
Micro BTB: A High Performance and Storage Efficient Last-Level
Branch Target Buffer for Servers

Vishal Gupta∗
School of Computer and Communication Sciences, EPFL,

Lausanne, Switzerland
vishal.gupta@epfl.ch

Biswabandan Panda
Indian Institute of Technology Bombay, Mumbai, India

biswa@cse.iitb.ac.in

ABSTRACT
High-performance branch target buffers (BTBs) and the L1I cache
are key to high-performance front-end. Modern branch predic-
tors are highly accurate, but with an increase in code footprint in
modern-day server workloads, BTB and L1I misses are still frequent.
Recent industry trend shows usage of large BTBs (100s of KB per
core) that provide performance closer to the ideal BTB along with
a decoupled front-end that provides efficient fetch-directed L1I in-
struction prefetching. On the other hand, techniques proposed by
academia, like BTB prefetching and using retire order stream for
learning, fail to provide significant performance with modern-day
processor cores that are deeper and wider.

We solve the problem fundamentally by increasing the storage
density of the last-level BTB. We observe that not all branch instruc-
tions require a full branch target address. Instead, we can store the
branch target as a branch offset, relative to the branch instruction.
Using branch offset enables the BTB to store multiple branches
per entry. We reduce the BTB storage in half, but we observe that
it increases skewness in the BTB. We revisit the need for skewed
indexing and propose a skewed indexed and compressed last-level
BTB design called MicroBTB (MBTB) that stores multiple branches
per BTB entry. We evaluate MBTB on 100 industry-provided server
workloads. A 4K-entry MBTB provides 17.61% performance im-
provement compared to an 8K-entry baseline BTB design with a
storage savings of 47.5KB per core.

CCS CONCEPTS
• Computer systems organization → Superscalar architec-
tures, pipeline computing.

KEYWORDS
Superscalar cores, Branch Target Buffer, Performance
ACM Reference Format:
Vishal Gupta and Biswabandan Panda. 2022. Micro BTB: A High Perfor-
mance and Storage Efficient Last-Level Branch Target Buffer for Servers.
In 19th ACM International Conference on Computing Frontiers (CF’22), May

∗The work was done while the author was an MS student at IIT Kanpur.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CF’22, May 17–19, 2022, Torino, Italy
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9338-6/22/05. . . $15.00
https://doi.org/10.1145/3528416.3530224

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
Normalized Area

1

1.1

1.2

No
rm

al
ize

d
Pe

rfo
rm

an
ce

SHOTGUN
SN4L+DIS+BTB
8K entry SKEWED BTB

8K entry FDIPX
4K entry MBTB
IDEAL BTB

IDEAL L1I
IDEAL FRONTEND

Figure 1: Performance improvements of state-of-the-art BTB
designs scaled to 8K entry, normalized to the baseline system
with 8K entry BTB (Table 1) for 100 industry provided server
workloads. Area overheads (in terms of storage requirements
per core) are normalized to 8K entry baseline BTB. Our pro-
posal MBTBwith 4K entries, outperforms all the competitive
BTB designs, with storage savings. Refer section 2 for the
details about these designs. Refer Table 1 for the baseline
system parameters.

17–19, 2022, Torino, Italy. ACM, New York, NY, USA, 9 pages. https://doi.
org/10.1145/3528416.3530224

1 INTRODUCTION
Branch predictor and branch target buffer (BTB) are the two key
front-end structures that play a significant role in providing high
performance. Branch predictors predicts the direction (taken or not-
taken) of a conditional branch. BTB provides information about
whether an instruction is a branch instruction or not, and the target
of the branch instruction. To prevent the processor from going on
the wrong execution path, both the structures need to be accurate.
Modern branch predictors like hashed perceptron[1] and TAGE[2]
are highly accurate. However, with the increase in code footprint
in server workloads, BTB and L1I cache see frequent misses. The
code footprint ranges in multi-megabytes because of the deepening
software stack with frequent updates/patches.

State-of-the-art techniques for reducing front-end bottlenecks
like Shotgun[3] and SN4L+Dis+BTB[4] employ L1I prefetcher to
prefetch cache blocks in the L1I. These techniques decode the
prefetched cache blocks and pre-fill the branches into the BTB.
With an increase in code footprint, L1I misses are high, and the L1I
prefetchers in these techniques are not able to prefetch the instruc-
tion blocks in a timely manner. L1I prefetcher in Shotgun learns the
control flow of a program using the retire order instruction stream.
With modern-day high-performing processors becoming deeper
and wider with each generation, the fetch stage of the pipeline is
now much further ahead in the instruction stream compared to the
retire stage of the pipeline. We show in Section 5 that the increase

1

https://doi.org/10.1145/3528416.3530224
https://doi.org/10.1145/3528416.3530224
https://doi.org/10.1145/3528416.3530224

CF’22, May 17–19, 2022, Torino, Italy Vishal Gupta and Biswabandan Panda

in the number of in-flight instructions causes lateness in Shotgun,
resulting in lower performance.

Recent industry trend shows that modern processors employ
a decoupled front-end [5–8] with a multi-level BTB design. A de-
coupled front-end decouples the branch prediction unit from the
instruction fetch and allows the branch predictor to generate the
address of future instructions. Modern processors like Arm Neo-
verse N1[5], AMD Zen2 [6], Samsung Exynos M3 [7] and IBM z15
[8] have high BTB capacities of 6K, 7K, 16K and 144K entries, re-
spectively. With technology scaling slowing down [9], the number
of transistors available because of reduction in transistor size is
slowing down. BTB size cannot increase with the increase in code
footprint without reducing the size of other structures, which cre-
ates a need to reduce the size of the BTB while providing similar or
better performance.

