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Abstract

Prefetching is one of the techniques that is widely used to hide the memory latency by
bringing the data into the caches before the processor asks for it. Thus, for a prefetcher to be
e↵ective, it must not only be accurate in its prefetching decisions, but also be timely because
transferring data from the main-memory to the caches takes time. Even if a prefetcher is
100% accurate, if it fails to achieve timeliness, then the utility of prefetching reduces and it
might reduce the performance of a system instead because of the increased memory tra�c.
Conversely, even if the prefetcher is 100% timely, but is not accurate, it will drastically reduce
the performance of a system, especially under low memory bandwidth due to increased miss
penalty and eviction of possibly useful cache-lines. This work proposes a deep-learning
based filter that can be augmented with any prefetcher and can improve timeliness as well
as accuracy of the prefetchers. Although it is a proof-of-concept, it shows promising results
by achieving near-similar performance by significantly reducing the memory tra�c.
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Chapter 1

Introduction

Memory-Wall is the well-known performance gap between the processors and the main-
memory, i.e. DRAMs, which has gotten worse over the years due to the significant amount
of research put into processors to make them execute more number of instructions per clock-
cycle as compared to the amount of research put into improving the transfer rates of DRAMs.
This resulted in systems being bottle-necked by the performance of main-memory. Tons of
approaches to overcome this problem have been proposed over the years, one of which is
the well known multi-level memory hierarchy, i.e. the introduction of caches between the
processor and the main-memory. Although this has reduced the gap by a significant amount,
there is still a limit to the amount by which the caches can be scaled up, while keeping in
mind the power-consumption and the cost-per-bit associated with them.

Prefetching is one technique that tries to reduce the performance impact caused by long
transfer times between main-memory and caches, by bringing the data into the caches before
the processor actually requires it. Thus a successful prefetch e↵ectively hides the entire
latency associated with the data transfer. An ideal prefetcher gives the illusion that the
caches are of unlimited capacity. Because nothing is ideal in this world, prefetching has its
own challenges and its trade-o↵s. More specifically, the challenges are what/when/where/how
to prefetch, each of which, has its own set of trade-o↵s.

This work begins by focusing on the when to prefetch aspect by analyzing one prior
(hardware-based) state-of-the-art (SOTA) prefetcher for level-2 caches (L2C), Signature Path
Prefetcher (SPP) [11], which focuses only on what and where to prefetch aspects 1 without
considering the when to prefetch aspect. It then proposes an improvement to SPP’s design by
also incorporating the when to prefetch aspect into the prefetcher’s design, with an objective
to further improve the performance of the prefetcher.

Second part of the work analyzes the drawbacks of the approach used in improving the
performance of SPP as well as the drawbacks of current prefetchers under low memory
bandwidth and then proposes a general-purpose framework that can be augmented with
any hardware-prefetcher. It does so by modifying the previous objective of improving only

1The how to prefetch aspect is fixed at design time, for ex. hardware-based/software-based prefetching
etc.
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timeliness and also including another objective of minimizing the amount of memory tra�c
by limiting the number of prefetch requests while minimizing the impact it causes on the
overall performance.

Chapter(2) describes the task of prefetching in detail and the enhancement proposed
for SPP, i.e. incorporating timeliness, via policy-based reinforcement learning, resulting in
Reinforced SPP (R-SPP) - the proposed timely prefetcher, which is the focus of first part of
this work. It then evaluates the proposed proof-of-concept design on SPEC2017 benchmarks.
Chapter(3) builds upon the observations from chapter(2) as well analyzing the drawbacks
of two more SOTA prefetchers - IPCP [14] and Bingo [2]. It then modifies the objective
of improving only timeliness by also including another objective of minimizing the amount
of memory tra�c while minimizing the overall negative performance impact it causes. It
proposes another proof-of-concept model based on supervised deep-learning, Neural-Filter
(NeuFi), to achieve the previously mentioned objective. Chapter(4) evaluates the proposal
of chapter(3) by conducting in-depth experiments by augmenting NeuFi with IPCP [14],
Bingo [2] and SPP [11], on SPEC2017 and GAP benchmarks. Finally, chapter(5) concludes
this work by summarizing the results obtained.

2



Chapter 2

Reinforced Signature-Path Prefetcher

2.1 Motivation

Prefetching is one of many techniques that is employed to overcome the memory-wall prob-
lem, i.e. the performance gap between the processor and main memory, which has grown
significantly over the years. The objective of prefetching is to hide the expensive memory
latency that is incurred on transferring the data from the main-memory into the caches. It
is achieved by bringing the data into the caches, before the processor actually needs them.
One of the core challenges in designing an e↵ective prefetcher is to make the prefetcher learn
when to initiate a prefetch request, apart from what to prefetch, where to prefetch and how

to prefetch. Given a prefetcher, even if it knows the exact answers to what and where to
prefetch 1 on every cache access, if timeliness is not considered, then the prefetches that were
issued, will fall into one of the following three classes

1. Late Prefetches - When a cache-line is prefetched and the demand request for it
arrives before the prefetch is completed. The prefetch holds no meaning in this case, if
the demand request arrives immediately after the request was issued because it could
not even hide a fraction of the latency

2. Timely Prefetches - When a cache-line is prefetched and the demand request for it
arrives not long after the prefetch is completed. This is the ideal case for any prefetcher

3. Early Prefetches - When a cache-line is prefetched and the demand request for it
arrives too late (or never), after the prefetch is completed. The prefetch holds no
meaning if, whatever it brought, never gets used. This might evict useful data from
the cache, thus degrading the performance instead

Signature Path Prefetcher (SPP) [11] is a prior state-of-the-art prefetcher, which is al-
though able to accurately and quickly learn complex memory access patterns, su↵ers from
one key deficiency which makes the prefetcher unable to utilize its full potential - timeliness

1The how to prefetch a↵ects the design of a prefetcher, for ex. hardware-based/software-based etc.
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of the prefetches. As proven by the experiments 2 shown in fig(2.1) and fig(2.2), the degree
of late prefetches increase when the available DRAM bandwidth per-core decreases. The
problem lies in the fact that the prefetches are issued without considering the timeliness of
the prefetching decisions.

As will be described in section(2.2), most of the traditional prefetchers are inherently weak

reinforcement-learning (RL) agents, this work tries to incorporate timeliness into SPP’s
prefetching algorithm via the RL-framework while ensuring that the algorithm is able to
adapt to di↵erent workloads and system configurations.

Figure 2.1: Distribution of late prefetches issued by SPP [11] on a single-core system with
single-channel DRAM with bandwidth of 3200 MT/s (the default value), simulated using
ChampSim. The legend on the right-side indicates the number of CPU cycles by which the
prefetches were late.

It is a well known fact that the reinforcement-learning algorithms are very sample inef-

ficient and are notoriously slow in learning successful policies, especially in highly stochas-
tic environments. Thus these algorithms lack the ability to rapidly latch onto successful
strategies[5]. In a resource constrained and rapidly-changing environment, where rapidly
adapting the policy without incurring extreme performance/storage overhead is desired,
learning the state-action Q-values by the prefetcher does not seem to be good fit because,
as mentioned previously, getting an accurate estimate on them requires significant amount
of data. Even if they are successfully learnt, context-switches to di↵erent processes with
di↵erent access patterns and behavior happen very frequently in modern-day systems. So
these learnt state-action values lose their utility because the dynamics of the environment
change when there is a context switch and hence, there is a need to re-learn these values all
over again, which again will take time.

