Rowhammer Cache: A Last-level Cache for
Low-Overhead Rowhammer Tracking

Aman Singh
Indian Institute of Technology Bombay
and the University of Illinois Urbana-Champaign *
Email: aman14@illinois.edu

Abstract—The rowhammer attack on modern DRAM systems
is here to stay as the number of row activations required to
induce a DRAM bit flip (rowhammer threshold) is following a
trend of concern: 100K activations in 2014 to a few hundred
activations in recent years. Hardware mitigations of rowhammer
attacks need a rowhammer tracker that can track the DRAM row
activations, and trigger the rowhammer mitigation. The state-of-
the-art rowhammer tracker named Hybrid Tracker (HYDRA) is
a lightweight hardware approach. HYDRA incurs a performance
slowdown of less than 1%. However, our evaluations show that
HYDRA fails to deliver its promise in terms of performance
and storage overhead. For SPEC CPU2017 homogeneous 8-core
workloads, HYDRA incurs a performance slowdown of 23.63%.
We find that the simulation infrastructure used in HYDRA does
not simulate a modern processor with a detailed cache hierarchy
with hardware prefetching. The workloads used do not capture all
the regions of interest (sim-points) of a benchmark. To mitigate
this problem of performance slowdown without compromising
security, we propose rowhammer cache, a storage-efficient and
low-performance overhead HYDRA that provides the sweet
spot in terms of storage overhead, and performance overhead.
rowhammer cache uses existing last-level cache (LLC) space
instead of additional SRAM storage for rowhammer tracking.
Rowhammer cache improves the effectiveness of HYDRA by
improving the performance slowdown from 23.6% to 2.25%
for 55 8-core SPEC CPU2017 homogeneous mixes. For 20 8-
core GAP mixes, it improves the performance slowdown from
36.47% to 5.61%. For 45 representative heterogeneous mixes,
the Rowhammer cache improves performance slowdown from
28.68% to 3.14%. Rowhammer cache provides these performance
improvements with negligible storage of 512 bytes.

I. INTRODUCTION

Rowhammer interference [22] [[13] [46] [27] [28] [[15] [16]
poses a significant reliability and security threat as frequent
access to DRAM rows can cause bit flips at neighbouring
rows. The severity of the rowhammer attack is characterized
by the rowhammer threshold (Tr) that denotes the number
of row activations required for a given row to cause bit flips at
neighbouring rows. The threshold has decreased rapidly with
newer generations of DRAM technology. In the latest DDRS
DRAM chips, the threshold is speculated to be around 500
(ultra-low), whereas a decade back Ty used to be 139K [34].
So, a rowhammer tracker should be agile enough to track the
row activations and trigger the mitigation well ahead of time
so that rowhammer-induced bit flips can be avoided.

* The author contributed to the work as a UG student at IITB.

Biswabandan Panda
Indian Institute of Technology Bombay, India
Email: biswa@cse.iitb.ac.in

Additionally, a recently discovered attack RowPress [26]
has shown the increased susceptibility of DRAM devices to
bit flips if rows are kept open for a long time. This attack
significantly lowers the number of aggressor row activations
needed to induce bit flips in nearby rows. Under extreme cases
with high values of t5g,0n (time for which aggressor row is
on), bit flips are observed even with a single activation. A
way to mitigate RowPress, as discussed in [26], is by using
rowhammer tracking and mitigation mechanisms together with
limiting the maximum row-open time. Consider a DRAM
device that requires only Trp activations to induce bit flips
with aggon value of Xns. In such a case limiting the row-open
time to Xns and making sure no row is accessed more than
Tgrp times in a refresh interval prevents bit flips. However,
limiting row-open time to small values significantly increases
the slowdown caused by the prevention mechanism. On the
other hand, allowing larger row-open times lowers the activation
threshold (Trp < Tgy) for bit flips. Hence, allowing larger
row-open times demands the need for tracking mechanisms
that are performant even at extremely low tracking thresholds.
Rowhammer tracking and mitigation. rowhammer prevention
mechanisms usually involve tracking and mitigation mecha-
nisms [[13]], [33]], [34]], [37], [41], [44]. It works by keeping
track of the number of times each row is accessed using the
tracking mechanism. The tracking mechanism detects rows that
cross a set Tracking Threshold (T7) number of accesses. Such
rows are known as aggressor rows, while the nearby rows
susceptible to bit flips are known as victim rows. The focus of
the paper is rowhammer tracking.

