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Abstract—Last-level cache (LLC) covert-channels exploit the
cache timing differences to transmit information. In recent
works, the attacks rely on a single sender and a single receiver.
Streamline is the state-of-the-art cache covert channel attack
that uses a shared array of addresses mapped to the payload
bits, allowing parallelization of the encoding and decoding of
bits. As multi-core systems are ubiquitous, multiple senders and
receivers can be used to create a high bandwidth cache covert
channel. However, this is not the case, and the bandwidth per
thread is limited by various factors. We extend Streamline to
a multi-threaded Streamline, where the senders buffer a few
thousand bits at the LLC for the receivers to decode. We observe
that these buffered bits are prone to eviction by the co-running
processes before they are decoded. We propose SPAM, a multi-
threaded covert-channel at the LLC. SPAM shows that fewer
but faster senders must encode for more receivers to reduce this
time frame. This ensures resilience to noise coming from cache
activities of co-running applications. SPAM uses two different
access patterns for the sender(s) and the receiver(s). The sender
access pattern of the addresses is modified to leverage the
hardware prefetchers to accelerate the loads while encoding. The
receiver access pattern circumvents the hardware prefetchers for
accurate load latency measurements. We demonstrate SPAM on
a six-core (12-threaded) system, achieving a bit-rate of 12.21
MB/s at an error rate of 9.02% which is an improvement of
over 70% over the state-of-the-art multi-threaded Streamline for
comparable error rates when 50% of the co-running threads
stress the cache system.

Index Terms—Covert channels and noise resilience.

I. INTRODUCTION

LAST-LEVEL cache can be exploited to create a covert
channel transmitting data between two malicious pro-

cesses. A covert channel by itself is significant for allowing
an adversary to evade protections, such as sandboxing, and
exfiltrate data from a device without network access [9]. It may
also be used to exchange information in transient execution
attacks or suggest the possibility of a side-channel attack. The
covert-channel transmission rate establishes an upper bound
on the information leakage rate of the side-channel [1].
Therefore, it is important to inspect high-bandwidth covert
channels and investigate their bit rate limits.

Various countermeasures have been proposed to combat
covert channels [10]. Bystander-based noise-injection strate-
gies [13] provide a lightweight defense without radical hard-
ware modifications or substantial performance degradation
of non-malicious applications. They pollute the cache and
cause eviction of the address(es) used by the covert channel.
They are known to disrupt attacks that use a single shared
address such as flush+reload [14]. In modern processors with
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Fig. 1. State-of-the-art Streamline covert channel operates on a shared array
for transmission of a stream of bits. The receiver follows the sender by
maintaining a time gap, and cache thrashing is used to reset the channel.

many-cores, we observe that even a covert channel using a
sequence of addresses such as Streamline [1] has a significant
bandwidth drop if stressed with multiple cache-intensive co-
running applications. Injecting noise succeeds if the address
installed by the sender is evicted before the receiver accesses
it. In order to weaken the impact of noise-injection, the time
frame between the loading of an address and its subsequent
decoding, has to be minimized. Faster decoding reduces this
time frame, leading to stealthier channels.

Decoding bottleneck. Streamline employs a large shared ar-
ray for transmission and attains a high bit rate by sequentially
encoding each bit using a different address as shown in Figure
1. The receiver follows behind loading the addresses while
timing them. It achieves a bit-rate of 2.11 MB/s and an error
rate of 1.57% on an Intel® Core™ i7-10710U processor for a
payload of 106 bits. The inability to measure the latency of
simultaneously executing loads is emphasized by Streamline.
This measurement bottleneck causes serialization of loads to
measure time accurately while decoding and limits the bit
period to be at least the LLC or DRAM latency.

A single thread’s decoding is not fast enough to overcome
the measurement bottleneck and we extend the Streamline
channel with a multi-threaded sender process and a multi-
threaded receiver process. We choose Streamline as its bit
rate is about 3x-6x and 24x higher than the flush-based [2]
and prime+probe-based [7] LLC covert channels, respectively.
This shows that Streamline is an obvious choice for a multi-
threaded LLC covert channel construction.

Our observations. We use multiple senders and receivers
on a 12-threaded multi-core system (six cores with hyper-
threading) with a 12MB LLC. Figure 2 shows the bit trans-
mission rates of different combinations of sender and receiver
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Fig. 2. Bit rates of different sender-receiver combinations of Streamline under
four classes of stress-ng workloads running on (a) 25% and (b) 50% of the
threads in a 12-threaded multi-core processor. The error rates of all these
channels were restricted to 10%. (x, x) stands for x senders and x receivers.

threads under four classes of co-running stress-ng workloads
[8]. As the number of threads increases, Streamline’s noise-
resilience worsens, as shown by the larger drop in bit rates
from no noise to different classes of noises. The addresses
installed by the senders that are yet to be accessed by the
receivers are prone to being evicted due to the interference
caused by co-running processes in a many-core system. We
argue that the time frame for eviction before decoding can
be reduced by accelerating the decoding of buffered addresses
using more receiver threads per sender thread.