Keeping these things in mind, this work instead adopts a di↵erent form of policy update,
inspired from [5]. Instead of maintaining Q-values of each possible action for each possible

2Credits to Sumon Nath, a first-year MS student @IITB, for modifying ChampSim to gather the distri-
bution of late prefetches by CPU cycles and allowing me to use his work for experimenting with SPP
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Figure 2.2: Distribution of late prefetches issued by SPP [11] on a single-core system with
single-channel DRAM with bandwidth of 400 MT/s, simulated using ChampSim (with all
other parameters kept constant as before). The legend on the right-side indicates the number
of CPU cycles by which the prefetches were late.

state, it instead maintains integer values quantifying how good or bad each decision is, for
each possible state 3. Rapidly modifying the policy automatically to adapt to a completely
di↵erent environment is possible here because rewarding the action simply means increment-
ing/decrementing the value by some fixed amount, as explained in the later sections.

2.2 Prefetching as a Reinforcement Learning Problem

Suppose (Pk, bk, hk) denote a pair of random variables for k’th access (k > 0) to the cache,
for page Pk and cache-line bk within the page, with hk 2 {0, 1} denoting whether it was a
hit (hk = 1) in the cache or not. Let a sequence of demand requests, a.k.a. demand request
stream, to the cache be denoted as Dstream, i.e.

Dstream = (P1, b1, h1), (P2, b2, h2), · · · (2.1)

The demand request stream can be modelled as a directed acyclic graph as follows
where the directed edges represent the transition between successive accesses. Since the

next access can either be a hit or a miss (and similar thing for the current access), both
in-degree and out-degree of each state (except the first one) is two.

Given any access (Pk, bk, hk), the objective of a prefetcher is to ensure that majority (if
not all) of the subsequent accesses (Pk0 , bk0 , hk0), 8k0 > k, end up as a hit, i.e. hk0 = 1 (which
would have otherwise missed without the prefetcher), so as to maximize the throughput of a
system over the long run. In an ideal scenario, the prefetcher would ensure that transitions

3For now every (state, action) pair is stored. Optimizing the storage, similar to [5] is a work left for future
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Figure 2.3: Demand request stream modelled as a directed acyclic graph

in the access transition graph from fig(2.3) only happen from states with hk = 1, i.e. any
state for which hk = 0 is never visited, apart from the first access which will be always be a
miss, during the entire demand request stream.

What many prefetchers (for ex. [2], [11], [13] [14], etc.) essentially do is that they
try to model the behavior of Dstream, based on the observations seen so far and sends the
prefetches accordingly. Because Dstream is a stochastic process, the estimated model ends
up being probabilistic in nature. Mathematically, given that current state in fig(2.3) is
(Pk, bk, hk), the prefetchers estimate some form of 4

P{Pk+1, bk+1 |P1, b1, P2, b2, · · · , Pk, bk}, 8k > 0 (2.2)

and sends n(� 0) prefetch requests to the n highest probable (Pi, bi) pairs, 8i > k, based
on the estimates obtained from eq(2.2). Because practically, the computation of eq(2.2)
becomes intractable quickly, some simplifying assumptions are made. To be more specific,
an i’th order (i > 0) Markov assumption is made, i.e.

P{Pk+1, bk+1 |P1, b1, P2, b2, · · · , Pk, bk} ⇡ P{Pk+1, bk+1 |Pk�i+1, bk�i+1, · · · , Pk, bk} (2.3)

Eq(2.3) basically states that the next state only depends on the most-recent i states, not on
any state prior to them.

The model Dstream can be thought of as a dynamically changing environment over time,
with good states being the ones for which hk = 1. The prefetchers are the agents that are
acting on this environment whose actions can be thought of as the prefetching decisions they
make on each (Pk, bk, hk) so as to drive the future states towards having hk0 = 1, 8k0 > k,
which would lead to obtaining the highest throughput from the system. The feedback given
by the environment (i.e. rewards) for each such decision to (or not to) prefetch (Pi, bi) arrive
after xi(> 0) accesses (i.e. delayed reward scheme) in the form of a hit or a miss. There are
two possibilities for each such decision

1. Prefetch was issued for (Pi, bi)

(a) Demand request for it arrived on (k+ xi)’th access and it resulted in a hit due to
prefetch

4h. is irrelevant for the prefetcher during model estimation because this is what it tries to influence
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(b) Demand request for it never arrived (xi =1)

2. Prefetch was not issued for (Pi, bi)

(a) Demand request for it arrived on (k + xi)’th access and it resulted in a miss due
to not prefetching it

(b) Demand request for it never arrived (xi =1)

It is immediately apparent from the above on what constitutes a good action and what
constitutes a bad action. Because it is not possible to know in advance on what an optimal
set of actions for each (Pk, bk, hk) would be (as it is not possible to know the future), the
prefetcher must learn to find them either through exploration or just simply bootstrap with
whatever estimate of the model, the prefetcher currently has. So, in a nutshell,

Most of the traditional prefetchers are inherently weak reinforcement learning agents

What makes them weak is because the prefetching policy is never updated 5 for bad
decisions made in the past (atleast for the bad prefetches that were issued), but only the
estimate of the model is refined over time. This is analogous to ignoring the mistakes made
in the past and not trying to rectify them, so as to avoid doing the same thing in the future.
Hence, if the prefetching policy is also appropriately updated over time along with the model
estimate, this would lead to the design of more optimal prefetchers that can adapt to the
dynamically changing environment and as a result, make optimal prefetching decisions that
can improve the throughput of a system significantly.

2.3 High-Level Overview

Figure(2.4) provides a high-level overview on the working of Reinforced Signature Path

Prefetcher (R-SPP). Similar to Signature Path Prefetcher (SPP) [11], the main modules are
almost the same, except for few modifications and one new addition: Tracking Table (TT) 6.
The main objective of TT is to track the prefetching decisions that were issued in the past for
some amount of time and then use it update the prefetching policy of R-SPP accordingly -
encouraging good decisions and penalizing bad decisions. Tracking the prefetching decisions
are required because of the delayed reward scheme, as described previously in section 2.2, so
that bad decisions can be penalized and vice-versa for good decisions.

2.3.1 Issuing Rewards

When a demand request for a cache-line (or block) bi in page Pi arrives to level-2 cache
(L2C), the TT is searched for a past prefetching decision that might have prefetched (Pi, bi),
similar to [4]. If an entry is found, then it is checked whether that prefetch was a timely
prefetch or not

5One exception is Berti [15] prefetcher that updates the policy for prefetches not issued
6This is almost similar to Evaluation Queue (EQ) of Pythia [4]
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Tracking Table

Demand Access for
cache-line b inside

page P
Signature Table

Extended Pattern Table

1
Look if a prefetch for
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2
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3
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signature for the

current page

4
Use the signature to
find the best timely

deltas 

5 Send the prefetch
requests

6 Track each prefetching
decision made

Figure 2.4: High-level overview of how R-SPP operates.