HYDRA. The state-of-the-art rowhammer tracker Hybrid
Tracker (HYDRA [34])) uses a hybrid of SRAM and DRAM-
based techniques to scale to ultra-low RH thresholds. The
design of HYDRA is inspired by the observation that in most
applications, only a few rows receive hundreds of accesses.
HYDRA handles the common case of accessing DRAM rows
with a small access count through group-based tracking using
an SRAM structure. Only aggregate group-based tracking is
performed in SRAM to meet total SRAM size constraints.
Accurate per-row tracking is done in DRAM but is used only
for rows with lots of accesses. In summary, HYDRA uses four
hardware structures that are as follows:

Group Count Table (GCT). The GCT is an SRAM structure
that enables aggregate tracking of row access counts. Each

W lcore M2core M4core [8core

@”H

(b) Hydra with Berti prefetcher

@ 1core @ 2core @4core O 8core

’ HHH .HH _qﬂH HHH al

SPEC2K17 GAP SPEC2K17 GAP

Slowdown in %

(a) Hydra with no prefetcher

Fig. 1: Performance slowdown with HYDRA normalized to a
non-secure baseline.

@ 2core
O 8core

W 1core
@ 4core

w
o
oS

W 1core
@ 4core

M 2core
O 8core

Reads Writes

N
NP
o o

w
o

Increase in LLC miss
latency in %
&
% increase in
reads/writes

No Prefetching ~ With Berti

(a) Increase in LLC miss latency (in %) with Hydra (b) Increase in DRAM reads/writes with Hydra

Fig. 2: Average increase in LLC miss latency and increase in
reads/writes to DRAM with HYDRA.

entry of the GCT corresponds to a group of rows and stores
the sum of access counts of rows in that particular group. T¢
is the threshold for group-based aggregate tracking. Once the
GCT entry reaches T, a separate count for each row of the
group is maintained by two structures: the RCT and the RCC.
Row Count Table (RCT). RCT is a DRAM structure that tracks
the per-row access count. A region of the DRAM is reserved
for storing the RCT. The reserved region’s size equals the total
number of DRAM rows times the size of an RCT entry.
Row Count Cache (RCC). The RCC is an SRAM structure that
caches RCT entries. Consequently, the cache is only used for
rows whose corresponding group count has reached T¢. Each
entry of the RCC corresponds to a single-row access count.
The RCC is a set-associative cache. A few bits of the row
ID are used to index into a set in the RCC, where tags are
compared to find the row access count.

RCT Activations (RCT-ACT). The RCT-ACT is an SRAM
structure that maintains the access counts of rows in the DRAM
region reserved for RCT.

Workloads and simulation framework. We use memory-
intensive simpoint traces from SPEC CPU2017 and GAP
workloads [5]], [7]. In contrast to the prior evaluation, we use
all the simpoints and not one simpoint per benchmark. We use
ChampSim [6] simulator to simulate the processor and a cache
hierarchy and integrate it with DRAMsim3 [25] for a detailed
DRAM simulation. This is in contrast to HYDRA’s evaluation
on a DRAM-only simulator (USIMM) [2[] with no detailed
modeling of processors, multi-level caches, or prefetching and
has its limitations [[1]. Note that the LLC and DRAM behaviors
are different from what is reported in HYDRA as there are many
memory-intensive sim-point traces and we use a processor with
large ROB entries of 352 as compared to 160 [34]. Table [III
shows the baseline parameters and Table [[V|and [V| provide the
details of benchmarks used.

The problem. Figure [T] shows performance slowdown with
HYDRA for 1, 2, 4, and 8-core simulated systems averaged
across 75 homogeneous mixes created out of memory-intensive

x ;g W 1core M 2core
'E O 4core O 8core
= 50
o
+ 40
L 30 I:I I
GCT RCC

Fig. 3: Average hit rates of GCT and RCC with HYDRA.

SPEC CPU2017 and GAP traces [5] [7]. We show the
effectiveness of HYDRA with and without a state-of-the-art
highly accurate L1 prefetcher called Berti [29]. We use one
DRAM channel for up to eight cores as commercial many-core
systems like 60-core Intel Xeon Platinum [42]], 64-core AMD
EPYC Rome 7702P [11], and a 64-core AMD Threadripper
3990X [35] support eight DDR4-3200 channels; one DRAM
channel for eight cores.

On average for an 8-core system, the average slowdown goes
to 23.63% for SPEC CPU2017 and 36.47% for GAP workloads.
With the hardware prefetcher ON, the slowdown goes up to
28.79% and 42.57% for SPEC CPU2017 and GAP workloads,
respectively. Figure [2] (a) shows the increase in LLC miss
latency because of HYDRA averaged across SPEC CPU2017
and GAP workloads. The increase in LLC miss latency happens
because of additional HYDRA DRAM reads/writes generated
to the DRAM delaying demand reads (Figure [2| (b)). The
number of HYDRA reads and writes to the DRAM is driven
by the GCT and RCC hit rates that go down with the increase
in core counts (Figure [3). In summary, for many-core systems,
the hit rates of GCT and RCC drop, causing more HYDRA
requests to DRAM increasing the LLC load miss latency, and
causing performance slowdowns. In the presence of a prefetcher,
the effectiveness of a prefetcher drops as HYDRA increases
prefetch lateness.

