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Abstract—Cross-core conflict-based timing attacks like Prime+Probe at the
shared last-level cache (LLC) are practical and can cause information leakage.
Cache address randomization is one of the techniques that claim to mitigate these
attacks. CEASER, CEASER-S, and ScatterCache are the three recent
randomized caches that use encryption engines to randomize the memory
address mapping. CEASER and CEASER-S, along with encryption engines,
remap the cache blocks periodically to break the static mapping of memory blocks
into the LLC blocks. Encryption engine and remapping provide security to the
randomized caches. However, access to encryption engines and the remapping of
cache blocks are on the critical path of LLC accesses. We target encryption engine
and remapping of randomized cache to mount a denial of service (DoS) attack
named DAMARU. In DAMARU, the attacker frequently sends memory requests to
the LLC that causes an increase in the victim’s LLC access waiting time for the
encryption engine. DAMARU is the first DoS attack on randomized caches where
an attacker can cause a DoS even without thrashing the LLC. DAMARU provides a
performance slowdown of up to 3.19X and 6X for 8-core and 16-core simulated
systems, respectively. In terms of performance slowdown, the effectiveness of our
DAMARU attack decreases with an increase in the number of encryption engines.

Index Terms— Cache memory, side-channel attacks, encryption
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1 INTRODUCTION

ON a multi-core system, the last-level cache (LLC) is shared among
different cores. However, this sharing leads to different conflict-
based attacks like Prime+Probe[1]. In conflict-based attacks, an
attacker process creates an eviction set [1] by filling its data blocks
into a cache set and by carefully evicting the victim’s cache blocks.
The reason behind such attacks is the static mapping of memory
blocks into the LLC. Randomized caches such as CEASER[3],
CEASER-S[4], and ScatterCache[5] break the traditional static map-
ping of the memory blocks to the cache sets. These techniques use
an encryption engine that provides a random cache location based
on a secret key. CEASER and CEASER-S provide a dynamic map-
ping of addresses to cache sets by periodically changing the secret
key. ScatterCache is based on the skewed-associative cache[16] that
randomly selects a skew to break the static mapping.

Randomized caches[3], [4], [5] claim to secure the LLC against
conflict-based attacks with negligible performance overhead.
While recent work [7] shows that the randomized caches are vul-
nerable to conflict-based attacks, we challenge the performance
claims of these randomized caches. In this work, we use the non-
linear ciphers, PRINCE as proposed by [7], and QARMAI5] that
take eight and five cycles for encryption and decryption, respec-
tively. CEASER and CEASER-S claim to have an average perfor-
mance slowdown of 1% with Low-Latency Block Cipher (LLBC)
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[3], a linear cipher. ScatterCache claims to have an average perfor-
mance slowdown of 2% with QARMA([6], a non-linear cipher.

The Problem. Encryption engine and the remapping process play
a crucial role in the randomized caches, providing strong security
guarantees. Both are on the critical path of LLC accesses and
become the sources for a denial of service (DoS) attack.

Our Approach. We target the encryption engine implementation
and remapping of randomized LLC to mount a DoS attack named
DAMARU' on a multi-core. Our attacker frequently accesses the
LLC and ensures that it gets ~100% hit rate at the LLC. Through
this process, our attacker denies the service of the encryption
engine. This causes an increase in the victim’s access waiting time
for the encryption engine at the LLC. Frequent LLC accesses also
invoke remapping and stall the LLC. The remapping process also
evicts the victim’s LLC blocks, increasing the victim’s LLC miss
count. Current DoS attack detectors[10] can not detect our attack as
current detectors monitor the LLC misses, which is negligible for
the DAMARU attacker. We choose four representative SPEC CPU
2017 benchmarks with low to high L2C and LLC misses per kilo
instructions (MPKIs), as the victim processes. We provide a maxi-
mum slowdown of 3.19X and 6X with the state-of-the-art hardware
prefetcher [14] on an 8-core and 16-core system, respectively. How-
ever, in terms of performance slowdown, the effectiveness of our
DAMARU attack decreases with an increase in the #encryption
engines.

Note that the primary goal of randomized caches is to provide
security against conflict-based attacks, and these techniques are
effective even in the presence of DAMARU attackers. In a nutshell,
our contributions are as follows: (i) We propose a new class of DoS
attack where a DoS attacker can be an LLC fitting application and
the current DoS attack detectors can not detect. This is in contrast
to previous DoS attacks [8], [10] where the attacker thrashes the
LLC (Section 3). (ii) We evaluate the effectiveness of our attack on
simulated multi-core systems. We quantify the major reasons for
the performance slowdown (Section 4).