1. Prefetch was timely: A positive reward is given for the prefetching decision, by
incrementing the confidence of the action, i.e. the delta (defined below in eq(2.4))
associated with its corresponding signature, i.e. the delta associated with the signature
that was used to prefetch (Pi, bi) is given a positive reward.

2. Prefetch was not timely: A negative reward is given for the prefetching decision, by
decrementing the confidence of the action associated with its corresponding signature,
similar to what was done above. The main objective is to discourage the prefetcher
from sending such prefetches in the future.

Define delta (dk) on k’th access (k > 1) to be the di↵erence between cache-line number
accessed on k0th access and on (k � 1)’th access

dk =

(
bk � bk�1 if k > 1

0 otherwise
(2.4)

Irrespective of whether or not a matching entry was found in the TT, all other entries
ej, that are currently awaiting for their rewards, i.e. the most-recent prefetches, are checked
if their prefetches also belong to the same page Pi and if they do, they are checked if they
could also have also brought bi in a timely manner (inspired from [15]). If yes, then the
action corresponding to ej’s signature, that could have brought bi is also given a positive
reward. The point is to encourage others to also prefetch bi in a timely manner, so as to
break the strict dependence that only a single signature stores the information for fetching
bi in a timely manner. This step is one of the crucial steps in making the prefetcher learn
what it should have done instead, thus providing some form of a supervision update.

8



2.3.2 Issuing Prefetches

After rewards are issued, the signature for the corresponding demand request is extracted,
similar to what is done in SPP [11] and then it is used to query the Extended Pattern Table

(EPT), i.e. an extended version of SPP’s Pattern Table, which has an additional column for
storing the confidences for timely prefetching actions, i.e. the deltas. The top n confident
timely deltas are selected as candidates for prefetch and the respective prefetches are issued,
while also allocating entries in the TT to track these decisions that were made.

2.4 Detailed Overview

This section provides a detailed overview on the Tracking Table (TT) and the Extended

Pattern Table (EPT) as they are the core components that drives R-SPP, which was briefly
explained in section(2.3).

2.4.1 Tracking Table

Tracking Table (TT) is a fully-associative/set-associative 7 table, whose objective is to track
the most-recent prefetching decisions made, so as to appropriately reward them in the future.
The exact structure of the table is shown in fig(2.5). The table is referred to, on both the
phases of R-SPP: issuing rewards and issuing prefetches, each of which are explained below.

Suppose a demand request for cache-line (or block) bi in page Pi has arrived. This marks
the beginning of issuing-rewards phase. As explained already in section(2.3), if any of the
prefetch requests, that is currently tracked in the TT, was responsible for bringing (Pi, bi),
then the EPT is referred to with the signature of the corresponding TT’s entry and the
confidence of the delta (also obtained from the corresponding TT’s entry) in the EPT is
given a reward depending on the whether or not the prefetch was a timely prefetch, which
is found out by the following check

tprefetch + ✓late  tcurr  tprefetch + ✓early (2.5)

where tprefetch and tcurr are the CPU cycle numbers of when the prefetch was issued and
current cycle number respectively. ✓late and ✓early are dynamically changing thresholds for
late and early prefetches respectively. ✓late is basically an estimate on the number of CPU
cycles it takes for a block to be brought into the cache and ✓early is an estimate on the lifetime
of a block (how long it stays in the cache) in CPU cycles.

An example of how the TT operates in the first phase is shown in fig(2.5). So, this will
encourage the same action (i.e. delta) to be picked/avoided in the future, when the same
signature is encountered again.

Along with this, each entry is also checked if they have also issued prefetches inside the
same page Pi. If yes, then they are checked if they could have also brought bi in a timely

7Currently implemented as a fully-associative table

9



TUacNiQg TabOe

Page ID SigQaWXUe DeOWa BORcN NR. IVVXe C\cOe NR. VaOid ?

. . . . . . . . . . . . . . . . . .

0[11 0[221 +8 20 1001 YeV

0[11 0[300 -11 5 901 YeV

DePaQd AcceVV fRU
cacKe-OLQe 20 LQVLde

Sage 0[11

WaV WKe SUefeWcK
WLPeO\ ?

E[WeQded PaWWeUQ TabOe

NO, GLYe a QegaWLYe UeZaUd
WR (0[221, +8) SaLU

YES, GLYe a SRVLWLYe UeZaUd
WR (0[221, +8) SaLU

B\SaVV deOWa =  
20 - (5 - (-11)) = +4

CaQ WKe VLgQaWXUe LQ WKLV eQWU\
aOVR SUefeWcK cacKe-OLQe 20 LQ a

WLPeO\ PaQQeU ?

NO,  
IgQRUe WKLV eQWU\

YES, GLYe a SRVLWLYe UeZaUd
WR (0[300, +4) SaLU

(MaWcKLQg eQWU\)

(EQWU\ ZKRVe SUefeWcK
LV WR WKe VaPe Sage)

1

2

3

3

4 ��

�

Figure 2.5: Detailed overview on how Tracking Table operates in the issuing rewards phase.

manner by comparing the time when their prefetches was sent with the current cycle number
via eq(2.5). If no, then they are ignored. Else the delta, say dbypass, that will point to bi is
calculated though the following equation

dbypass = bi � (bprefetch � dprefetch) (2.6)

bprefetch is the block whose prefetch request was sent previously and dprefetch is the delta
that was used to add to some unknown block to yield bprefetch. Subtracting gives the (past)
demand requested block number (now known to the prefetcher) and finally, subtracting it
from bi gives the delta that is required. The EPT is then referred to, using the correspond-
ing entry’s signature and confidence for the action dbypass is updated, i.e. given a positive
reward. The point is, whenever the signature, that was previously used to prefetch block
bprefetch is encountered again in the future, it is also encouraged to prefetch bi, provided that
the confidence goes high enough. The operation for this bypass mechanism is also shown in
fig(2.5). After every entry is checked similarly, it marks the end of issuing rewards phase.
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2.4.2 Extended Pattern Table

Once issuing rewards phase ends, it marks the beginning of issuing prefetches phase. The
signature of the corresponding page is extracted from the Signature Table of SPP [11], it is
then used to query the EPT. The top n confident deltas, say d⇤1···n from the timely column
are picked as the prefetch candidates and prefetches are sent to all the blocks b⇤1···n (that fall
inside Pi) such that

b⇤j = bi + d⇤j , 8j 2 {1 · · ·n} (2.7)

Also n entries in the TT are allocated to track these prefetching decisions, so that they
can be appropriately rewarded in the future.

2.5 Evaluation

2.5.1 Simulation Infrastructure and Benchmarks

The evaluation of R-SPP was done on ChampSim, which is a trace-based simulator, that has
been used as the go-to simulation tool for evaluating state-of-the-art prefetcher proposals in
2nd, 3rd data-prefetching championship (DPC-2 and DPC-3) and even the machine-learning
based data-prefetching competition organized by ISCA 2021. Single-core simulations were
performed with a warmup of 40M instructions and the results obtained were from the next
100M instructions. The performance of R-SPP is compared against a baseline (a system
with no prefetching) and SPP.