Trivial solution. One of the trivial solutions to improve
performance is to increase the capacity of GCT and RCC.
To achieve a performance slowdown of less than 3%, GCT
has to scale up to MBs keeping RCC unchanged or RCC has
to be increased to 384KB with 512KB of GCT for an §-core
system with one DRAM channel.

Our approach and observations. We borrow a few LLC
ways to store group access counts and row access counts
corresponding to GCT and RCC entries. We provide an RCC
hit rate of more than 90% even for an 8-core system with an
8MB shared LLC. We find that to minimize the performance
slowdown, the RCC hit rate plays a major role as a high hit
rate at the RCC alone makes sure that HYDRA does not access
DRAM. We find that two LLC ways per LLC slice are enough
to achieve an average hit rate of 90%. So for an §-core system
with eight IMB LLC slices, we borrow two ways from each
LLC slice storing metadata for HYDRA. Note that stealing two
ways from an LLC incurs marginal performance degradation
compared to an LLC with all the ways available. We observe
that a minor increase in the GCT hit rate coupled with a high
RCC hit rate reduces the performance slowdown.

Our contributions. We make a case for end-to-end perfor-
mance evaluations of a state-of-the-art rowhammer attack
tracker. We show that a higher RCC hit rate is the key to
decreasing the performance slowdown. We show that a trivial
solution of increasing GCT and RCC capacities is not a
storage-efficient solution (Section [[TI). We propose rowhammer
cache, a simple and intuitive solution that can help rowhammer
tracking with negligible performance and storage overheads
(Section [IV). Rowhammer cache outperforms HYDRA by
improving the performance slowdown from 23.6% to 2.25%
for SPEC CPU2017 8-core homogeneous mixes. For GAP
mixes, it improves the slowdown from 36.47% to 5.61%. These
improvements come with marginal SRAM storage overhead

(Section [V).

II. BACKGROUND

DRAM Organisation. DRAM is organized in the form of ranks
that contain multiple DRAM devices. Each DRAM device is a
collection of banks where a bank is organized as a combination
of rows and columns. To fetch the data from the DRAM, an
activate command is used that puts the data into a row buffer.
DRAM cells are capacitor-based cells that need a precharge
(refresh) after a fixed interval else they leak data. Modern
DRAMs typically use a refresh interval of 64ms. For DDR4
memory systems, there can be millions of activations (1.36
million if we consider a row cycle time of 45ns) within a
refresh interval.

Threat model. A rowhammer bit flip can occur at a DRAM
row if the neighboring rows have been activated frequently and
the number of activations within a refresh interval has crossed
the rowhammer Threshold (Try). The degree to which a
DRAM device is susceptible to RH attack is characterized
by Tgrpg. This number has decreased rapidly with newer
generations of DRAM technology. In the latest DDR-5 chips,
the threshold is speculated to be around 500 whereas a decade
back Tgry used to be 139K. It is interesting to note that
even benign applications can frequently surpass such ultra-low
Try thresholds. A rowhammer attacker can corrupt any data
including data corresponding to page tables [46] located at any
unspecified DRAM locations. A rowhammer attack can also
be induced remotely [17]. So, a rowhammer tracker should
be agile and should track the row activations and trigger the
mitigation, well ahead of time so that rowhammer induced bit
flips can be avoided.

Rowhammer tracking and mitigation. Rowhammer pre-
vention mechanisms usually involve tracking and mitigation
mechanisms. It works by keeping track of the number of
times each row is accessed using the tracking mechanism. The
tracking mechanism detects rows that cross a set Tracking
Threshold (T7) number of accesses. Such rows are known
as aggressor rows, while the nearby rows susceptible to bit
flips are known as victim rows. The number of victim rows
on each side of the aggressor row is called the blast radius.
The mitigation mechanism prevents bit flips in victim rows
when the tracking mechanism detects an aggressor row. Various
mitigation mechanisms [37], [36], [[14], [9] have been proposed.