Previous work[10] for reducing the storage overhead of BTB
uses a Page Number (PN) cache to store the page numbers and
use a smaller index to the PN-cache instead of a page number, for
storing branch tag and target. The PN-cache needs to be accessed
when accessing the BTB and also to get the branch target if it is
a BTB hit. The PN-cache adds extra latency to the critical path of
accessing the BTB.
Opportunity: Figure 1 shows average performance improvement
with various state-of-the-art BTB designs [3, 4, 11, 12] normalized to
a baseline system[13] with two-level BTB, a 128-entry L1 BTB and
an 8192-entry L2 BTB. We do not show the performance and area
overheads for Phantom BTB[14, 15] and Confluence [16] for 8K-
entry BTB as it demands significant storage. Our baseline front-end
is a decoupled one with a 24-entry (192 instructions) fetch target
queue (FTQ) and a fetch directed instruction prefetcher (FDIP)[17].
We use a 57-bit virtual address (keeping in mind the recent trend of
a five-level page table[18]) with a 57-bit instruction pointer (IP). We
use 100 industry provided server workloads, which are available
through the 1st championship value prediction (CVP-1) [19]. We
extend ChampSim [20] with detailed extensions to the front-end
and the memory hierarchy. In the baseline system (Table 1) for 100
server workloads, the average BTB and L1I MPKI are 8.6 and 54.94,
respectively.

Figure 1 shows the performance improvement with the ideal BTB,
ideal L1I, and the ideal front-end. For the ideal BTB, the first instance
of a branch instruction is amiss, and the rest of the instances are hits.
For the ideal L1I, L1I misses are converted to hits only when there
is some space left in the miss status handling registers (MSHRs).
MSHRs are allocated on an L1I miss and deallocated on an L1I fill.
This method of calculating ideal numbers for the L1I takes into the
account the bandwidth constraint between L1I and L2. The ideal
front-end has both ideal BTB and ideal L1I.

A recent work [21] has shown that with a decoupled front-end,
an FDIP prefetcher, and the ideal BTB, the ideal L1I does not provide
a significant performance improvement. We also observe the same
in Figure 1 where an ideal front-end provides 3%more improvement
compared to the ideal BTB. Figure 1 also shows that state-of-the-art
BTB designs like Shotgun and SN4L+Dis+BTB provide marginal
performance improvement or require high storage like Skewed
BTB[12]. Please note that Figure 1 shows the performance of state-
of-the-art BTB designs with a decoupled front-end. To the best of

our knowledge, this is the first work that evaluates the impact of a
decoupled front-end on state-of-the-art BTB designs.
Our Contributions: We observe that not all branches require a
full target, and we can encode the branch target in fewer bits. FDIP-
X[11] uses four different BTBs to store branches with different
encoding types. We propose a single compressed L2BTB design
called MicroBTB (MBTB), storing one or multiple branches per BTB
entry. MBTB uses skewed indexing to reduce the conflict misses
arising due to halving the storage.
In summary, we make the following key contributions:-

• We show that the BTB misses are costly compared to the L1I
misses with a decoupled front-end (Section 3).

• We propose a skewed and compressed L2BTB design called
MicroBTB (MBTB) to mitigate these costly BTB misses (Sec-
tion 4).

• We show that a 4K-entry MBTB provides an average per-
formance improvement of 17.61% compared to an 8K-entry
baseline BTB, resulting in 51% storage savings (Section 5).

2 RELATEDWORK
In this section, we provide an overview of some of the state-of-the-
art BTB designs.
Phantom BTB[15]: Phantom BTB proposes a hierarchical BTB de-
sign where at the first level, it uses a conventional BTB. However, it
exploits temporal correlation among control flow jumps at the sec-
ond level, packs multiple first-level BTB misses as temporal groups,
and stores them at the last-level cache (LLC) using virtualization.
A second-level BTB with 4K temporal groups can demand up to
256KB of LLC space shared among all the cores. Unfortunately, with
this design, the performance does not improve significantly as the
level-1 BTB incurs frequent misses, and getting a response from
the level-2 BTB is usually delayed because it is limited by the LLC
access latency.
Air BTB[16]: Air BTB is a block-based BTB design in which the
BTB is in sync with the L1I cache. It stores a branch bitmap to
identify branch instructions inside the cache block. Prefetch or
demand blocks which are filled into the L1I cache are predecoded,
and the branches are stored in the Air BTB.
Shotgun BTB[3]: Shotgun BTB proposes a new BTB design seg-
regated by the type of control flow jump. It uses three kinds of
BTB: (i) C-BTB for conditional branches, (ii) U-BTB for uncondi-
tional branches, and (iii) RIB for return. Shotgun insight is that the
global control flow of a program is determined by unconditional
branches, whereas conditional branches determine the local control
flow. Most of the BTB is dedicated to unconditional branches where
it stores the spatial footprint and uses that for prefetching the next
instruction blocks. Shotgun pre-decodes conditional branches from
these prefetched blocks, which helps achieve a high hit rate for
conditional branches despite its small size.
SN4L+Dis+BTB [4]: SN4L+Dis+BTB uses baseline BTB design but
uses an additional BTB prefetch buffer to hold predecoded branches.
It proposes a next-line and discontinuity-based prefetcher for L1I
prefetching and performs a Shotgun style BTB prefetching by pre-
decoding the prefetched blocks.
FDIP-X [11]: FDIP-X uses four BTBs with different branch target
offsets, which is the distance between the branch instruction and its

2

Micro BTB: A High Performance and Storage Efficient Last-Level Branch Target Buffer for Servers CF’22, May 17–19, 2022, Torino, Italy

BASELINE IDEAL
BTB

IDEAL
L1I

IDEAL
FRONTEND

0

100

200

300

400

St
ar

va
tio

n
Cy

cle
s

Pe
r K

ilo
 In

st
ru

ct
io

ns

289.08

110.85
187.06

71.31

(a)

A B

DIRECT
JUMP

A B

DIRECT
CALL

A B

CONDITIONAL

A B

INDIRECT
JUMP

A B

INDIRECT
CALL

A B

RETURN

0

20

40

60

Cy
cle

s 35 40 37

112 87

31
24 27 25

68
53

23

A: 192-instruction FTQ
60-instruction Decode
Queue
B: 18-instruction FTQ
12-instruction Decode
Queue

FETCH STAGE
FETCH QUEUE
DECODE STAGE
DECODE QUEUE
EXECUTE STAGE

(b)
Figure 2: (a) Starvation cycles per kilo instructions for baseline, ideal BTB, ideal L1I, and the ideal front-end (b) Breakdown
of branch resolution latency with front-ends having two different queue sizes for the front-end structures: FTQ and Decode
queue. Fetch stage deals with the stalls when the instruction is in the fetch stage of the pipeline, fetching the instruction for
L1I cache. Fetch queue deals with the stalls when an instruction is in the FTQ.

target. The insight that drives FDIP-X is that branch offset lengths
are not distributed equally: conditional branches have shorter off-
sets than unconditional branches, enabling FDIP-X to store a higher
number of branches in the same storage budget.
Skewed BTB[12]: Skewed BTB design uses different set indexing
function for each way to increase the utilization of BTB entries.
Utilization increases because a branch instruction that can go to
a single set in the baseline design can go to multiple sets with the
skewed BTB design.