The benchmarks used for evaluation currently, come from the widely used SPEC2017
benchmark suite. In particular, 45 memory-intensive benchmarks (for which last-level cache’s
MPKI � 1) [14] from the suite were used for the evaluation, which are publicly made available
for academic research, from the DPC-3’s website.

2.5.2 Results

Fig(2.6) plots the normalized performance of both the prefetchers, when compared against
a baseline with no prefetching and Table(2.1) summarizes the results. Fig(2.7) plots the
accuracy of the corresponding prefetchers and table(2.2) summaizes the results. Fig(2.8)
plots the amount of late prefetches issued by the corresponding prefetchers and table(2.3)
summarizes the results.

Benchmark
Prefetcher

SPP (without look-ahead) SPP R-SPP

SPEC2017 30.541 % 45.673 % 47.056 %

Table 2.1: Performance improvement on SPEC2017 benchmarks

11



Figure 2.6: Normalized IPCs on SPEC2017 benchmarks, when compared against a baseline
with no prefetching. On a geometric average, SPP [11] obtained an improvement of 30.541
% (without look-ahead), 45.673 % (with look-ahead) and R-SPP obtained an improvement
of 47.056 %.

Benchmark
Prefetcher

SPP (without look-ahead) SPP R-SPP

SPEC2017 89.610 % 90.462 % 47.743 %

Table 2.2: Prefetch Accuracy on SPEC2017 benchmarks

Benchmark
Prefetcher

SPP (without look-ahead) SPP R-SPP

SPEC2017 21.335 % 5.112 % 0.751 %

Table 2.3: Amount of late prefetches issued on SPEC2017 benchmarks

2.5.3 Prefetcher Configurations

For the sake of analyzing the best performance that can be obtained from both the prefetchers
in their (almost) ideal conditions, storage overhead was not taken into consideration for these
experiments, i.e. it is assumed that there is unlimited storage budget available for both the
prefetchers, for the time being. Since R-SPP builds upon SPP [11], Global History Register

module was turned o↵ for SPP [11], as it was not implemented for R-SPP.

12



Figure 2.7: Prefetch accuracy (in %) on SPEC2017 benchmarks. On a geometric-average,
SPP [11] obtained an accuracy of 89.610 % (without look-ahead), 90.462 % (with look-
ahead) and R-SPP obtained 47.743 %.

Figure 2.8: Amount of late prefetches issued by SPP [11] (with/without look-ahead) and
R-SPP on SPEC2017 benchmarks. On a geometric average, SPP [11] issued 21.335 % of
late prefetches (without look-ahead), 5.112 % and R-SPP issued only 0.751 %.
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Module # of Sets # of Ways

Signature Table 1 1024
Prefetch Filter 1024 1

Pattern Table 4096 127

Tracking Table 1 1024
Extended Pattern Table 4096 127

Table 2.4: Prefetcher configurations for both SPP [11] and R-SPP. First two modules are
common for both the prefetchers. Pattern Table is exclusive to SPP [11] and the remaining
two modules are exclusive to R-SPP
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Chapter 3

Neural-Filter

3.1 Motivation

Although Reinforced Signature-Path Prefetcher (R-SPP) improved the performance (+0.948
% over SPP, on a geometric-average) and issued extremely less late-prefetches (0.751 %), as
was described in section 2.5, it was found to be less accurate (47.743 %) when compared to
SPP (90.462 %). Although late-prefetches impact performance, not all late-prefetches are
actually harmful - as long as some fraction of the transfer latency is hidden, it is good enough.
This can be observed from majority of the prefetchers ([2], [3], [11], [13], [14] etc.) that do
not consider lateness of prefetches, but nonetheless improve the performance significantly.
But accuracy of the prefetchers, which is defined as,

Prefetch Accuracy =
No. of Useful Prefetches

(No. of Useful + No. of Useless Prefetches)
(3.1)

play a significant role in impacting the performance, especially under low memory band-
width because the miss latencies are relatively much higher and a (useless) prefetch evicting a
potentially useful cache-line (that will be used nearby in the future) would negatively impact
the performance much higher than it would have, under high memory bandwidth.

Fig(3.1) and fig(3.2) empirically shows the impact on performance caused due to accu-
racy of prefetchers under low memory bandwidth on SPEC2017 and GAP benchmarks. For
the case of SPEC2017 benchmarks, when the DRAM bandwidth was 100 MT/s, although
all the prefetchers degraded the performance (baseline was a system with no prefetcher),
SPP [11] degraded the performance the least (by ⇡ 4 %), followed by Bingo [2] (by ⇡ 10
%) and IPCP [14] (by ⇡ 20 %) - the order being inverse of the prefetch accuracy. For the
case of GAP benchmarks, it is similar, but the performance impact is even more significant -
SPP [11] degrading the performance by ⇡ 6 %, Bingo [2] by ⇡ 40 % and IPCP [14] by ⇡ 50 %.

This motivated the the need for a framework that can also improve the accuracy of the
prefetchers alongside timeliness, which can be augmented with any prefetcher and hence,
the goal shifted from improving the performance by minimizing the late-prefecthes towards
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Figure 3.1: On a geometric average, the accuracy was 33.242 % on IPCP [14], 62.232
% on Bingo [2] and 80.792 % on SPP [11] prefetcher on the SPEC2017 benchmarks used
above. The figure below the accuracy plot describes the change in performance relative to a
baseline-system with no prefetcher, under varying DRAM bandwidth.

minimizing the negative impact caused by the prefetchers due to their bad prefetching de-
cisions by filtering out such requests.

3.2 Model Architecture

Fig(3.3) describes the high-level architecture of Neural-Filter (NeuFi) model. First, a dense

representation of the current system-state is extracted from the current memory-access be-
havior, then along with the cache-line to prefetch as well the cache-level (till which it will
be prefetched) and the current page access-vector (described in section 3.3.2) is fed to the
prediction networks, which predicts if the the prefetched cache-line will be timely and useful.
Following subsections describe each component of NeuFi in detail.

16



Figure 3.2: On a geometric average, the accuracy was 16.721 % on IPCP [14], 68.716 % on
Bingo [2] and 91.564 % on SPP [11] prefetcher on the GAP benchmarks used above. The
figure below the accuracy plot describes the change in performance relative to a baseline-
system with no prefetcher, under varying DRAM bandwidth.

3.2.1 Byte-Distributed Embedding with Attention

Consider a 128-bit binary vector V that is used to represent the deltas seen within a page
P or observed by an instruction-pointer (IP) I. For example, if deltas �1,+1 and +2 were
seen within P or observed by I, then the corresponding bits of those deltas within V would
be set to 1 and everything else would be 0s, i.e.