HYDRA READ DRAM

oueoe AN Fow Count
HYDRA WRITE ID Table (RCT)

QUEUE

®

Row Count Group Count
Cache (RCC) @ Table (GCT)
RCT Activations
(RCT-ACT)

Row ID

DRAM CONTROLLER

c:?uEQIJDE :Djjj j T
-

Fig. 4: HYDRA overview: (1a) Only the RCT-ACT is accessed
when the row belongs to the RCT. (1b) Otherwise, the GCT is
accessed. (2) Then, the RCC is accessed if the GCT threshold
of the row is reached. (3) After this, the RCT is accessed if
an RCC miss is encountered.

Memory
Address

WRITE
QUEUE

However, the focus of the paper is tracking that triggers the
mitigation mechanism.

Rowhammer tracking mechanisms. SRAM and DRAM-based
tracking mechanisms such as TWiCe [23]], Graphene [33]], D-
CBF [43], CAT [20]], HYDRA [34] have been proposed to track
the aggressor rows. Out of all the proposals, HYDRA is the
one with low storage and low performance overhead even for
a low Rowhammer threshold value of 500. The state-of-the-art
Rowhammer tracker HYDRA [34]] uses a hybrid of SRAM and
DRAM-based techniques to scale to ultra-low RH thresholds.
HYDRA. The design of HYDRA is inspired by the observation
that in most practical applications, only a few rows receive
hundreds of accesses. HYDRA handles the common case of
accessing DRAM rows with a small total access count through
group-based tracking using an SRAM structure. Group-based
tracking is performed to meet total SRAM size constraints.
Accurate per-row tracking is done in DRAM but is used
only for rows with lots of accesses. In Section [I, we explain
four structures of interest (GCT, RCC, RCT, and RCT-ACT).
Now, we show how they work in unison. HYDRA structures
are accessed on an LLC miss that leads to issuing an ACT
command. Figure {4| shows the sequence of events with the
HYDRA organization. In the first step, the access count stored
in the RCT-ACT is accessed and incremented if the row
belongs to the RCT region of the DRAM (la). Otherwise,
the appropriate entry of the GCT is accessed and incremented
(1b). Step (2) comes into the picture if the GCT threshold of
the group of rows is reached. In this step, the RCC is searched
for a matching row’s access count data and incremented if
found. Finally, HYDRA executes step (3) where it goes to
the DRAM if it gets a miss in the RCC. The RCT entry at
the DRAM is accessed by issuing a request to the priority
HYDRA DRAM read queue. When the request is served, the
access count is incremented and put into the RCC.

Tracking threshold. It is important to note that Tr is not
equal to Try, but rather it depends on both the tracking

mechanism used and Trz. All DRAM rows are refreshed once
every refresh interval, regardless of using an RH mitigation
mechanism. So, for a successful RH attack, an aggressor row
has to be accessed more than Try times within a refresh
interval, i.e. before the victim rows get refreshed. Tracking
mechanisms can exploit this fact and reset access counts for
rows in the refreshed region.

Tracking mechanisms may reset all the row access counts
once every refresh interval without synchronization with the
DRAM refreshes. However, with this mechanism, a DRAM
row can be accessed T — 1 times before its count is reset
and Ty — 1 times after reset but before the victim rows get
refreshed as resets and refreshes are not in sync. This allows
an aggressor row to be accessed 2T — 2 times without the
tracking mechanism’s detection. Hence, the tracking threshold
must be set to Ty /2 to prevent a rowhammer attack. HYDRA,
too, resets row access counts every refresh interval by setting
group counts to zero and invalidating RCC entries, and hence
must set Tr = Try /2.

III. LIMITATIONS OF HYDRA
A. Capacity bottleneck

An appropriately sized GCT and RCC are critical for
performance as they hide the large latency of cache misses.
RCC plays an important role in the design of HYDRA. With an
inadequate RCC, many DRAM activation commands (for rows
in groups that have reached T) would have to perform a read
and a write to the DRAM for updating the RCT. This increases
the amount of work the DRAM has to perform for every
activation command, especially because reads and writes to
the RCT are prioritized over reads and writes to other memory
addresses.

To evaluate the effectiveness of GCT and RCC size, we
calculate the hit rate. Table [l shows the GCT hit rates
and the corresponding performance slowdowns with different
numbers of GCT entries keeping RCC size fixed to 8k entries
as suggested in the HYDRA paper. Even with a sixteen-
fold increase in GCT entries, the hit rate improves from
34.87% to 46.09%. The performance slowdown improves
marginally from 27.29% to 23.84%. A 512k entry GCT incurs a
storage overhead of 512KB but delivers marginal performance
improvement.