Our challenges. We observe that if the senders are fewer
than the receivers then senders tend to lag behind receivers
and Streamline’s mechanisms do not handle this case (refer
Figure 3 for one sender and two receivers). In this case,
two receivers independently decode the odd and even index
payload bits. Note that for every transmitted bit, decoding
should follow encoding. However, in Figure 3, this is true
only for the first 5000 bits. The situation becomes worse if
we further increase the number of receiver threads. Another
challenge is that auditing or detection-based mitigations such
as monitoring performance counters [15] pose a threat to
multi-threaded covert channels. More cache misses will be
observed in a short time window with a multi-threaded covert
channel as compared to a single-threaded one.

Our approach. We propose a SPAM channel, where we
make a case for faster but fewer senders and more receivers
than senders. The major contribution through SPAM is to
proactively exploit prefetchers to malicious parties’ benefit.
This is done by manipulating prefetchers to prefetch addresses
necessary for covert communication. We accelerate sender
threads with the usage of prefetcher-conscious access patterns
for encoding. The access pattern plays a key role in circum-
venting the prefetchers on the receivers’ side in order to get
accurate load latencies, but the sender also employs the same
pattern in Streamline and suffers from the inability to use
prefetchers to its advantage. We propose to use a different
sender access pattern that can exploit the prefetchers to its
benefit. Prefetcher-friendly sender accesses mainly help in
two ways: (i) fewer senders, that are faster, can sustain more
receiver threads in order to accelerate decoding and make the
channel stealthier against noise-injection based mitigation, and
(ii) prefetched addresses reduce the number of cache misses
on the sender’s side and limit the exposure to detection-based
defenses such as monitoring performance counters.

Prior works. Existing prefetcher-aware side channel attacks
[11], [12] only aim to nullify/circumvent prefetchers whereas
SPAM pursues the opposite direction and exploits prefetcher-
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Fig. 3. Timestamp counter (TSC) values vs number of bits exchanged for one
sender and two receiver threads following the access pattern of Streamline.
The plot shows that around bit 5000, the receivers overtake the sender.

triggering to benefit covert communication. Since SPAM is
a covert channel, we can craft the access patterns on both
sides of the channel, unlike the prior side channels. To the
best of our knowledge, this is the first attempt to capitalize
on hardware prefetchers for malicious parties’ advantage.
Another limitation of these past works is that their fooling
techniques are limited to specific hardware. We demonstrated
SPAM’s effectiveness on Intel and AMD processors, verifying
its universality. It should be noted that the prefetcher is not the
medium for the covert channel as used in prior works [3]–[5].

Key results. On a six-core (12-threaded) Intel® i7-10710U
processor (12 MB LLC), SPAM with four senders and eight
receivers achieves a bit rate of 12.21 MB/s at an error rate of
9.02% as opposed to multi-threaded Streamline’s 7.17 MB/s
bit rate and an error rate of 12.53% for the cpu-cache stressors
running on 50% of the threads. This is an improvement of over
70% in the bit rate as compared to multi-threaded Streamline.

II. SPAM

A. Encoding and decoding order

To achieve our goal of designing a noise-resilient high-
bandwidth covert channel, we ask the following question: does
the order in which the bits are encoded need to be the same as
the order in which the bits are decoded? As long as bits i and
i + 1 are encoded before they are decoded, does it matter if
the bit i was encoded before i+ 1? We argue that it does not
matter if the subsequent address does not evict the preceding
address from the LLC, which is the case in Streamline. What
does it mean when we say the sender follows an encoding
order different from the receiver? We argue that the sender
differs from the receiver in the access pattern in which the
sequence of addresses is accessed.