V = [0, 0, · · · , 0, 1, 0, 1, 1, 0, · · · , 0]T

Because an embedding is nothing but a lookup-table, a naive-implementation would re-
quire 2128 entries to account for all possibilities of vector V , which is computationally infea-
sible. One way to mitigate this is to keep entries for only those vectors V 0 such that V 0 was
observed frequently within the dataset and group the remaining ones as a single entity V 00

(unknown) - a technique frequently applied in Natural-Language-Processing (NLP) tasks.
This is however, not applicable in the context of the above mentioned page-delta or IP-
delta vectors V because of di↵erent behaviors introduced by di↵erent application workloads
(per-page and/or per-IP) and depending on the cache-level, requests getting filtered out by
higher-levels of the cache, leading to more ”variety” of the delta vectors V . Moreover, there
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Prediction
Block

Figure 3.3: High-level architecture of Neural-Filter (NeuFi)

Figure 3.4: Attention weights being given to the bytes of randomly sampled page delta-
vectors of 605.mcf s-665B

is the issue of observing delta-vectors during test-time that might not have been observed
during model training.

To mitigate the above mentioned issues, this work proposes a technique called Byte-Distributed
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Figure 3.5: Working of BDEA

Embedding with Attention (BDEA), which is similiar to [12]. However unlike [12], this works
with delta-vectors, which is a more general representation since bytes in an address do not
say anything about similarity, especially when those addresses were not seen in the training
set and that it uses Attention [1] to compute the final embedding vector. The working of
BDEA 1 is described in detail in 1 and fig(3.5) provides a high-level overview.

The main reason for using Attention [1] is to ensure that only those bytes that are rich
with deltas, i.e. majority of the bits set to 1, contribute to the final embedding vector -
which is a weighted-sum of the individual byte-embeddings. Intuitively it would mean that
bytes that are rich with deltas would be given relatively higher weights than the bytes that
are not and the least weight being given to the bytes that are just zeros, which should make
sense since a byte being zero indicates that none of the corresponding deltas within that
byte were seen and hence should not be considered for the most part.

To prove that this is indeed happening practically, fig(3.4) shows the attention-weights
being given to the bytes of few delta-vectors (picked at random) from a SPEC2017 benchmark
- 605.mcf s-665B. Since an embedding of some element k produces a dense continuous vector

1It is to be noted that positional-encoding (introduced in [6]) has not been used to encode respective
byte-positions into the delta-vector that is split into bytes, as described in 1. Whether or not it will improve
performance, is a work left for future.
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Algorithm 1: Byte-Distributed Embedding with Attention (BDEA)

1 Function BDEA (V,E,A);
Input : 128-bit Delta-Vector D,

Embedding-Network E,
Attention-Network A

Output: Embedding of D, say V
2 i 0;
3 VE  0;
4 E  �;
5 S  �;
6 repeat

// Extract the 8 components of binary-vector D
// Then convert that binary-vector into an integer

7 di  D[i : i+ 8];
8 xi  binary to integer(di);

// Get the embedding vector for xi and corresponding
attention-score

9 ei  E(xi);
10 si  A(ei);
11 Enqueue ei to E ;
12 Enqueue si to S ;

// Move to next 8 components
13 i i+ 8 ;
14 until i � |V |;

// Compute attention-weights 2 [0, 1] and finally, the weighted-sum
15 W  Softmax(S);
16 V  W TE;
17 return V ;

such that the embedding of elements that are similar to k are closer to k in the embedding’s
vector-space, there is a need to check whether the final embedding of the delta-vectors
indeed have this property. To verify this, N page delta-vectors were sampled at random
from the datasets of corresponding SPEC2017 and GAP benchmarks and their embeddings
were plotted (after projecting onto 2D space using T-SNE), the results of which are show in
fig(3.6).
Consider the five highlighted clusters from the embedding plot of 607.cactuBSSN s-2421B
from fig(3.6c) as shown in fig(3.7). Since the page delta-vectors are bit-vectors, to check for
similarity, hamming-distance measure is used between the vectors in each of the clusters and
the results of the analysis are shown in table-3.1.

The median hamming-distance increases as the distance between two clusters increases
and it is the least when compared against the delta-vectors of the same cluster - empirically
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(a) 602.gcc s-1850B (b) 605.mcf s-665B (c) 607.cactuBSSN s-2421B

(d) 641.leela s-1083B (e) pr-5 (f) sssp-10

Figure 3.6: Visualization of embeddings of N (= 5000) page delta-vectors (sampled at ran-
dom) colored according to instruction-pointers (IPs), from some SPEC2017 and GAP bench-
marks, using T-SNE

Cluster ID C1 C2 C3 C4 C5

C1 0 9 1 13 19
C2 - 0 8 4 10
C3 - - 0 12 18
C4 - - - 0 7
C5 - - - - 5

Table 3.1: Median hamming-distance between the vectors of corresponding clusters

proving the similarity property and the working of BDEA. Although the distance between
clusters C1 and C3 appears to be higher than the clusters C1 and C2, they must have been
closer in some other dimensions but due to dimensionality reduction, it got lost - which
probably explains why the median hamming-distance between the vectors of C1 and C3 is
lower than the vectors of C1 and C2.
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Figure 3.7: Clusters of interest for the analysis of delta-vectors in 607.cactuBSSN s-2421B

3.2.2 Variable-Width Convolutions

Access patterns repeat temporally - the amount being dependent on an application or how
often a specific region of an application is executed. For example, an application that
frequently accesses the elements of an array sequentially would have an repetitive access
pattern whenever the array access is initiated. Consider the 602.gcc s-2226B SPEC2017
benchmark which sees deltas of +1 and -1 (in terms of cache-lines) most of the time, as
shown in fig(3.8) - which is a good indicator for the presence of patterns that are repetitive
temporally. To verify if this is actually the case, a temporal window of 32 sequential accesses
T was picked from the benchmark’s dataset and temporal windows T 0 (|T 0| = |T |) that were
similar to T were searched throughout the dataset - four of which are visualized in fig(3.9),
according to their page access-vectors. A page access-vector p is a 64-bit 2 binary vector
such that pi = 1 if i’th cache-line within the page was accessed. Since it is a well known fact
that any convolutional kernel K (in the context of images) which learnt to detect feature
f can detect f irrespective of wherever it occurs spatially within an image, similar line of
reasoning can be applied to 1D temporal sequences to detect features that repeat temporally
- which is what this work utilizes. To be more specific, it uses Variable-Width Convolution

bank (VWC), similar to the convolution bank used in [17], which is basically using n 1D
convolution kernels 3 Ki where,

WindowSize(Ki) = i, such that 1  i  n (3.2)

2ChampSim simulator uses 4KB pages and 64 byte cache-lines, which means there are 4096/64 = 64
cache-lines per-page.

3Not 2D because we are not dealing with images but 1D temporal sequences

22



Figure 3.8: Normalized frequency of deltas observed at L1-D on 602.gcc s-2226B

The working of VWC layer is described in fig(3.10). At a high-level, it takes a temporal
sequence of T features Fip

4 and runs each 1D kernel Ki on Fip individually to produce
outputs oi , before concatenating the each oi together and finally running them through a
channel-compression 1D kernel (of window size 1) to produce the final output sequence Fop.