Next, we evaluate RCC’s hit rate for various configurations
by varying its associativity and number of entries. The hit rate
is averaged over SPEC CPU2017 and GAP traces. Based on
Figure 5] the hit rate saturates at around 95% for an RCC with
32k entries and 64-way associativity. On the contrary, fixing the
associativity to 16 and increasing the RCC size barely improves
the hit rate. An RCC with 64k entries and with 128 as the
associativity incurs a performance slowdown of 1.53% only.
However, a 64k entry RCC with 16 as the associativity incurs
a performance slowdown of 24.59%. In terms of reasonable
associativity and number of entries, a 128k entry with 32 as
the associativity provides the best performance. However, this
incurs storage of 384KB. In summary, a 512KB GCT and
a 384KB RCC together deliver a performance slowdown of

TABLE I: GCT hit rates for different GCT sizes in HYDRA
averaged across 75 SPEC CPU2017 and GAP mixes.

#GCT entries | GCT hit rate | Slowdown
32k 34.87% 27.29%
64k 37.97% 26.27%
128k 40.28% 25.63%
256k 42.67% 24.97%
512k 46.09% 23.84%

100

,,,,,,,,,,,,,,,,, eAssoc = 32

951 Assoc = 32

77 #Assoc = 32
90
85
80

75

RCC hit rate (%)

70

- ::::::::::::::::q'/.\'ggo’c"='16"91ASSOC =16

651 " e 4Assoc = 16
,,,,,,,,,,,,,,,,,,,,,, eAssoc = 16
601 --eAssoc = 16 |
551 >ia 515 216 o7

Number of RCC entries

Fig. 5: Average RCC hit rate with different associativity and
number of entries. HYDRA uses 8k entries (16-way).

1.76% and with just 32KB GCT and 384KB RCC, HYDRA
incurs a performance slowdown of 2.92%.

B. Scaling with number of cores

Modern servers have large multi-core chips with a huge
amount of main memory. The use of newer-generation DRAM
devices with ultra-low RH thresholds in such servers makes
the performance of RH prevention mechanisms essential.

Increasing the number of CPU cores connected to a DRAM
causes an increase in the number of activation commands
issued per unit of time. This, in turn, increases the number
of rows with an activation count greater than a threshold per
unit time or refresh interval. We validate this by evaluating the
effect of increasing the number of cores on the number of rows
reaching a threshold number of activations per refresh interval,
averaged over memory-intensive SPEC CPU2017 and GAP
traces. Table [[Il shows an increase in the number of activations
with an increase in core count. More ACTs lead to more RCT
accesses. Averaging over memory-intensive SPEC CPU2017
and GAP traces, the number of times RCT is accessed per kilo
instructions executed by each core increases from 6.5 in one
core to 15.5 in two cores, 35.9 in four cores and 83.1 in eight
cores. As each RCT access requires accessing the DRAM, this
explains why the performance plummets with increasing CPU
cores in a multi-core system. Figures and [3] show the
effect of core count on performance, LLC miss latency, and
hit rates of GCT and RCC.

C. Effect of hardware prefetchers

Prefetching is a common technique modern processors use
to hide the latency of cache misses. It is critical to the

TABLE II: Average number of DRAM rows that cross different
threshold numbers of activation (ACT) commands within a
single refresh interval.

No. of cores + | Average no. of rows with ACTs greater than
L1D prefetcher | O 100 250 500 1000
1 + No-pref 20K 35K | 1.6K | 0.2K | 0.IK
1 + Berti 26K 44K | 2.1K | 04K | 02K
2 + No-pref 38K 63K | 2.6K | 0.5K | 0.3K
2 + Berti 47K 8.1K | 3.6K | 0.8K | 0.4K
4 + No-pref 67K IIK | 40K | I.IK | 0.6K
4 + Berti 83K 14K | 47K | 1.5K | 0.8K
8 + No-pref 118K | 18K | 5.8K | 2.0K | 1.2K
8 + Berti 129K | 19K | 64K | 24K | 1.3K

performance of several applications. Prefetchers learn memory
access patterns and fetch data before time so that future memory
accesses do not stall the processor. Prefetching techniques can
be deployed at any level of the cache hierarchy. However,
prefetchers only speculate about future cache accesses and
may pollute the cache by fetching useless data. The metric that
tracks this is called prefetcher accuracy. As there is no hardware
prefetcher with 100% accuracy; with hardware prefetcher ON,
additional DRAM accesses increase row activation counts,
leading to more RCT activity per kilo instructions. Berti [29]
is a recently proposed state-of-the-art L1D prefetcher with high
prefetch accuracy (almost 90%). We evaluate the performance
improvement due to the Berti prefetcher at L1D in different
system configurations, averaging over memory-intensive SPEC
CPU2017 and GAP traces. The results depicted in Figure
[I] show a non-marginal increase in performance slowdown
for a system with hardware prefetcher. One of the primary
reasons for this performance slowdown is prefetch timeliness.
On average, HYDRA increases the prefetch lateness by 4%, 5%,
9%, and 13%, for 1, 2, 4, and 8-core systems respectively. So, in
summary, not only does HYDRA cause significant performance
overheads in the baseline system, but it also reduces the
effectiveness of prefetchers. Combining these effects, we observe
that using HYDRA for multicore systems with prefetchers has
significant performance degradation.