3 MOTIVATION
In this section, we first elaborate on why BTB misses are costly
compared to the L1I misses. We then show that the BTB miss cost
increases with an increase in queue size of the front-end structures
like FTQ and decode queue. Finally, we discuss about how to im-
prove the storage density of the BTB to reduce these costly BTB
misses.
BTB misses are costly compared to L1I misses: Figure 1 shows
that the ideal front-end provides only 3% performance improvement
on top of the ideal BTB. To understand this performance trend, we
use the metric starvation cycles per kilo instructions (SCKI). This
metric provides the number of cycles for which the decode stage is
empty, and no instruction is sent to the ROB. Higher SCKI indicates
that the front-end is a bottleneck as it under-utilizes the bandwidth
between decode stage and ROB. Figure 2(a) shows that with an ideal
BTB, the SCKI reduces to 110 from 289, but with an ideal front-end,
the SCKI reduces to 71.

On top of ideal BTB, ideal L1I does not decrease the SCKI, sig-
nificantly, because with a decoupled front-end, on an L1I miss, the
branch predictor continues to predict future instructions. The re-
quest for cache block containing these instructions is sent to the
L1I, effectively hiding the latency for future instructions as multiple
L1I requests are going in parallel. Recent work[21] also shows that
L1I prefetchers like EIP[22] and FNL+MMA[23] do not provide
significant performance improvement with a decoupled front-end
and FDIP prefetcher.

On a BTB miss, the fetch pipeline is either stalled if the branch
predictor predicts the direction of the branch is taken with high
confidence or the pipeline goes on the wrong path until the branch
instruction executes. For a direct branch/call instruction, the branch
gets resolved in the decode stage, whereas for indirect branch/call

instruction, the branch gets resolved in the execute stage. Once
the branch instruction is resolved, the front-end is flushed if it was
going on the wrong path, and the fetch stage continues with the
correct branch target.

After resolving the branch, the front-end is re-steered to the pre-
dicted taken path. There are multiple cycles for which the decode
stage is empty, and nothing is added to the ROB, while the instruc-
tions gets fetched from the L1I cache. The back-end of the processor
does not have any instructions to execute, making the BTB miss
costly in terms of performance. This motivates us to design a BTB
that can reduce the BTB misses and help in increasing the overall
performance.

Modern processors use a decoupled front-end with an increase
in queue size for the front-end structures like FTQ to support high-
performing FDIP prefetcher. We next discuss the impact of this
increase in queue size on branch resolution latency.
Impact of increasing queue size: Figure 2(b) shows the break-
down of branch resolution latency per branch type for a front-end
with a large FTQ and a small FTQ. Large FTQ has 24 entries, where
each entry can hold up to eight instructions from the same cache
line, storing 192 instructions [13]. Small FTQ has 18 entries, where
each entry can store one instruction. This showcases the impact
of different queue sizes on the branch resolution latency, which is
the time it takes for a branch instruction to resolve a BTB miss. A
branch instruction is first fetched from the L1I cache and then sent
to the decode queue for decoding. For direct branch/call instruction,
the branch gets resolved in the decode stage, whereas for indirect
branch/call instruction, the branch gets resolved in the execute
stage.

On a BTB miss, for a return instruction, the front-end gets to
know the type of instruction in the decode stage, and the fetch stage
is re-steered to access the return address stack (RAS). Since the RAS
accurately captures the return instruction target, the branch gets
resolved after the decode stage. If the target stored in RAS is wrong,
then the branch gets resolved in the execute stage.

Figure 2(b) shows that increasing the FTQ and decode queue size
increases the branch resolution latency. Note that the increase in
latency may not be on the critical path since the older instructions
that precede the BTB missing branch can still represent useful work.
The breakdown shows that the time spent in the fetch and decode
queue increases as the size of the queue increases. The decode stage

3

CF’22, May 17–19, 2022, Torino, Italy Vishal Gupta and Biswabandan Panda

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
Bits for encoding branch target offset

1

1000

Fr
eq

ue
nc

y
of

oc
cu

re
nc

e
Direct Branch
Indirect Branch

Conditional Branch
Direct Call

Indirect Call
Return

Figure 3: Frequency of occurrence of branch instructions whose target is within a specified offset. Offset refers to the distance
between branch IP and its target.

Figure 4: (a) Variants of MBTB entry. T1 and T2 store the hash of the branch instruction and O1 and O2 store the branch offset
(b) Skewed function that generates four indices for four banks (c) Tag calculation for different MBTB entry variants.

(a) (b)

Figure 5: (a) Flow of a branch instruction with a decoupled front-end and the MBTB (b) Implementation of the MBTB tag
comparison.

decodes a fixed number of instructions per cycle, but if the queue
size increases, then the time spent by an instruction in the queue
increases. This adds extra latency in resolving the branch, which
forces the front-end to be on the wrong path for higher number
of cycles. With a processor similar to our baseline system hav-
ing a 24-entry FTQ (192 instructions) and a 60-instruction decode
queue, there are many instructions in the front-end that need to
be flushed once the mis-predicted branch is resolved, and the fetch
stage moves to the correct target. For indirect branches, the penalty
is more because the increase in queue size increases the number of
instructions in the ROB. There is a delay in the execution of branch
instruction because multiple instructions competes for the shared
resource in the execute stage.
Need for a storage efficient BTB design: BTB misses are costly
compared to L1I misses, and this cost is increasing with the in-
crease in queue size with modern processors. With the slowdown

of Moore’s law, increasing the BTB size is not practical, and this
motivates to design a BTB with increased storage density.
Scope for BTB Compression:We alleviate this increase in BTB
cost by increasing the storage density of the last-level BTB that
requires storing multiple branches per BTB entry. Figure 3 shows
the branch offset bits required to encode the branch target of a
branch instruction relative to the IP of the branch instruction. We
find that storing a 57-bit branch target is not required for many
branch instructions as observed in the previous work [11]. We store
a branch IP and its offset in a BTB entry instead of the branch target.
On a BTB hit, the offset is added to the branch IP to get the branch
target. Since the bits required to store the offset are less than the
branch target, a single BTB entry can store multiple branches.