Figure 3.9: Visualization of similar access patterns of 602.gcc s-2226B observed across
di↵erent parts of the benchmark’s dataset

3.2.3 Bi-GRU with Attention

Long Short-Term Memory networks (LSTMs) [10] have been empirically proven to model
sequences of arbitrary lengths and have been used in works similar to this work, for ex-
ample, [16]. Although in theory they can model sequences of any length, it starts to lose

4To be more specific, the input to a VWC layer is a temporal sequence of embeddings
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oT

Figure 3.10: Working of VWC layer

e↵ectiveness beyond a specifc sequence length, as was also mentioned in [10]. One way to
mitigate this issue is usage of bidirectional LSTMs (Bi-LSTMs) which utilizes two LSTMs
- one operating normally and the other operating on reversed version of the input sequence
before concatenating the outputs of both LSTMs together as the final output. Although
this mitigated the issue by some amount and allowed for much longer sequences, it still was
limited by the sequence length. Attention mechanism [1] removed this restriction by stor-
ing intermediate state outputs per time-step and later on, taking a weighted sum of those
intermediate outputs - giving more weights to those output states that are more relevant.
Gated Recurrent Units (GRUs) [7] are similiar to LSTMs, but with fewer parameters and
perform similar or better than LSTMs in certain tasks as shown in [8]. This work utilizes
Bi-GRU with Attention mechanism to generate the final context vector. At a high-level, it
takes the sequence of output features produced by the Variable-Width Convolution (VWC)
layer (described previously in section 3.2.2) and produces an intermediate sequence of out-
put states before taking a weighted sum via the Attention mechanism, to produce the final
context vector vcontext.

3.2.4 Prediction Feed-Forward Networks

Once the context vector vcontext is obtained from the Bi-GRU (as described in section 3.2.3),
it is concatenated with an embedding of a block b (say bembed) to which a prefetch request
is issued by the black-box prefetcher. Along with this, the current page-access vector p
(described previously in section 3.2.2) is also concatenated to produce the input Iffn.
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Iffn = [vcontext; p; bembed]
T

Iffn is fed to two separate feed-forward networks for predicting whether the prefetch
would be timely

5 and useful. Each prediction network has one unit in the output layer,
which predicts the probability yprob of being Yes (yprob = 1) or No (yprob = 0). For all the
experiments in this work, thresholds for both the networks were set to 0.8, beyond which
the prediction would map to Yes, i.e. if ypred � 0.8, the network would predict Yes.

3.3 Model Configuration and Dataset

3.3.1 Model Configuration

Table(3.2) describes the configuration for embedding part of the model including Byte-

Distributed Embedding with Attention(BDEA), table(3.3) describes the configuration of Variable-
Width Convolution (VWC) layer, table(3.4) describes the configuration of Bi-GRU with At-
tention and finally, table(3.5) describes the configuration of the two prediction feed-forward
networks.
Each model was trained for 100 epochs using Adam optimizer with a learning-rate of 10�3

and binary cross-entropy loss function. The sequence-length was set to 9, i.e. apart from
current access to the cache, 8 prior accesses were used as the context for current one.

Input
Embeddding

Type
Total

Embeddings
Embeddding Dim.

Page Delta-Vector BDEA 256 64
IP Delta-Vector BDEA 256 64
Cache-Line # Naive 64 64

(a) Embedding configuration of the inputs used to extract the system-state

Input Dim. Hidden Units Output Dim.

64 [32] 1

(b) Attention network configuration of BDEA. Each hidden-layer is followed by a ReLU activation.

Table 3.2: Embedding layer configuration

5The data extraction API, described in section 3.3.2 has a parameter which controls the criterion for
classifying the prefetches as timely or not. For all the experiments in this work, any prefetch that hid atleast
40% of the latency were classified to be timely and the models were trained using this.
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Input
Input

Channels
Output
Channels

Output
Channels

(after reduction)

Range of
Kernel Widths

Page Delta-Vector
Embedding

64 64*8 64 [1, 8]

IP Delta-Vector
Embedding

64 64*8 64 [1, 8]

Cache Line #
Embedding

64 64*8 64 [1, 8]

Each of (above 3)
Outputs from VWC

192 192*8 192 [1, 8]

Table 3.3: Configuration of VWC layers of each input. Each convolution is followed by a
max-pool layer of width 3 and stride of 1. The channel-reduction layer uses kernels of width
1 to reduce the output size.

Input Dim. # of Layers Output Dim.

192 2 64

(a) Bi-GRU configuration

Input Dim. Hidden Units Output Dim.

64 [32] 1

(b) Attention network configuration of Bi-GRU. Each hidden-layer is followed by a ReLU activation.

Table 3.4: Bi-GRU with Attention configuration

3.3.2 Dataset for Training, Validation and Testing

The datasets used for training, validation and testing were extracted from SPEC2017 and
GAP benchmarks per-prefetcher, using an API that was written for ChampSim, made open-
source 6. The configuration of the simulation systems were set to default ChampSim config-
urations, which included DRAM bandwidth being 3200 MT/s. Table 3.6 describes each line
in the dataset.

6The data extraction API can be found in this GitHub repository

26



Input Dim. Hidden Units Output Dim.

(2*64) + 64 + 64 + 1 [32, 64] 1

(a) Feed-forward network configuration for predicting timeliness. Each hidden-layer is followed by
a ReLU activation. The input layer consists of output of Bi-GRU, cache-line embedding of the line
to prefetch, page access-vector and the cache-level till which it will be prefetched.

Input Dim. Hidden Units Output Dim.

(2*64) + 64 + 64 + 1 [32, 64] 1

(b) Feed-forward network configuration for predicting usefulness. Each hidden-layer is followed by
a ReLU activation. The input layer consists of output of Bi-GRU, cache-line embedding of the line
to prefetch, page access-vector and the cache-level till which it will be prefetched.

Table 3.5: Prediction Networks (for timeliness / usefulness) configuration
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Index Item Description

1 Access-ID The access number of the cache, incremented at L1-D

2 IP
The instruction-pointer (IP) responsible for initiating
the access

3 Demand Address
The demand-address (cache-aligned) with which the
cache was queried

4 Page Delta-Vector
A 128-bit binary vector, where 1 indicates that the cor-
responding delta was seen in the page

5 Page Access-Vector
A 64-bit binary vector, where 1 indicates that the cor-
responding block was accessed in the page

6 IP Delta-Vector
A 128-bit binary vector, where 1 indicates that the cor-
responding delta was seen by an IP, within a page

7 Prefetch-Vector
A 64-bit binary vector, where 1 indicates prefetch to
corresponding cache-line was sent

8 Fill-Vector
A 64-bit vector where 1 indicates fill till L1-D, 2 indi-
cates fill till L2C and 4 indicates fill till LLC

9 Timely-Vector
A 64-bit binary vector, where 1 indicates that the cor-
responding prefetchd cache-line was timely

10 Useful-Vector
A 64-bit binary vector, where 1 indicates that the cor-
responding prefetchd cache-line was useful

11 Delay-Vector
A 64-bit vector which describes after how many accesses
did demand-request arrive (negative for late prefetches,
0 also when demand-request never arrives)

12 Candidate-Vector
A 64-bit binary vector, where 1 indicates a future timely
prefetch

13
Median

Miss-Latency

An integer value indicating the median miss-latency
(time required to bring a prefetch block, in no. of L1-D
accesses)

14
Median

Eviction-Latency
An integer value indicating the median eviction latency
(in no. of L1-D accesses)

Table 3.6: Description of each line in the extracted prefetcher dataset
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Chapter 4

Results

4.1 Misclassification Rate on Test Data

Fig(4.1) and fig(4.2) plots the misclassification rate obtained by running each trained model
on corresponding benchmark’s unseen test data and prefetchers. Table 4.1 summarizes the
results obtained.