IV. ROWHAMMER CACHE

For a baseline system with a 1 MB LLC slice and 16-way
associativity (1024 sets), two ways from each set of each LLC
slice are reserved for usage by rowhammer cache. This much
space is enough as per the sensitivity study shown in Figure [5]
With this setup, rowhammer cache reserves 128 KB of LLC
slice for GCT, RCC, and RCT-ACT which is 12.5% of the
total LLC size. Although reducing the LLC size available for
normal applications comes with a performance penalty, it is far
outweighed by the reduction in slowdown by using a scalable
tracker like rowhammer cache. Figure [6] depicts an overview
of the structures and working of rowhammer cache. Based
on our experiments, if we steal two ways (way-O and way-
1) from LLC for GCT and RCC, compared to a non-secure
system with no rowhammer tracker, we see a performance
drop of 1.28%, 1.22%, and 0.82% for 8-core, 4-core, and 1-
core systems, respectively. However, compared to HYDRA, it

TABLE III: Baseline system parameters.

Core Out-of-order, Hashed-perceptron, 4 GHz,
4-retire width, 352-entry ROB

L1I 32 KB, 8-way, 4 cycles, LRU

L1D 48 KB, 12-way, 5 cycles, LRU

L2 512 KB, 8-way, 10 cycles, LRU

LLC 1MB/core, 16-way, 64B lines, 20 cycles,
SRRIP [18], non-inclusive
MSHRs 8/16/32 at L1I/L1D/L2, 64/core at the LLC

DRAM size - To i
Trep - Trp - Toas
Tre - TrAs - Twnr
Trrc - TREFI

Rows - Columns in a bank
Banks - Ranks - Channels

32 GB (DDR4) - 0.68 ns

13.6 ns - 13.6 ns - 13.6 ns

45.56 ns - 31.96 ns - 14.6 ns

349.52 ns - 7.78 us

131072 - 1024, size of the row: 8 KB
16-2-1

reduces the performance slowdown by more than 20% for an
8-core system.

GCT: The GCT structure in the rowhammer cache occupies
cache set numbers 512 to 1023 of each LLC slice. Each cache
line is 64 bytes long and holds 64 GCT entries. For an 8-core
baseline system, the GCT consumes 512KB for eight LLC
slices (64KB per LLC slice), and 8 DRAM rows map to a
single GCT entry. Note that one GCT entry is of 1 byte that
stores the group count. Just like its counterpart in HYDRA,
GCT entries store the sum of activation counts of a group of
rows and initiate per-row tracking when a GCT entry reaches
the group-based tracking threshold (Tg). We use T = 200
for the case where Ty = 250.

RCC: RCC is a structure in rowhammer cache that occupies
cache set numbers O to 511 of each LLC slice. Each cache line
is 64 bytes long and holds 16 RCC entries. The RCC entries in
2 reserved cache lines (ways) of each LLC set form an RCC
set. This makes the RCC a 32-way associative cache that is
512 KB in size for an 8-core baseline system with eight IMB
slices. As shown in Figure [/ 4-byte long RCC entries contain
8 bits for row access count data, 10 for the tag, 1 for the valid
flag, 2 for the replacement state, and the remaining 11 bits are
unused. RCC follows the SRRIP [18]] replacement policy with
4 different replacement states. Figure [§] shows the RCC and
GCT sets for a rowhammer cache with a IMB LLC slice.

RCT: RCT stores access counts for rows whose per-row
tracking has been initiated in the DRAM. As in HYDRA, it is
accessed by issuing DRAM commands. With 222 total rows
in the baseline DRAM and one byte for each entry, 4 MB of
space is reserved for the RCT. This sets aside less than 0.02%
of 32 GB memory space and therefore causes minimal impact
on performance.

RCT-ACT: RCT-ACT’s function and working are the same
as HYDRA. We use additional storage of 512 bytes for 512
RCT-ACT entries.