Figure 3 also shows the branch target offset required per branch

4

Micro BTB: A High Performance and Storage Efficient Last-Level Branch Target Buffer for Servers CF’22, May 17–19, 2022, Torino, Italy

type. Conditional and direct jump instructions have shorter off-
sets as these branches define the local control flow of the pro-
gram, whereas call/return instructions have longer offsets as these
branches define the global control flow of the program [3].

4 MICRO BTB: DESIGN AND
IMPLEMENTATION

Using our observation that multiple branches can be stored using
offsets, we propose a skewed and compressed L2 BTB called Mi-
croBTB (MBTB). MBTB stores a hash of the branch instruction
as tag and branch target as offset. Our baseline front-end is a de-
coupled one with FTQ that stores the predictions from the branch
prediction unit until these instructions get consumed by the L1I.
L1BTB design is the same as in the baseline system. Halving the
storage increase conflict misses, and we use skewed indexing to
reduce these conflict misses with the MBTB. We use a return ad-
dress stack (RAS) that is a part of the baseline front-end to get the
branch target of a return branch instruction. We use ITTAGE [2]
for indirect branch prediction.
Compressed MBTB entry: Figure 4(a) shows two different types
of variants which an MBTB entry can store. We find that increasing
the number of variants increases the complexity and decreases
performance gains. Section 5 shows the effect of more variants with
MBTB. Variant 0 is uncompressed, and it stores a single branch
instruction and its target. Variant 1 stores two branch instructions
per entry depending on the size of offsets bit required to encode
the distance between branch instruction and its target. Each offset
field’s most significant bit stores the direction of the branch i.e.
whether it is a forward or a backward branch. Branch instruction
that requires more than 15 bits for encoding the offset uses the
uncompressed variant 0. Branch instructions that require less than
15 bits for encoding the offset uses the compressed variant.
Skewed set and Tag address generator: To minimize BTB con-
flict misses by spreading out the BTB accesses across all the sets,
we generate four different MBTB set numbers using a skewing
function[24, 25]. The skewing function generates different set num-
bers mapped to four different banks for addresses that would have
otherwise conflicted using the baseline indexing function. Fig-
ure 4(b) describes the skewing function used. Figure 4(c) shows that
MBTB uses lower 28 bits of the branch IP for both variant 0 and
variant 1.

4.1 Design
Figure 5(a) shows the flow of a branch instruction through a decou-
pled front-end with MBTB.
BTB access: The address of the branch instruction goes through L1
BTB and branch predictors (1○). Simultaneously, the address goes
through the skewed set generator and the tag address generator
(1○). If there is a hit in L1 BTB (2○), then the branch target from L1
BTB goes to the FTQ and we drop the current request to MBTB.
If we get a miss in L1 BTB (2○), then we access the MBTB. The
skewed set generator provides four different set numbers for each
bank. We check the variant and compare the tag present in each
entry based on the variant, to check if it is a hit or not. Simultane-
ously, we extract the offset from MBTB entry. If there is a MBTB
hit (3○), then we add/subtract the offset to the branch IP based on

the most significant bit in the offset field and send it to the FTQ
(4○). If there is a MBTB miss, then the branch instruction goes to
the subsequent stages of the processor pipeline to get the branch
target.
Instruction fetch: Instructions from the FTQ send requests to L1I
(5○). Since, L1I is virtually indexed, physically tagged (VIPT), ITLB
is accessed to get the physical address and then L1I is accessed. If
the request hits in L1I, the instruction is sent back to FTQ, else if it
misses, it goes to the lower level of cache hierarchy (6○). Instruction
cache block is fetched from the lower levels of cache hierarchy and
filled in L1I (7○) and the instruction is sent to the FTQ.
BTB insertions and updates: For direct jump/call and conditional
types of branches, we get the target in the decode stage, and we
insert the target into the L1 and L2 BTBs (8○). For indirect jump/call
and return types of branches, we get the target after the branch
is executed in the execute stage and then we update the L1 and
L2 BTBs (8○). Note that the FTQ also gets updated with the target.
BTB updates during the wrong-path execution affect performance.
However, with the MBTB, BTBMPKI is extremely low (more details
in Section 5) and the wrong-path BTB updates do not affect the
overall performance improvement significantly.

4.2 Implementation
MBTB is a 4096-entry skewed L2BTB with four banks, each of
1024 sets that are direct-mapped, implemented as four SRAM ta-
bles. To get the effect of 4-way skewed associative mapping, we
generate four BTB set numbers scattered across four banks for a
given branch IP. On an MBTB insertion, if we do not find a BTB
entry to allocate, then we choose a victim out of those four BTB
entries through a random replacement policy. We find marginal
utility with more sophisticated replacement policies as the BTB
MPKI drops significantly due to compression. Each entry in MBTB
has a 56-bit tag field, a 32-bit offset field, two bits to determine the
branch type, and one bit to determine the variant, totaling 91 bits.
Storage savings: MBTB has 4096 entries where each entry is of
91 bits. The storage overhead for MBTB is 45.5KB. The baseline
system uses an 8192-entry L2BTB where each entry has a 32-bit
tag field, a 57-bit target field, 2-bit LRU, and two bits to determine
the branch type totaling 93 bits. The storage overhead for baseline
L2BTB is 93KB. MBTB provides a storage savings of 47.5KB and
an average performance improvement of 17.61% compared to an
8K entry baseline BTB. Section 5 provides detailed performance
improvement.
MBTB Tag Comparison: The tag address and the skewed set gen-
erator for the MBTB operate on the same clock cycle when the L1
BTB is accessed. On the first cycle, the skewed set generator gener-
ates four different set numbers mapped to four different banks from
a 57-bit IP, and concurrently the tag address generator generates a
tag for different variants. If there is an L1 BTB miss, then we check
the MBTB.

Figure 5(b) shows the steps for MBTB tag comparison. The tag
field of the MBTB is of 56 bits, consisting of two 28-bit chunks. On
cycle 1, the tags T1 and T2 are read from the MBTB entry selected
by the skewed set generator. On cycle 2, the 28-bit comparator
compares the tag bits from the tag address generator to the bits
stored in the MBTB entry. The OR gate combines the result, and

5

CF’22, May 17–19, 2022, Torino, Italy Vishal Gupta and Biswabandan Panda

Table 1: Parameters of the baseline system.