2 BACKGROUND

Mitigations for conflict-based LLC attacks fall into two categories,
namely randomization based [3], [4], [5], and cache partitioning
based [17] and [18]. The partitioning based approach partitions the
LLC among different cores and mitigates the cross-core conflict-
based attacks. While the partitioning-based approaches can cause
significant performance degradation [17], [18], randomization-
based approaches claim to provide robust security guarantees with
a marginal performance overhead, a win-win approach in terms of
security and performance. Randomized LLCs can be used to pro-
vide security against cross-security domain conflict attacks, where
a security domain can be a process, group of processes within a
container, or a virtual machine. So, the proposed DAMARU attack
is a threat to any system that uses randomized LLCs. The key idea
of randomized caches is to map cache blocks to random sets
dynamically. Encryption based randomization techniques are
lightweight in terms of hardware storage. Some of the techniques
that implement encryption engine based randomization are
CEASER, CEASER-S, and ScatterCache.

CEASER encrypts a physical address based on a key to get the
encrypted address on an LLC access. CEASER uses two encryption
engines per LLC slice. It chooses a cache set based on this
encrypted address. It also remaps a cache block after every 100
LLC accesses to ensure that the attacker cannot create an eviction

1. DAMARU is a two-headed drum. In this paper, two heads represent the
confidentiality and the availability aspects of security.
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Fig. 1. DoS at the encryption engine with CEASER. PQ/RQ/WQ:prefetch/read/
write queues. MSHRs stands for miss status holding registers.
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set. CEASER uses LLBC cipher that takes two cycles for encryption
and decryption. It claims to be secure against [1], which used to be
the best state-of-the-art algorithm for eviction set creation. How-
ever, Vila et al. proposed a faster eviction set creation [2] which
breaks CEASER. To tolerate such attacks, CEASER needs to remap
frequently, which brings a lot of performance overhead.

CEASER-S and ScatterCache are based on the skewed cache[16]
that does way-based partitioning, where each partition has a differ-
ent mapping function. CEASER-S and ScatterCache use four and
one encryption engines, respectively. These designs randomly
select a partition to fill a cache block, and the partition’s hash func-
tion provides a set number. As LLBC is not secure, and instead, a
non-linear PRINCE [9] can be used with CEASER and CEASER-S.

Listing 1. DAMARU Attacker Code Snippet

//NUM_SLICES : Number of LLC slices
//MAX_PRIVATE_ASSOC : Maximum L1/L2C associativity
//NUM_L2C_SET : Number of cache sets in L2C
//arr : array of size equals to LLC
//array_element_size : 8 bytes
6 chunk_size = cache_block_size/array_element_size
bits_in_control= Page_Offset-Block_Offset
blocks_in_control = 2bits_in_control
blocks not in control= 2L2C_indeac_bits—bits_in_control
while (1) {

for (i=1 to NUM_SLICES)

for (j=1 to MAX_PRIVATE_ASSOC+1)

for (k=1 to blocks_not_in_control)

1 x = arr[((jXL2C_SET)+(kxblocks_in_control)+
i)xXchunk_size]
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3 DAMARU ATTACK

Attacker’s Goal. A encryption engine(s), which are placed beside an
LLC slice, can be non-pipelined or pipelined. On a non-pipelined
encryption engine, a major (one cycle less than the encryption
latency) portion of the encryption latency becomes unused due to
non-overlapped execution. We exploit this observation and send
frequent LLC accesses that hogs the encryption engine. As a result,
it also hogs the micro-architectural queues (for example, the read
queue). This process increases the LLC access time of the victim as
it waits for the encryption engine, as shown in Fig. 1. Also, frequent
accesses at the LLC frequents the remap activity, which stalls the
LLC further and causes an increase in the waiting time.

Attacker’s Approach. Encryption engine and remapping are the
reasons for the security of a randomized cache, and both are on the
critical path of LLC access. Our attacker exploits both by frequently
accessing the LLC and ensuring a ~100% LLC hit rate and ~100%
miss rate at the L1D and L2C. It is easy to mount our DoS attack as
the attacker’s private caches are in control of the attacker. So, it is
easy to get a ~100% miss rate at the private caches. The reason
behind the high LLC hit rate is that a DAMARU attacker accesses a
small number of blocks (100 blocks per slice) repeatedly at the
LLC, leading to a shorter reuse distance for each of these blocks.

TABLE 1
Parameters of the Simulated System

Processor 4 GHz, out of order

L1D, L1L L2C 48KB (12 way, IPCP [14]), 32KB (8 way), 512KB (8
way, IPCP [14])

Sliced LLC 16MB (2MB per slice), 16 way

MSHRs 16, 16, 32, 32/256 /512 MSHRs

atL1D, L1I, L2C, LLC with 1/8/16 cores
LRU at L1 and L2, SRRIP[13] at the LLC, random
policy for ScatterCache

1600 MHz (11-11-11), 12.8 GB/sec

Replacement Policy

DRAM Controller

Hence, the attacker’s blocks still reside in the LLC even in the pres-
ence of remapping and randomization. We have also performed
DAMARU with the state-of-the-art [11], [12], [13] replacement poli-
cies at LLC, and observe a similar trend.

