
increases. We can see that random forest outperforms other
classifiers. In the random forest classifier, the mode of the
classes of each decision tree for a particular input decides
the class of the data. Since the nature of our dataset suits
this algorithm well, we choose random forest as a classifier
in our SCA methodology.

3.2 Results of our side-channel attack
Table 2 shows the percentage execution time spent in the
constituent layers of the DNN. We compare scores of the
ground truth DNN to the reconstructed DNN. Although the
accuracy of prediction is high, the classifier mispredicts on
some instances. VGG16 does not have a batch normalization
layer, but it is predicted with a low score. On the other hand,
significant layers like convolution are predicted with a high
score. Infrequently occurring layers are counted in the mis-
cellaneous category. We do not distinguish between average
and max pooling; and between different types of activation
functions.

Table 2: Percentage of layer execution time on known DNNs. (GT: Ground
Truth, PR: Prediction accuracy, and “-": un-labeled or absent layers.)

DNNs Conv Pool Act FC Flat BN Dropout Misc

DenseNet PR 41.9 1.8 16.8 0.3 0.1 27.1 0.1 11.7
GT 44.7 1.2 16.5 0.3 - 26.8 - 10.3

MobileNetV2 PR 58.1 1.0 11.2 1.1 0.1 23.7 0.5 4.2
GT 60.6 0.4 11.1 1.1 - 23.4 0.4 2.9

VGG19 PR 85.6 1.8 0.3 11.7 0.1 0.1 0.0 0.2
GT 86.8 1.7 - 11.3 0.1 - - -

We now evaluate our ML classifiers on those DNNs, on
which the classifier was never trained. Table 3 summarizes
the predicted and ground-truth value of the percentage of
layer execution latency.

Table 3: Percentage of layer execution time on unknown DNNs

DNNs Conv Pool Act FC Flat BN Dropout Misc

Alexnet PR 56.2 1.5 3.3 30.0 0.2 5.3 0.2 3.1
GT 56.9 1.4 3.3 31.3 0.3 5.7 0.8 -

Resnet PR 72.2 4.1 5.3 1.1 0.4 10.0 0.4 6.3
GT 78.7 2.7 7.0 0.8 - 10.8 - -

VGG16 PR 81.6 2.2 1.5 12.9 0.1 0.6 0.1 0.8
GT 84.6 2.0 - 13.1 0.1 - 0.1 -

3.3 Discussion
We find that each layer of a DNN pertains to a specific sig-
nature in its execution. By signature, we refer to the various
microarchitectural events taking place. The pooling layer
computes the average or maximum value of the members of
the cluster and thus, it reduces the dimension of the input
matrix.
Figure 5 shows the full PMC trace of a VGG-16 network

with a resolution of 0.1ms, covering all the constituent layers.
Here, we visualize the distinctive microarchitectural charac-
teristics of the layers through four events, namely branch
instructions, cache misses, instructions, cache references.
The microarchitectural characteristics of a convolution layer
can be inferred as high cache misses, low branch instructions,
and a high number of total instructions.
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Figure 5: PMC trace of a VGG16 DNN architecture. Three different background colors denote different layers.

While most of the related works show results only on
primary layers such as convolution, our results include pre-
dictions on multiple layers with high accuracy, including
convolution, pooling, activation, dropout, and more.

4 CONCLUSION
In this work, we have demonstrated an SCA based on PMCs.
We employ the PMCs to derive the basic network structure of
the DNN model. Then, the derived network structure is used
to train an ML classifier. Finally, we use the trained classifier
to leak the layer pattern of DNNs in a black-box setup. We
created a dataset of PMC traces for DNNs. Our classifier pro-
vides an accuracy of more than 90%. The knowledge inferred
by our SCA can also help design an adversarial attack. Our
future work will focus on proposing countermeasures for
thwarting this attack.
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