Core 4 GHz, out of order, hashed perceptron branch predictor for conditional branches [1]
that merges [26], [27], and [1] with branch prediction accuracy of 99.6%. ITTAGE
[2] for indirect branches, 24-entry FTQ, 60-entry decode queue, OoO width: 6, ROB
size: 352, RAS: 32 entries

BTB L1BTB: 128 entry (64 sets, 2 way, LRU), 1 cycle
L2BTB: 8192 entry (2048 sets, 4 way, LRU), 2 cycle

Caches L1I: 32KB (8-way), LRU, 16 MSHRs, FDIP prefetcher[17], 4 cycles
L1D: 48KB (12-way), LRU, 16 MSHRs, IPCP prefetcher[28], 5 cycles
L2: 512KB (8-way), SRRIP[29], 32 MSHRs, IPCP prefetcher[28], 10 cycles
L3: 2MB, 16 way, DRRIP[29], 64 MSHRs, 20 cycles

DRAM 4 GB, 1 channel, 6400 MT/sec

Table 2: BTB designs with their storage requirements.

Front-ends BTB L1I
prefetcher

Total stor-
age

Baseline 2048 sets and 4 ways, 32-bit tag, 57-bit
target IP, two LRU bits, two branch type
bits

FDIP
prefetcher

93 KB (8K
entry)

Shotgun Basic block based BTBs: 4096 entry UBTB
(4-way, 114 bits per entry), 2048 entry
CBTB (4-way, 97 bits per entry), and 2048
entry RIB (4-way, 40 bits per entry)

BTB di-
rected
prefetcher

91.25 KB
(8K entry)

SN4L+DIS+ BTB Baseline BTB (93KB for 8K entry) As de-
scribed in
the paper
[4], 7.6KB

100.6 KB
(8K entry)

Skewed BTB 2048 sets and 4 way, 32-bit tag, 57-bit tar-
get IP, two branch type bits

FDIP
prefetcher

91 KB (8K
entry)

FDIPX BTB 6144 entry 8-bit offset BTB (4 ways, 29 bits
per entry), 6144 entry 13-bit offset BTB (4
way, 34 bits per entry), 6144 entry 23-bit
offset (4 way, 44 bits per entry) and 896
entry 57-bit offset BTB (4 way, 77 bits per
entry)

FDIP
prefetcher

66.92 KB

MBTB 1024 sets and 4 way, 56-bit tag field, 32-bit
offset field, two branch type bits and one
variant bits

FDIP
prefetcher

45.5 KB
(4K entry)
91 KB (8K
entry)

if the output is one, then it is a BTB hit, or else it is a BTB miss.
All the offsets are extracted concurrently with the tag comparison
process. After the tag comparison, the offset is added to the branch
IP to get the branch target. The branch target is added to the FTQ.
Storing Indirect Branches in MBTB: Direct and conditional
types of branches have a single target, for which the variant is
fixed, unlike indirect branches. Indirect branches can have multiple
offsets depending on the distance between branch IP and the target
IP. An indirect branch stored in MBTB in variant-1 format can re-
quire variant-0 if the offset between the current IP and the branch
target is more than 15 bits. In this case, we invalidate the entry with
variant-1, and we select a victim amongst the four entries provided
by the skewed set generator using a random replacement policy.
We evict the victim entry and then insert the indirect branch with
variant-0.
Storing Return Branches in MBTB: Return type of branch in-
structions do not need to store their branch target in the BTB as
RAS is used to get the target. We still need to track the return in-
struction in the BTB because the pipeline only knows about the
type of instruction in the decode stage. At the fetch stage, BTB
helps in identifying branch instruction and its type. We store the
return instructions with variant-1 as it takes the least storage.

5 EVALUATION
5.1 Evaluation Methodology
We evaluate BTB designs based on the following metrics: (i) perfor-
mance in terms of IPC improvement, (ii) BTB miss coverage, and

(iii) SCKI. We first evaluate the MBTB’s effectiveness in eliminating
BTB misses. We then discuss the significance of skewed indexing
in MBTB. Finally, we show the sensitivity studies on the number of
variants, MBTB size, MBTB ways, and MBTB access latency.
Workloads and infrastructure: We use 100 server workloads
released publicly with CVP-1 [19] (co-located with ISCA ’18) which
shows the highest sensitivity to BTB and L1I. A subset of these work-
loads were used in 1st instruction prefetching championship [31]
co-located with ISCA 2020. These workloads contain instruction
traces of both user and kernel level. We use an in-house extension of
ChampSim [20] simulator. We extend ChampSim with detailed de-
coupled front-end [17], back-end, memory hierarchy, and a detailed
memory system. Our extension supports BTBs, RAS, FTQ, VIPT L1
caches, and a detailed virtual memory system (five-level page table
walker (PTW) and four memory management unit (MMU) caches
to back the PTW). The three-level cache hierarchy also stores the
page translations. Table 1 shows the parameters used, which are
similar to the recent Intel Sunny Cove [13][21]. For each trace, we
first warmup for 50M instructions and then report performance for
the next 50M instructions.
BTB designs: Based on the performance improvement and storage
overhead, we use the following recent works for our evaluation: (i)
Shotgun [3] (ii) SN4L+Dis+BTB [4], (iii) Skewed BTB [12] and (iv)
FDIP-X [11]. Table 2 provides the details about these techniques.
We use PCACTI [32] to measure BTB access latency for different
BTB organizations.

5.2 BTB MPKI and Performance Improvement
Figure 6(a) shows the BTB misses per kilo instructions (MPKI) of
different state-of-the-art BTB designs. The change in BTB MPKI
directly correlates with the SCKI for different BTB designs, as shown
in Figure 6(b). Figure 6(c) shows the performance improvement with
state-of-the-art BTB designs and a 4K and 8K entry MBTB. A 4K-
entry MBTB compared to an 8K-entry L2BTB baseline provides an
average performance improvement of 17.61%, whereas an 8K-entry
MBTB provides an average performance improvement of 16.91%.
Ideal BTB provides an average performance improvement of 20.38%.