Indexing. Accounting for 222 rows in the baseline DRAM,
Row IDs are 22 bits wide. The upper 19 bits of the Row
ID identify the group a row is part of. This group number
is used to index into the LLC to get a GCT entry. Starting
from the most significant bits, the indexing mechanism uses
three bits to identify the LLC slice, nine bits to identify the
set number (from 512 to 1023) and one bit for choosing the

DRAM
reap queve || ||]
LLC W;’I?g)gggUE IEED
RCC
1@
GCT
Row ID
DRAM CONTROLLER
Memory READ
Address QUEUE :Djjj j T

WRITE
QUEUE

11—
Fig. 6: Overview of rowhammer cache: On an LLC miss, the
DRAM controller gets the DRAM row ID and then accesses
rowhammer cache. (1a) Only the RCT-ACT is accessed when
the row belongs to the RCT (1b) Otherwise, the appropriate
entry of the GCT residing in the LLC is accessed (2) Then,
the RCC is searched for a matching row access count data if
the GCT threshold of the row is reached (3) If an RCC miss
is encountered, the RCT is accessed by adding a request to
the Priority Read Queue.

ROW ACCESS

UNUSED (11 bits) COUNT (8 bits)

TAG (13 bits)

VALID (1 bit) S REPLACEMENT STATE (2 bits)

Fig. 7: One RCC entry.

reserved way/cache line (as two reserved ways in each set to
store GCT entries). Once a particular cache line is found, we
use the lowermost six bits of Row ID as the byte offset into
the cache line to access the GCT entry (64-byte cache line
store 64 GCT counters). Figure [0] shows this indexing.

The RCC is searched for cached access counts for rows
which have crossed the group threshold. Similar to the GCT
indexing mechanism, starting from the most significant bits, the
3 most significant bits of the 22-bit-wide Row ID are used to
identify the LLC slice. The next nine bits are used to identify
the set number from O to 511. This leads us to the 2 reserved
ways per set that store a total of 32 RCC entries (an RCC
entry is 4 bytes). The remaining 10 bits of the Row ID are
compared among the tags of 32 RCC entries to find a matching
entry. This design provides the benefit of a 32-way cache. As
shown in Figure [5| a 32-way RCC provides higher hit rate
than a 16-way RCC. As the 32 comparisons needed for 32
RCC entries can affect the probe time and also the demand
loads waiting to access the LLC, we use a small buffer of 128
bytes to store the RCC entries. We copy the 128 bytes from
the cache lines into this buffer and then perform 32 concurrent
comparisons.

Additional design functionality. With rowhammer cache, we
need an additional port per LLC slice for the HYDRA accesses
to GCT and RCC sets so that it won’t affect the demand

LLC

Set0 An RCC set
[wayt]| %
i ‘RCCwayO ‘RCCway1 o ‘Rc‘fsway
Way 15 RCC way RCC way RCC way
: 17 ' ' 31 :
Set 1 Way 0 2
>
4BYTES
) 64 BYTES
Set 512
T
W GCT | [GCT | [GCT GCT
S entry | | entry | | entry entry
GeT | [oCT | [GeT act
entry | | entry | | entry entry
Set 513 o —
Way 1 1BYTE
: 64 BYTES
Set 1023

Fig. 8: An LLC slice in rowhammer cache with 2 ways reserved
in each set for storing GCT and RCC.

e

Slice Number LLC Way Mask Offset into Cache Line

Group ID (19 bits)
Fig. 9: Indexing mechanism: From Row ID to LLC GCT entry.

requests coming from the processor. For rowhammer cache-
related requests, the DRAM controller sends a message back to
the LLC with a HYDRA-f1lag set. The LLC controller reserves
two ways (way-0 and way-1) exclusively for rowhammer cache-
related requests. Note that a possible design is to reserve one
way for GCT and one for RCC across all 1024 sets. However,
as we need the behavior of 32-way associativity for RCC,
we design two ways for RCC with 512 sets. HYDRA in the
baseline design reserves a DRAM area for RCT which is not
used by the OS. The DRAM controller is aware of that region
and based on the address and Row ID.

Security guarantee. By design, the rowhammer cache ensures
that no row gets activated more than Tp (T is set to Try /2)
times within a refresh interval without its nearby rows being
refreshed.

V. EVALUATION

We use ChampSim [6], a trace-based CPU microarchitecture
simulator coupled with DRAMsim3 [25]], a cycle-accurate
DRAM simulator to carry out all the experimental evaluations.
ChampSim is used for the 2nd and 3rd Data Prefetching
Championships (DPC-2 [3] and DPC-3 [4]). Recent caching and
prefetching proposals [8[], [[10], [29], [30], [38]] are also coded
and evaluated on ChampSim. The recently modified ChampSim
extends the one provided with the DPC-3 with a decoupled
front-end and a detailed memory hierarchy support for address
translation that further improves the baseline performance.

TABLE IV: SPEC CPU2017 workloads with metrics of interest.
Total number of activations: rows x average-ACTs/row.