DAMARU Attacker’s Code Snippet. Listing 1 shows our attacker
code for a randomized LLC of 16MB (8 2MB LLC slices). The
replacement policy at the private caches is LRU. Our attacker code
is generic and independent of the size of the OS page. Our attacker
code provides a ~100% miss rate at L1D and L2C and a ~100% hit
rate at LLC. We unroll all the for loops(line nos. 11,12, and 13) to get
a higher L1D and L2C MPKI of 998. Our attacker code iterates
through MAX PRIVATE_ASSOC + 1 (line no. 12) at a block size
distance of L2C_SET to map a block into the same L2C set and to
make every access to this set a miss. The attacker also iterates
through each LLC slice (line no. 11) to increase the victim’s LLC
access waiting time for all the slices. As the page size bits do not
overlap with all the L2C index bits hence all the blocks_not_in_con-
trol (line no. 13) are iterated through. For a 4KB OS page with an
L2C size of 512KB (8 way), four bits are not in control of the
attacker. So the attacker has to iterate sixteen times (line no. 13),
and for a 2MB page, blocks not in control become zero as every bit
is in the control of the attacker.

4 EVALUATION

We show the effectiveness of our attack on all three randomized
caches, i.e., CEASER, CEASER-S, and ScatterCache. We use a trace-
based Champsim[15] simulator. We implement 12-round PRINCE
and QARMA as encryption engines, with eight [7] and five cycle[5]
latency, respectively. Table 1 shows the parameters of the simu-
lated system. We choose four representative SPEC CPU 2017
benchmarks with low to high L2C and LLC MPKIs (Table 2) for a
512KB L2C and a 2MB LLC. We simulate their respective region of
interests. We use an OS page size of 2MB, similar to [1]. We simu-
late an eight-core system with all possible combinations of attack-
ers and victims. We observe that the slowdown increases as we
increase the number of attackers. We report performance slow-
down normalized to baseline non-randomized cache with the
same number of victims and attackers running on the multi-core
system.

Performance Slowdown With Randomized LLC. We observe a maxi-
mum slowdown of 3.19X with IPCP prefetcher and 2X without
IPCP with seven attackers and one victim running on an 8-core

TABLE 2
L2C/LLC MPKIs of Representative Benchmarks
Benchmark L2C MPKI LLC MPKI
perl 0.66 0.66
xalan 3.2 1.8
gcc 70.05 70.04
mcf 153.1 146.9
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Fig. 2. Normalized slowdown due to randomization of victim core with CEASER,
CEASER-S, and ScatterCache.
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Fig. 3. Normalized ROB stalls for victim core with CEASER, CEASER-S and
ScatterCache.

CPU. Fig. 2 shows performance slowdown normalized to non-ran-
domized LLC on an 8-core system with seven attackers. High L2C
MPKI benchmarks show a higher slowdown. In comparison,
benchmarks with low L2C MPKI show a lower slowdown because
the attacker’s impact varies with the number of victims” LLC
accesses. All three randomized caches show different slowdowns
due to differences in their cache mapping techniques. On a 16-core
simulated system with 15 attackers, we observe a maximum slow-
down of 6X with IPCP.

Performance Slowdown With Non-Randomized LLC. We perform
our DoS attack with seven attackers on a non-randomized LLC
without an encryption engine, and the maximum, minimum, and
average performance slowdowns that we get are 1.13X,1.0X, and
1.06X, respectively. This is intuitive as the contention at the LLC
due to the attacker is negligible with the non-randomized cache.
This shows that our DoS attack is specific to randomized LLCs.

Effect on ROB Stalls. Fig. 3 shows the increase in normalized reor-
der buffer (ROB) stalls due to DAMARU for randomized LLCs.
With DAMARU, the victim’s waiting time for LLC accesses
increases. The additional waiting time for L2C misses, leading to
stalling at the head of the ROB. There is a strong correlation between
Figs. 2 and 3, which is intuitive.