MBTB of 4K-entry decreases the BTB MPKI from 8.6 to 1.35.
The decrease in BTB MPKI results in SCKI reduction from 289 to
138, which is closer to SCKI of the ideal BTB of 110. The decrease
in BTB MPKI stalls the decode stage for fewer cycles, resulting in
the reduction in the SCKI. MBTB of 4K-entry is able to capture, on
average, 6266 branches in the L2BTB. This increase in the number of
branches is what helps MBTB to reduce the BTB MPKI significantly.
An 8K-entry MBTB reduces the MPKI from 1.35 to 1.24 compared to
a 4K-entry MBTB, but it still provides lower performance because of
an increase in access time of the MBTB. A 4K-entry MBTB can be
accessed in two cycles, whereas an 8K-entry MBTB takes three cycles to
access. An 8K-entry MBTB will be more effective with higher code
footprint workloads or when workloads are running in parallel on
a single core i.e. simultaneous multi-threading (SMT).

Shotgun BTB of 8K entry increases MPKI from 8.6 to 9.29 com-
pared to a baseline system. Shotgun has a large BTB for uncondi-
tional branches and a small BTB for conditional branches. It uses
BTB prefetching to prefetch conditional branches and uses the re-
tire order stream to learn what to prefetch. Retire order stream

6

Micro BTB: A High Performance and Storage Efficient Last-Level Branch Target Buffer for Servers CF’22, May 17–19, 2022, Torino, Italy

BA
SE

LI
NE

SH
OT

GU
N

- 8
K

SN
4L

+D
IS

+
BT

B
- 8

K
SK

EW
ED

BT
B

- 8
K

FD
IP

X
- 8

K

M
BT

B
- 4

K

M
BT

B
- 8

K0

10

20

L2
BT

B
M

PK
I

8.
60 9.
29

8.
40

1.
09 2.
45

1.
35

1.
24

BA
SE

LI
NE

SH
OT

GU
N

- 8
K

SN
4L

+D
IS

+
BT

B
- 8

K
SK

EW
ED

BT
B

- 8
K

FD
IP

X
- 8

K

M
BT

B
- 4

K

M
BT

B
- 8

K

ID
EA

L
BT

B0

250

500

St
ar

va
tio

n
Cy

cle
s

Pe
r K

ilo
In

st
ru

ct
io

ns

28
9.

08

30
6.

19

28
4.

03

14
6.

95

21
6.

40

13
8.

25

15
3.

42

11
0.

86

SH
OT

GU
N

- 8
K

SN
4L

+D
IS

+
BT

B
- 8

K
SK

EW
ED

BT
B

- 8
K

FD
IP

X
- 8

K

M
BT

B
- 4

K

M
BT

B
- 8

K

ID
EA

L
BT

B

0

20

40

Pe
rfo

rm
an

ce
Im

pr
ov

em
en

t(%
)

-2
.3

3

0.
38

17
.0

8

11
.9

5

17
.6

1

16
.9

1

20
.3

8

(a) (b) (c)

Figure 6: State-of-the-art BTB designs and MBTB evaluated on the following metrics :- (a) L2BTB Misses per Kilo Instructions
(Lower the better) (b) Stall Cycles per Kilo Instructions (Lower the better) (c) Performance Improvement (Higher the better).
8K-entry MBTB provides lower performance compared to 4K-entry MBTB due to increase in access latency. 4K-entry MBTB
outperforms all other competitive BTB organizations.

97000 97200 97400 97600 97800 980000

200

400

600

Nu
m

be
r o

f i
n-

fli
gh

t
in

st
ru

ct
io

ns

Sunny Cove
Broadwell

(a)

MBTB
- 4K

MBTB
 - 8K

MBTB
- 4K

MBTB
 - 8K

MBTB
 - 4K

MBTB -
8K

IDEAL
BTB

0

20

40

Pe
rfo

rm
an

ce
Im

pr
ov

em
en

t(%
)

-2
4.

88

17
.0

8

-3
.4

2 14
.9

0

17
.6

1

16
.9

1

20
.3

8

Skewed
Indexing Compression

Skewed
Indexing +
Compression

(b)

Figure 7: (a) Number of in-flight instruction with a system similar to Intel Sunny Cove[13] and Broadwell[30]micro-architecture
(b) Performance improvement of MBTB with only skewed indexing, only compression and both skewed indexing and compres-
sion compared to 8K-entry L2BTB baseline.

MBTB-4K
2 variants

MBTB-4K
3 variants

MBTB-4K
4 variants

0

10

20

Pe
rfo

rm
an

ce
Im

pr
ov

em
en

t(%
)

17.61 16.63
13.05

MBTB-4K
2 variants

MBTB-4K
3 variants

MBTB-4K
4 variants

0

50000

100000

Nu
m

be
r o

f
Ev

ict
io

ns

29153 32102

98914

(a) Performance Improvement (b) Number of Evictions

Figure 8: Variant sensitivity of a 4K entry MBTB.

provides better learning as it is free from the wrong execution path
taken by the processor due to inaccurate branch prediction or a
BTB miss. However, with modern-day high-performing processors
becoming deeper and wider with each generation, these schemes
fail to improve performance. For example, Intel’s Broadwell[30] has
a 192-entry Reorder Buffer (ROB) with an instruction throughput of
four instructions per cycle, which increases to 352-entry ROB and
six instructions per cycle with Intel’s Sunny Cove processor[33].
The increase in ROB size increases the number of in-flight instruc-
tions. Figure 7(a) shows the number of in-flight instructions in
the pipeline for a particular phase of a server trace for a system
similar to Broadwell and Sunny Cove processors. The number of
in-flight instructions is taken every ten cycles during the simulation
phase. The in-flight instruction includes the instruction in the fetch,
decode and execute stage of the pipeline.

In the baseline system with 24 entry (192 instruction) FTQ, 60-
entry decode queue, and 352-entry ROB, there can be a maximum

of 604 instructions in the pipeline if all the queues are full. Fig-
ure 7(a) shows that on average, in the baseline system, there are
200 instructions in-flight for this trace, with a maximum of 557.
Shotgun[3] uses a configuration similar to the Broadwell processor
in which the average number of in-flight instruction is 45, with a
maximum reaching around 100. This 4x increase in the number of
instructions in the pipeline leads to an increase in BTB MPKI with
Shotgun. As the number of instructions increases, the fetch stage is
much further in the program execution order than the retire stage,
and since, Shotgun learns based on the retire order stream, it gets
delayed. Shotgun is not able to issue timely prefetch requests for
BTB prefetching, which results in higher BTB MPKI.