Figure 4.1: Misclassification rate by the models on various SPEC2017 benchmarks. On a
geometric average, the misclassification rate was 3.767% on IPCP [14], 4.277% on Bingo
[2] and 5.401% on SPP [11] prefetcher
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Figure 4.2: Misclassification rate by the models on various GAP benchmarks. On a geometric
average, the misclassification rate was 2.645% on IPCP [14], 1.959% on Bingo [2] and
14.716% on SPP [11] prefetcher

Benchmark
Prefetcher

IPCP Bingo SPP

SPEC2017 3.767 % 4.277 % 5.401 %
GAP 2.645 % 1.959 % 14.716 %

Table 4.1: Geometric-mean of the misclassification rates on unseen test data of SPEC2017
and GAP benchmarks

4.2 Late Prefetches Issued

Fig(4.1) and fig(4.2) plots the amount of late prefetches that were allowed to pass by NeuFi
on corresponding benchmark’s unseen test data. Table 4.2 summarizes the results obtained.

Benchmark
Prefetcher

IPCP Bingo SPP

SPEC2017 28.899 % 45.634 % 15.516 %
GAP 11.153 % 49.782 % 19.830 %

Table 4.2: Geometric-mean of the late prefetches allowed to pass by NeuFi on SPEC2017
and GAP benchmarks

Because some of the results in fig(4.3) and fig(4.4), for example 619.lbm s-2677 (Bingo),
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Figure 4.3: Amount of late prefetches allowed to pass by NeuFi on various SPEC2017 bench-
marks. On a geometric average, the amount of late prefetches issued was 28.899% with
IPCP [14], 45.634% on Bingo [2] and 15.516% on SPP [11] prefetcher

Figure 4.4: Amount of late prefetches allowed to pass by NeuFi on various GAP benchmarks.
On a geometric average, the misclassification rate was 11.153% on IPCP [14], 49.782% on
Bingo [2] and 19.830% on SPP [11] prefetcher
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bfs-3 (Bingo) etc. show significant amount of late prefetches (� 90%), some analysis is
required on whether these happened because of model’s inability to learn or because of some
other cause(s) which was (were) not learnt by the model. Fig(4.5) and fig(4.7) plots the
distance in no. of L1-D accesses (in log2 scale) after which the demand-access for those late
prefetches arrived, whereas fig(4.6) and fig(4.8) plots a similar distribution, but for distances
after which a prefetched cache-line is brought to the caches.
For the case of 619.lbm s-2677 (Bingo), the plot in fig(4.6) shows that the median prefetch
latency (in no. of L1-D accesses) is around 24 = 16 L1-D accesses but the plot in fig(4.4)
shows that the prefetches were late even though their demand-accesses arrived after around
26 = 64 accesses. Similarly, for bfs-3 (Bingo), the plot in fig(4.6) shows that the median
prefetch latency is around 23 = 8 L1-D accesses but the plot in fig(4.4) shows that the
prefetches were late even though their demand-accesses arrived after around 26 = 64 accesses.
Similar reasoning can be applied to other such cases.
This can mean one of three things - The fact that the demand-accesses arrived after 64
accesses (median, in the above two cases) shows that although the prefetches were late,
a significant amount of latency was hid or inability of the model to accurately learn the
timeliness (bias in the corresponding datasets) or majority of the outliers are present the
testing set.

Figure 4.5: Box-plot denoting the distribution of distance (in log2 scale) in no. of L1-
D accesses after which the demand-accesses for the late prefetches arrived, for SPEC2017
benchmarks
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Figure 4.6: Box-plot denoting the distribution of distance (in log2 scale) in no. of L1-D
accesses after which a prefetch is brought into the cache, for SPEC2017 benchmarks

Figure 4.7: Box-plot denoting the distribution of distance (in log2 scale) in no. of L1-D
accesses after which the demand-accesses for the late prefetches arrived, for GAP benchmarks
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Figure 4.8: Box-plot denoting the distribution of distance (in log2 scale) in no. of L1-D
accesses after which a prefetch is brought into the cache, for GAP benchmarks

4.3 IPC Improvement

Fig(4.1) and fig(4.2) plots the normlalized IPC (Instructions Per Cycle) of NeuFi augmented
with the corresponding prefetchers. The baseline for each is the corresponding prefetcher
without NeuFi. Table 4.2 summarizes the results obtained. Normalized IPC (in this context)
is defined as

IPCnormalized =
IPC with NeuFi

IPC without NeuFi
(4.1)

4.4 Reduction in Accesses to O↵-Chip Memory

Fig(4.11a) and fig(4.11b) plots the normalized accesses to o↵-chip memory of NeuFi aug-
mented with the corresponding prefetchers. The baseline for each is the corresponding
prefetcher without NeuFi. Table 4.2 summarizes the results obtained. Normalized accesses
is defined (similiar to eq(4.1)) is defined as

Accessesnormalized =
Accesses with NeuFi

Accesses without NeuFi
(4.2)
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Figure 4.9: Normalized IPCs of NeuFi augmented with various prefetchers on GAP bench-
marks. The baselines are the corresponding prefetchers without NeuFi. On a geometric
average, the IPC improvement (in %) was -0.90% on IPCP [14], -11.29% on Bingo [2] and
-0.90% on SPP [11] prefetcher

Benchmark
Prefetcher

IPCP Bingo SPP

SPEC2017 0.991 0.887 0.991
GAP 1.011 0.981 0.999

(a) Geometric-mean of the normalized IPCs on SPEC2017 and GAP benchmarks

Benchmark
Prefetcher

IPCP Bingo SPP

SPEC2017 -0.90 % -11.29 % -0.90 %
GAP +1.10 % -1.98 % -0.10 %

(b) IPC improvement (in %) based on the normalized IPCs (from table 4.3a) on SPEC2017 and
GAP benchmarks

Table 4.3: Normalized IPCs and IPC improvement with NeuFi

4.5 Prefetch Accuracy

Fig(4.12a) and fig(4.12b) plots the prefetch accuracy of NeuFi augmented with the cor-
responding prefetchers. Table 4.5 summarizes the results obtained. Prefetch accuracy is
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Figure 4.10: Normalized IPCs of NeuFi augmented with various prefetchers on SPEC2017
benchmarks. The baselines are the corresponding prefetchers without NeuFi. On a geometric
average, the IPC improvement (in %) was +1.10% on IPCP [14], -1.98% on Bingo [2] and
-0.10% on SPP [11] prefetcher

Benchmark
Prefetcher

IPCP Bingo SPP

SPEC2017 0.960 0.905 0.997
GAP 0.904 0.815 0.999

(a) Normalized accesses to o↵-chip memory on SPEC2017 and GAP benchmarks

Benchmark
Prefetcher

IPCP Bingo SPP

SPEC2017 -4.00 % -9.49 % -0.30 %
GAP -9.59 % -18.50 % -0.10 %

(b) Reduction in o↵-chip accesses based on the normalized accesses (from table 4.4a) on SPEC2017
and GAP benchmarks

Table 4.4: Normalized and reduction in o↵-chip memory accesses

defined as (defined previously in eq(3.1))

Prefetch Accuracy =
No. of Useful Prefetches

(No. of Useful + No. of Useless Prefetches)
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It is to be noted that if the black-box prefetcher (IPCP [14], Bingo [2] or SPP [11] in this
work) decides to issue N prefetch requests, NeuFi (if augmented) would intercept those
requests and allow only N 0 (N 0  N) requests to pass. This means that it does not issue any
extra request and hence the drop in accuracy as observed in table(4.5), for example, Bingo
on GAP benchmarks, is due to blocking potential useful prefetches (reducing the numerator
in eq(3.1)) as well as possibly reducing the useless prefetches (reducing the denominator in
eq(3.1)).