The Hardware Prefetcher Effect. In the randomized cache, slow-
down increases with the hardware prefetcher at the L1D and L2C
compared to no prefetching. As RQ, WQ, PQ, and MSHR share the
encryption engine, and demand requests have higher priority over
prefetch requests; with randomization, prefetcher timeliness gets
affected that affects the overall performance. This delay in process-
ing prefetch requests further denies demand requests from occupy-
ing entries in MSHRs at L1D and L2C. Overall, the DAMARU
attacker is more effective in the presence of a hardware prefetcher;
as prefetch requests get late, MSHR occupancy with prefetch
requests becomes longer, which affects the demand miss latencies
at the L1D and L2C.
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Fig. 4. Contribution of encryption engine and remapping in the performance slow-
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Fig. 5. Performance slowdown with different combinations of attackers(A) and vic-
tims(V) on an 8-core system.

To understand the effect of prefetcher in more detail, we
study the impact of IPCP prefetcher at L1D and L2C for gcc
benchmark. With DAMARU, L1D prefetch coverage, accuracy,
and timeliness drop by 19%, 15%, and 22% compared to the
baseline system, while L2C prefetch coverage, accuracy, and
timeliness drop significantly by 49%, 88%, and 81%, respec-
tively. Note that gcc is a prefetch friendly benchmark that pro-
vides significant performance improvement (more than 3.5X)
with IPCP [14]. Though mcf shows the highest slowdown
among all the chosen benchmarks without prefetcher, with pre-
fetcher On, the performance of gcc is worst affected as it is
prefetcher friendly benchmark.

Contribution of Encryption Engine and Remapping. We analyze the
contribution of the encryption engine and remapping to the perfor-
mance slowdown for CEASER and CEASER-S. Note that ScatterC-
ache does not perform remapping. Fig. 4 shows that the encryption
engine contributes significantly to the performance slowdown. We
quantify the contribution of the remapping process and encryption
engines.

Effect of Multiple DAMARU Attackers. Fig. 5 shows the maxi-
mum slowdown with the victim (gcc) for different combinations
of attackers and victims running on an 8-core system. We choose
gcc as it shows the maximum performance slowdown with the
IPCP prefetcher (Fig. 2). We can see that an increase in the number
of attackers increases the slowdown due to increased LLC
accesses.

Effect of Number of Encryption Engines. For demand/prefetch
reads, writes, and coherence messages, we use two encryption
engines (one for the current key and one for the next key)[3] for
CEASER,; similarly, four encryption engines (two per partition) [4]
for CEASER-S, and one encryption engine [5] for ScatterCache. We
further study DAMARU with more number of encryption engines.
Fig. 6 shows that the victim’s (gcc) slowdown in the presence of
seven attackers decreases with an increase in the number of
encryption engines. Across all the randomized LLCs, eight to 16
encryption engines per LLC slice can decrease DAMARU’s perfor-
mance slowdown.

Effect of Pipelined Encryption Engine. A non-pipelined encryption
engine is one of the primary reasons for the performance slow-
down; hence we evaluate DAMARU for a pipelined encryption
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engine with an encryption latency of three cycles and five cycles
(an improvement from five and eight cycles). CEASER, CEASER-S,
and ScatterCache show a maximum slowdown of 2.34X, 2X, and
1.84X with prefetcher, and 1.69X, 1.41X, and 1.14X without pre-
fetcher, respectively. The remapping process is the primary con-
tributor to the slowdown as it evicts the victim’s blocks and
significantly increases the victim’s LLC miss count. We observe
that the impact on conflict misses due to remapping is significant
with four attackers and four victims as with an increase in the
number of victims the conflict misses also increases. Due to this,
we have observed maximum slowdown with four attackers and
four victims for the pipelined encryption engine. In the case of
ScatterCache, a random replacement policy at the LLC increases
the performance slowdown, which further worsens in the presence
of a prefetcher. With the encryption engine latency of five cycles,
there is a ~5% increase in the performance slowdown compared to
the encryption engine latency of three cycles.

Mitigation Techniques. To mitigate DAMARU, a detector based
approach can be used as the DAMARU attacker has a ~100% miss
rate at the L1D and L2C, and ~100% hit rate at the LLC (unusual
for benign applications). A detector can be designed based on these
metrics as per performance counters, and the OS can de-schedule
or migrate to a different socket. The other approach would be to
have many encryption engines (eight to 16 per LLC slice, a costly
solution). Also, reducing the rate of remapping without affecting
the security guarantees can reduce the performance slowdown.

5 CONCLUSION

We proposed a new denial of service attack named DAMARU on
randomized LLC where the attacker is an LLC fitting application
and that current DoS attack detectors can not detect our proposed
attack. We target the encryption engine and its latency, remapping,
and random replacement policy to cause a performance slowdown
of 3.19X and 6X on 8-core and 16-core multicore systems, respec-
tively. We discuss the primary reasons for the significant perfor-
mance slowdown. We also perform sensitivity studies in terms of
encryption engines and number of attackers and victims. We find
that the effectiveness of our attack decreases with an increase in
the number of encryption engines.
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