SN4L+Dis+BTB decreases the BTBMPKI slightly from 8.6 to 8.4.
This is because it uses BTB pre-decoding to decode branches from
the instruction cache blocks brought by the SN4L+Dis prefetcher.
Due to large code footprint server workloads, the baseline system
has an L1I MPKI of 54. SN4L+Dis prefetcher reduces the L1I MPKI to
46. Since the L1I prefetcher cannot reduce the L1IMPKI significantly,
BTB pre-decoding dependent on the L1I prefetcher cannot decode
the branches in a timely manner.

5.3 Importance of Skewed Indexing
Figure 7(b) shows the performance improvement of a 4K and 8K
entry MBTB with skewed indexing, compression, and both skewed
indexing and compression. For a 4K-entry MBTB with just skewed

7

CF’22, May 17–19, 2022, Torino, Italy Vishal Gupta and Biswabandan Panda

M
BT

B
- 2

K

M
BT

B
- 3

K

M
BT

B
- 4

K

M
BT

B
 -

6K

M
BT

B
 -

8K

ID
EA

L
BT

B

0

10

20

30

Pe
rfo

rm
an

ce
Im

pr
ov

em
en

t(%
)

-3
7.

20

-8
.9

8

17
.6

1

17
.8

7

16
.9

1

20
.3

8

2
wa

y

8
wa

y

16
 w

ay

2
wa

y

4
wa

y

8
wa

y

16
 w

ay

-1
1.

20

9.
21

-1
1.

43 3.
86

17
.6

1

16
.8

0

16
.7

6

M
BT

B-
4K

1
cy

cle

M
BT

B-
4K

2
cy

cle

M
BT

B-
4K

3
cy

cle

M
BT

B-
4K

4
cy

cle

M
BT

B-
4K

5
cy

cle

ID
EA

L
BT

B

18
.1

5

17
.6

1

16
.6

1

14
.7

1

10
.6

3

20
.3

8

BASELINE BTB-8K MBTB-4K
(a) (b) (c)

Figure 9: (a) MBTB storage sensitivity. Performance drops after 6K-entry MBTB because of increase in BTB access time (b) Way
sensitivity with 8K-entry Baseline BTB and 4K-entry MBTB (c) Access latency sensitivity with 4K-entry MBTB.

indexing, the performance decreases by 24.88%, whereas with com-
pression, the performance decreases by 3.42%. When skewed in-
dexing and compression are used, MBTB of 4K entry improves
performance by 17.61% compared to 8K-entry baseline BTB.

The increase in performance is mainly due to the increase in the
number of branches stored in the BTB. Only skewed indexing is
able to capture 4090 branches, whereas only compression captures
5496 branches. With compression and skewed indexing, MBTB is
able to capture 6266 branches, which results in improved perfor-
mance. Note that the baseline BTB captures less then 2800 branches.
The skewed indexing allows for better utilization of BTB entries,
and it spreads the branches to multiple sets. This improves the
compression scheme as many branches can map to entries which
would not have been possible without skewed indexing.

With an 8K-entry BTB size, we see an opposite trend, and only
skewed indexing performs better compared to using compression
and with both skewed indexing and compression. This is because
of the additional cycle latency added due to tag comparison when
using compression. The increase in latency decreases the perfor-
mance slightly from 17.08% with only skewed indexing to 16.91%
with skewed indexing and compression.

5.4 Sensitivity study
Sensitivity to the number of variants: Figure 8(a) shows the
performance improvement of a 4K-entry MBTB with increasing the
number of variants from two to four. The third variant stores four
branch instructions per entry. MBTB stores branch instructions
in the third variant if the offset requires less than eight bits. The
fourth variant can store eight branch instructions per entry. MBTB
stores branch instructions in the fourth variant if the offset requires
less than four bits.

Figure 8(a) shows that with increasing the number of variants,
the performance decreases. This is due to an increase in the number
of evictions with the increase in the number of variants as shown in
Figure 8(b). In an MBTB with four variants, a branch that requires
variant-1 can evict an entry with variant-3, resulting in evictions
of multiple branches. Insertion of these evicted branches on reuse
will evict more branches, resulting in higher BTB MPKI.
Storage sensitivity: Figure 9(a) shows the MBTB performance
with different storage size from 2K to 8K entries. We fix the number
of ways to four and increase the number of sets. 4K-entry MBTB
provides a sweet spot in terms of storage savings and performance
improvement. Adding 2K-entry on top of a 4K-entry MBTB im-
proves performance by only 0.26%.

Sensitivity to the number of ways: Figure 9(b) shows the perfor-
mance improvement of 8K-entry baseline BTB and 4K-entry MBTB
from 2 to 16 ways normalized to an 8K-entry baseline BTB with
four ways. We observe an increase in performance when doubling
the ways from four to eight in baseline BTB, but a decrease in
performance with 16 ways due to an increase in access latency.
4K-entry MBTB with four ways outperforms baseline BTB with
different number of ways.

With a 2-way MBTB, the performance is less compared to a
4-way MBTB. This is because the number of branches captured
reduces from 6266 branches with a 4-way MBTB to 5549 branches
with a 2-way MBTB. With a 2-way MBTB, the skewed indexing
can map branches to two sets instead of four sets with a 4-way
MBTB. The reduction in the spread of branches causes a decrease
in the number of branch instructions captured, resulting in lower
performance.
Sensitivity to L2BTB access latency: Figure 9(c) shows the per-
formance improvement of an 4K-entry MBTB when varying the
access latency from one to five cycles. With a 4-cycle MBTB of 4K
entry, the performance still improves by 14.71% compared to an 8K-
entry baseline BTB. This shows that as long as the BTB is accurate
in providing branch targets, a slight increase in BTB latency does
not impact much on the performance.

6 SUMMARY
In this paper, we make a case for a compressed and skewed indexed
L2BTB design called MicroBTB(MBTB) to mitigate BTB bottlenecks
and provide storage savings. Compression helps in increasing the
storage density, whereas skewed indexing helps in providing uni-
form BTB access across BTB sets. Contrary to the industry trend of
large BTBs, we make a case for relatively small yet effective L2BTB.