The heart of the SPAM covert channel is the usage of
two different access patterns: one for sender(s) and one for
receiver(s) in contrast to Streamline, which uses one access
pattern for both sender(s) and receiver(s). We argue that there
are two choices in terms of selecting the sequence of addresses
of the shared array that will be used to transmit bits: (i) the
exact mapping of payload bits to addresses (array indices)
as shown in Figure 4a, and (ii) the access pattern through
which the sender or the receiver accesses those addresses
as shown in Figure 4b. Note that it is necessary for the
sender and the receiver to agree upon the same mapping to
ensure the correctness of the covert channel protocol. SPAM
proposes that by using two different access patterns to load
the addresses, the sender can be made faster. We achieve the
same with the help of hardware prefetchers. The first access
pattern is selected such that all the hardware prefetchers at the
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Fig. 4. (a) The mapping of payload bits to addresses (array indices), and (b) the pattern in which the sender or the receiver accesses those addresses. Note
that consecutive accesses (connected by an arrow in (b)) of the same colour increase the confidence of the IP-stride prefetcher and trigger it. The subsequent
identically coloured access is prefetched as a result. When the sender encodes the subsequent identically coloured address, the encoding is accelerated as the
address was already installed by the prefetcher. However, consecutive accesses of different colours cross the page boundary and do not trigger prefetchers.

L1 and L2 are fooled. Fooling the prefetcher here refers to an
access pattern preventing the prefetchers from being triggered.
The receiver uses this access pattern. On the other hand, in
the second access pattern, the sender triggers some of the L1
and L2 prefetchers to make the encoding faster.

We perform experiments with one sender following the
access pattern of SPAM and k receivers where k = 2, 3, 4, and
so on. We find that the accelerated sender is fast enough to
encode for two receivers. The frequency of synchronization is
one time for every 100k bits. However, three or more receivers
decode faster than one sender. So we need to synchronize
more often (once every 20k bits) to ensure that the sender
always leads the receivers. Therefore, we argue that a sender-
to-receiver ratio of 1:2 is the optimal ratio for SPAM to
maximize the bit rate per thread.

B. Bit to address mapping

The objective behind the selection of the payload to address
mapping is that there should exist an access pattern that can
trigger the prefetchers and an access pattern that fools the
prefetchers. For example, mapping the sequence of bits to
addresses occupying consecutive cache lines can never be used
because once cache line X is loaded, X+1 is also prefetched
by the next-line prefetcher. So there is no way to find if X+1
is loaded by the sender or not. On the other hand, if a mapping
is selected to access only one cache line per 4 KiB OS page,
then an access pattern triggering prefetchers would not be
possible as most of the prefetchers operate within the OS page
boundaries. In general, a mix of accesses with variable strides
that cross the page boundaries provides a way that can be used
to trigger or not to trigger the prefetchers.

C. Prefetcher-conscious access patterns

Modern processors use multiple prefetchers to hide the
costly DRAM latency. A few hardware prefetchers [6] used
by Intel are documented, and some of them are reverse-
engineered [3], [4]. The next-line [6] and data prefetch logic
prefetchers [5] cannot be selectively triggered only for the
prefetcher-friendly access pattern. These do not operate based
on confidence. Therefore, these prefetchers are triggered for
both the prefetcher-aware and prefetcher-evading patterns.
Accesses need to trigger IP-stride or stream prefetcher to get
prefetcher-conscious patterns. The streamer is more difficult
to manipulate as it fetches multiple lines in the positive or
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Fig. 5. Frequency of loads vs latency for the sender’s access pattern of
Streamline and SPAM on a 100k-bit payload.

negative direction in one go. While the pattern intended to fool
prefetchers slides across pages, the prefetcher-aware accesses
need to load all the addresses on a page before moving to
the next page. The more the number of addresses mapped
to one page, the more is the opportunity to trigger IP-stride
prefetcher. So, an average stride as low as possible is needed
to get an optimal access pattern. However, it was observed by
Saileshwar et al. [1] that the prefetchers could not be fooled
with stride two accesses.

D. Insights on the stride 3 across 2 pages access

Streamline accesses every third cache line spread across
two pages. The receiver loads X, X+p, X+3, X+p+3, X+6,
X+p+6, and so on where p is the page offset. To obtain a
prefetcher-aware pattern from this mapping, we chose X, X+3,
X+6, and so on till the end of the page followed by X+p,
X+p+3, X+p+6, and so on. Dividing the intertwined cross-
page accesses creates an opportunity to trigger prefetchers.
Figure 5 shows the frequency of load latencies for the access
patterns of Streamline and SPAM. It can be seen that the
majority of the accesses by a Streamline sender take more than
150 cycles suggesting DRAM accesses. On the other hand, the
dominant category of a SPAM sender is 20-30 cycles with a
frequency of 26507 suggesting L1 or L2 hits. This validates
our claim that SPAM reduces the number of cache misses on
the sender’s side by employing a prefetcher-conscious access
pattern. Note that the access pattern depends on the payload
and we used a uniformly distributed 100k-bit payload. For any
payload, only zero bits involve loading the shared array. It
was described by Saileshwar et al. [1] that any other payload
distribution can be converted into a uniform distribution by
modulating the payload bits with uniform random bits using
the exclusive OR operation (XOR). The uniform random bits
are generated through a pseudo-random generator whose seed
is known to both the sender and the receiver.
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Fig. 6. Comparison of (a) the bit rates and (b) the error rates of Streamline vs SPAM for increasing difference between receivers and senders. (m, n) stands
for m senders and n receivers. Comparison of the fastest combinations of Streamline and SPAM for (c) four classes (cpu, sch., mem., cache stand for cpu,
scheduler, memory, and cpu-cache stress-ng classes respectively) of stressors on 25% and 50% of the threads. Comparison of (d) the bit rates and (e) the
error rates of the fastest combinations of Streamline and SPAM for varying number of threads under stress-ng class cpu-cache workload.