Prefetcher
Benchmark

SPEC2017 GAP

IPCP 38.333 % 31.027 %
Bingo 68.316 % 74.747 %
SPP 90.034 % 88.661 %

IPCP (+ NeuFi) 38.910 % 33.863 %
Bingo (+ NeuFi) 68.676 % 74.057 %
SPP (+ NeuFi) 90.506 % 88.544 %

Table 4.5: Geometric-mean of the prefetch accuracy on SPEC2017 and GAP benchmarks

4.6 Summary

Table-4.6 summarizes the results (of importance) obtained by NeuFi, when augmented with
various prefetchers, on SPEC2017 and GAP benchmarks.

Benchmark
Prefetcher

(with NeuFi)
IPC

Improvement

Reduction in
Accesses to

O↵-Chip Memory

Accuracy
Improvement

SPEC2017
IPCP -0.924 % +3.913 % +1.505 %
Bingo -11.345 % +9.451 % +0.527 %
SPP -0.886 % +0.220 % +0.524 %

GAP
IPCP +1.071 % +9.518 % +9.410 %
Bingo -1.904 % +18.474 % -0.923 %
SPP -0.044 % +0.097 % -0.132 %

Table 4.6: Summary of the results obtained by NeuFi on SPEC2017 and GAP benchmarks

As can be seen in table(4.6), IPCP [14] obtained the best improvement, both in SPEC2017
and GAP benchmarks. In the case of SPEC2017 benchmarks, although it su↵ered a per-
formance degradation of 0.924 %, it reduced the number of accesses to o↵-chip memory
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by 3.913 %. However, in the case of GAP benchmarks, it not only improved the perfor-
mance by 1.071 % but also reduced the number of accesses by a significant 9.518 %. In
the case of Bingo [2], it su↵ered a significant performance degradation of 11.345 % in the
case of SPEC2017 benchmarks at the cost of 9.451 % less accesses to o↵-chip memory.
However, for GAP benchmarks, although it su↵ered a performance degradation of 1.904
%, it reduced the number of accesses by a significant 18.474 %. In the case of SPP [11],
not much improvement can be seen because the prefetcher is already very accurate, as was
shown previously in fig(3.1) and fig(3.2).
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(a) Normalized accesses to o↵-chip memory by NeuFi augmented with various prefetchers on
SPEC2017 benchmarks. The baselines are the corresponding prefetchers without NeuFi. On a
geometric average, the reduction (in %) was 4.00% on IPCP [14], 9.49% on Bingo [2] and 0.30%
on SPP [11] prefetcher

(b) Normalized accesses to o↵-chip memory by NeuFi augmented with various prefetchers on GAP
benchmarks. The baselines are the corresponding prefetchers without NeuFi. On a geometric
average, the reduction (in %) was was 9.59% on IPCP [14], 18.50% on Bingo [2] and 0.10% on
SPP [11] prefetcher

Figure 4.11: Normalized accesses to o↵-chip memory by NeuFi augmented with various
prefetchers on SPEC2017 and GAP benchmarks
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(a) Prefetch accuracy (in %) of various prefetchers with/without NeuFi on SPEC2017 benchmarks.
On a geometric average, the accuracy improvement (in %) is +1.505% on IPCP [14], +0.527%
on Bingo [2] and +0.524% on SPP [11] prefetcher, based on table(4.5)

(b) Prefetch accuracy (in %) of various prefetchers with/without NeuFi on GAP benchmarks. On
a geometric average, the accuracy improvement (in %) is +9.140% on IPCP [14], -0.923% on
Bingo [2] and -0.132% on SPP [11] prefetcher, based on table(4.5)

Figure 4.12: Prefetch accuracy (in %) of various prefetchers with/without NeuFi on
SPEC2017 and GAP benchmarks.
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Chapter 5

Conclusion

Timeliness is one of the core challenges when designing a prefetcher, not considering it
leads to the design of sub-optimal prefetchers that are not capable of utilizing their full
potential. The first part of this work tried to incorporate timeliness into a prior state-of-the-
art (SOTA) (hardware) prefetcher for level-2 caches (L2C), the Signature Path Prefetcher

(SPP), which does not consider timeliness of its prefetching decisions. The proposed proof-of-

concept prefetcher, Reinforced-SPP (R-SPP) utilized the policy-based reinforcement learning

framework to update its prefetching policy based on the timeliness of its decisions made in the
past and rewarded the actions accordingly. Doing so, led to R-SPP obtaining a performance
improvement of 47.056 % against a baseline system with no prefetching. Whereas SPP
(without / with look-ahead) obtained 30.561 % and 45.673 % improvement respectively,
against the same baseline. The proposed prefetcher in the first part of the work, i.e. R-SPP,
o↵ered a performance improvement of +0.948 % when compared against a system that
has SPP (with look-ahead) as the L2C prefetcher. The main drawback of R-SPP was the
prefetch accuracy, which was only 47.743 % while as SPP (without / with look-ahead)
obtained 89.610 % and 90.462 % respectively.

Second part of the work focussed on the drawbacks caused due to low accuracy by ana-
lyzing two more SOTA prefetchers - IPCP [14] and Bingo [2] under various memory band-
widths and it was emperically observed that the utility of prefetching is highly correlated
with the prefetching accuracy. Highly accurate prefetchers which perform relatively lower
than less accurate prefetchers, tend to perform much better than the latter, under low mem-
ory bandwidth. This lead to modifying the objective to also incorporate improving accuracy
alongside timeliness - which led to another proof-of-concept model, Neural-Filter (NeuFi),
which is based on supervised deep-learning. NeuFi performed best on GAP benchmarks
when augmented with IPCP [14] and Bingo [2]. For IPCP [14], it improved the perfor-
mance by +1.071 % and it reduced the o↵-chip memory accesses by +9.518 %, on a
geometric-average. For Bingo [2],it improved the performance by -1.904 % (i.e. reduced
the performance) but it reduced the o↵-chip memory accesses by a significant +18.574 %,
on a geometric-average. It obtained neglible benefit on SPP [11] since it was already accurate
enough.
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The main drawback of NeuFi currently is that it unlikely to be implementable practically
without causing significant impact (negatively) in other areas. Nonetheless, it is a proof-
of-concept which had demonstrated its ability to achieve near-similar performance while
reducing the number of accesses to o↵-chip memory by a significant amount - which should
motivate designs of similar filters that can be implemented practically, in the future.
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