Averaged across 100 industry-provided server workloads, a 4K-
entry MBTB provides 17.61% performance improvement compared
to an 8K-entry baseline BTB providing a storage savings of 47.5KB.
Overall, MBTB is a lightweight and high-performance BTB design
that can scale to future workloads with a higher branch footprint
and can be easily adopted by the industry.

7 ACKNOWLEDGEMENTS
The authors would like to thank Mainak Chaudhuri, Shankar Bal-
achandran, Anant Nori, and Niranjan Soundararajan for their valu-
able feedback on the earlier draft. This work is supported by the
SRC grant SRC-2922.001.

8

Micro BTB: A High Performance and Storage Efficient Last-Level Branch Target Buffer for Servers CF’22, May 17–19, 2022, Torino, Italy

REFERENCES
[1] D. Tarjan and K. Skadron, “Merging path and gshare indexing in perceptron

branch prediction,” ACM Trans. Archit. Code Optim., vol. 2, p. 280–300, sep 2005.
[2] A. Seznec and P. Michaud, “A case for (partially) tagged geometric history length

branch prediction,” J. Instr. Level Parallelism, vol. 8, 2006.
[3] R. Kumar, B. Grot, and V. Nagarajan, Blasting through the Front-End Bottleneck with

Shotgun, p. 30–42. New York, NY, USA: Association for Computing Machinery,
2018.

[4] A. Ansari, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Divide and conquer frontend
bottleneck,” in 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), pp. 65–78, 2020.

[5] Pellegrini et al., “The arm neoverse n1 platform: Building blocks for the next-gen
cloud-to-edge infrastructure soc,” Micro’20.

[6] Suggs et al., “The amd “zen 2” processor,” IEEE Micro, 2020.
[7] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A. Jiménez, T. Nakra, P. Kitchin,

R. Hensley, E. Brekelbaum, V. Sinha, and A. Ghiya, “Evolution of the samsung
exynos cpu microarchitecture,” in 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA), pp. 40–51, 2020.

[8] N. Adiga, J. Bonanno, A. Collura, M. Heizmann, B. R. Prasky, and A. Saporito,
“The IBM z15 high frequency mainframe branch predictor industrial product,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), pp. 27–39, 2020.

[9] Brooks, “What’s the future of technology scaling?,” 2018.
[10] A. Seznec, “Don’t use the page number, but a pointer to it,” in Proceedings of the

23rd Annual International Symposium on Computer Architecture, ISCA ’96, (New
York, NY, USA), p. 104–113, Association for Computing Machinery, 1996.

[11] Asheim et al., “Fetch-directed instruction prefetching revisited,” 2020.
[12] A. Seznec, “A case for two-way skewed-associative caches,” in Proceedings of the

20th Annual International Symposium on Computer Architecture, ISCA ’93, (New
York, NY, USA), p. 169–178, Association for Computing Machinery, 1993.

[13] Intel SunnyCove. https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove.
[14] C. Kaynak, B. Grot, and B. Falsafi, “Shift: Shared history instruction fetch for lean-

core server processors,” in 2013 46th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 272–283, 2013.

[15] I. Burcea and A. Moshovos, “Phantom-btb: A virtualized branch target buffer
design,” vol. 37, p. 313–324, mar 2009.

[16] C. Kaynak, B. Grot, and B. Falsafi, “Confluence: Unified instruction supply for
scale-out servers,” in 2015 48th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pp. 166–177, 2015.
[17] G. Reinman, B. Calder, and T. Austin, “Fetch directed instruction prefetching,” in

Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microar-
chitecture, MICRO 32, (USA), p. 16–27, IEEE Computer Society, 1999.

[18] Intel 5-level Paging and 5-level EPT. https://software.intel.com/
sites/default/files/managed/2b/80/5-level paging white paper.pdf.

[19] Championship Value Prediction. https://www.microarch.org/cvp1/.
[20] ChampSim. https://github.com/ChampSim/ChampSim.
[21] Y. Ishii, J. Lee, K. Nathella, and D. Sunwoo, “Re-establishing fetch-directed instruc-

tion prefetching: An industry perspective,” in 2021 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pp. 172–182, 2021.

[22] A. Ros and A. Jimborean, “A cost-effective entangling prefetcher for instructions,”
in 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA), pp. 99–111, 2021.

[23] Seznec, “The fnl+mml instruction cache prefetcher,” in IPC-1 @ ISCA’20.
[24] F. Bodin and A. Seznec, “Skewed associativity enhances performance predictabil-

ity,” in Proceedings of the 22nd Annual International Symposium on Computer
Architecture, ISCA ’95, (New York, NY, USA), p. 265–274, Association for Com-
puting Machinery, 1995.

[25] F. Bodin and A. Seznec, “Skewed associativity improves program performance
and enhances predictability,” IEEE Transactions on Computers, vol. 46, no. 5,
pp. 530–544, 1997.

[26] D. Jimenez, “Fast path-based neural branch prediction,” in Proceedings. 36th
Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-
36., pp. 243–252, 2003.

[27] S. Mcfarling, “Combining branch predictors,” tech. rep., 1993.
[28] S. Pakalapati and B. Panda, “Bouquet of instruction pointers: Instruction pointer

classifier-based spatial hardware prefetching,” in 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pp. 118–131, 2020.

[29] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer, “High performance cache
replacement using re-reference interval prediction (rrip),” in Proceedings of the
37th Annual International Symposium on Computer Architecture, ISCA ’10, (New
York, NY, USA), p. 60–71, Association for Computing Machinery, 2010.

[30] BroadwellMicro-architecture. https://en.wikichip.org/wiki/intel/microarchitectures/
broadwell.

[31] First Instruction Prefetching Championship, https://research.ece.ncsu.edu/ipc/.
[32] Pcacti tool, Online. Available: https://sportlab.usc.edu/downloads/.
[33] Intel Sunny Cove micro-architecture. https://www.anandtech.com/show/

14514/examining-intels-ice-lake-microarchitecture-and-sunny-cove/3.

9

https://sportlab.usc.edu/downloads/

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 Micro BTB: Design and implementation
	4.1 Design
	4.2 Implementation

	5 Evaluation
	5.1 Evaluation Methodology
	5.2 BTB MPKI and Performance Improvement
	5.3 Importance of Skewed Indexing
	5.4 Sensitivity study

	6 Summary
	7 ACKNOWLEDGEMENTS
	References