III. RESULTS

We compare SPAM with multi-threaded Streamline where
we pin a thread to a core by setting affinity appropriately. Each
thread on the sender process operates on a different physical
core than every receiver thread. The channels were evaluated
on the 12-threaded Intel® Core™ i7-10710U processor (12 MB
LLC, 4 GHz frequency) on a payload of 106 bits. For the three-
thread combination of one sender and two receivers, SPAM
has a speedup of 2.006x over the single-threaded Streamline.
The one-sender-and-two-receiver combination of Streamline
attains a speedup of 1.189x over the single-threaded baseline.
Therefore, the difference of 0.817x can be attributed to the
prefetcher-friendly sender accesses. Additionally, the combina-
tion cannot be made faster further without uncovering a way to
overcome the measurement bottleneck. Figures 6a and 6b show
the performance of Streamline and SPAM for increasingly
unequal sender and receiver combinations. We can see the poor
scalability of Streamline for these combinations and SPAM’s
improvement of over 97% over Streamline for the four senders
and eight receivers combination.

Figure 6c shows the transmission rates achieved by the
fastest combinations of Streamline and SPAM on a 12-
threaded multi-core system for two different extents (25%
and 50%) of co-running stress. The quickest combination for
SPAM is four senders and eight receivers and the quickest
for Streamline is five senders and five receivers. We observed
that the combination of six senders and six receivers could not
meet the 10% error rate upper bound due to frequent synchro-
nization misses. Additionally, the synchronization misses also
slowed down the channel and the combination was slower than
five senders and five receivers. The cpu-cache class stresses the
cache and has the highest slowdown for Streamline, which is
about 32% for 50% stress and over 15% for 25% stress. SPAM
performed equally well across all the classes and has a dip of
about 4% and 2% for 50% and 25% stress respectively.

Sources of errors. The error rates of SPAM are contributed
by 0-to-1 error rate and 1-to-0 error rate. Multi-threaded SPAM
has a higher 1-to-0 error rate (5.8%) than multi-threaded
Streamline (3.59%) because the prefetchers hide the latency
of the DRAM accesses (DRAM access is faster than our
LLC-hit threshold), resulting in some of these accesses falling
within the LLC threshold. On the other hand, the multithreaded
SPAM has a lower 0-to-1 error rate (3.18%) than Streamline
(5.51%) as the two extra receivers help in decoding the
addresses present at the LLC faster.

Figures 6d and 6e show the bit rates and error rates, respec-
tively, of the fastest combinations of SPAM and Streamline
for no stress (zero threads stressed) to multiple threads co-

running cpu-cache workload. SPAM improves the bandwidth
of Streamline marginally by 15-20% under no-stress condi-
tions. However, SPAM is resilient to noise and outperforms
Streamline by over 43% for 25% of threads running stress
workloads and over 70% for 50% of the threads stressed.

Universality of SPAM channel. So far, we have shown
the effectiveness of a SPAM channel on Intel processors. We
also performed the SPAM attack on AMD Ryzen 9 and Milan
processors and observed similar bit and error rates. SPAM
attack is universal as it exploits IP-stride prefetcher, commonly
available in all commercial machines from Intel, AMD, and
ARM. Also the effectiveness of SPAM over Streamline re-
mains the same even for a large number of hardware threads
(24 and 32) used for a covert channel.

IV. CONCLUSION

We proposed SPAM, a high bandwidth and noise-resilient
LLC covert channel that uses prefetcher-friendly access pat-
terns for the sender in multi-threaded covert channels. We
showed that mounting a multi-threaded covert channel causes
a dip in bit-rate because of noise coming from co-running
applications. SPAM makes a case for faster but fewer senders
and more receivers making it a competitive covert channel at
the LLC even on a multi-threaded multi-core system.
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