‘Workload LOAD| LOAD| Unique | 250+ ACT | ACTs
MPKI | APKI | rows rows per
row
gcc_s-1850B 17.8 17.8 73.2K 7 0.18
gcc_s-2226B 69.8 69.8 96.7K 11 1.73
gee_s-2375B 0.8 2 423K 264 0.3
gce_s-734B 8.6 8.7 37.9K 1951 0.99
bwaves_s-1740B 18.5 18.5 186.3K | O 1.29
bwaves_s-2609B 18.5 18.5 1853K | 0 1.29
bwaves_s-2931B 7.7 8.7 182.6K | 5 3.08
bwaves_s-891B 254 254 146.7K | 69 2.19
mcf_s-1152B 36.5 56.8 91.1K 5023 1.79
mcf_s-1536B 46.5 57.2 283.6K | 1283 3.38
mef_s-1554B 154.7 | 154.7 | 15.5K 6004 4.18
mcf_s-1644B 31.4 36.9 972.1K | 6145 42
mcf_s-472B 52.3 524 81K 8704 33
mcf_s-484B 233 233 85.6K 9318 2.63
mcf_s-665B 12.4 19.3 382K | 4986 1.16
mcf_s-782B 93.5 1324 | 116.6K | 5916 2.52
mcf_s-994B 20.3 24 716.8K | 33 2.05
cactuBSSN_s-2421B | 8 10.1 87.6K 1 2.59
cactuBSSN_s-3477B | 2.1 42 44.6K 16 0.99
cactuBSSN_s-4004B | 2.1 42 443K 24 0.99
Ibm_s-2676B 6.3 6.3 89.5K 19101 4.25
Ibm_s-2677B 11.8 11.8 88.5K 21927 4.06
Ibm_s-3766B 11 11 88.3K 21789 4.03
Ibm_s-4268B 11.4 114 88.5K 21810 39
omnetpp_s-141B 10.4 12.3 246.3K | 1302 1.67
omnetpp_s-874B 9.3 11.1 2274K | 1166 1.62
wrf_s-6673B 12.2 12.7 43.8K 16318 3.18
wrf_s-8065B 9.2 9.6 40.3K 15650 3.15
wrf_s-8100B 1.5 1.7 24.5K 2812 1.21
xalancbmk_s-10B 234 24.4 53.6K 6039 2.03
xalancbmk_s-165B 6.4 12.2 4.6K 1817 1.13
xalancbmk_s-202B 17.3 20.6 6.9K 5026 1.99
xalancbmk_s-325B 0.3 0.6 12.6K 2147 0.59
xalancbmk_s-592B 0.3 2.1 26.7K 1726 1.11
xalancbmk_s-700B 0.4 2.2 21.5K 1598 0.66
x264_s-18B 0.6 0.7 17.2K 0 0.96
x264_s-39B 0.9 1 25.1K 2976 1.37
cam4_s-490B 3.8 6.1 23.4K 6877 3.49
cam4_s-573B 0.5 0.7 37.1K 9573 2.26
pop2_s-17B 2.5 4.1 50.8K | 4385 2.18
leela_s-1083B 1.2 1.2 5.9K 2759 0.55
nab_s-12521B 1.6 1.6 44.6K 0 1.21
fotonik3d_s-10881B | 21.1 21.3 939.7K | 208 3.5
fotonik3d_s-1176B 9.1 9.9 65.4K 718 2.21
fotonik3d_s-7084B 16.4 16.4 117.1K | 99 2.54
fotonik3d_s-8225B 9.1 10 65.9K 682 223
roms_s-1007B 57 6.3 79.2K 3598 2.1
roms_s-1070B 14.5 14.5 115.8K | 16056 3.54
roms_s-1390B 19.1 19.1 171.3K | 6973 3.82
roms_s-1613B 1.9 1.9 34.5K 4660 1.15
roms_s-293B 10.6 11.5 256.4K | 85 2.51
roms_s-294B 11.7 12.7 259.6K | 93 1.79
roms_s-523B 16.5 16.5 140.9K | 8581 3.69
xz_s-2302B 1 1.5 40.7K 153 1.07
xz_s-3167B 1.1 1.5 43.6K 1491 1.23

We verify all the timing constraints in the integrated Champ-
Sim+DRAMsim3 simulator as per the bandwidth and latency
stack [12]]. We use an RH threshold of 500 for evaluation. So,
Tt is set to 250, and T is set to 200 for HYDRA. However,
we show sensitivity studies for lower thresholds too. The blast
radius is set to 2. Table [[II] shows the simulation parameters
used for evaluation. We use the sum of IPCs as the throughput
(performance) metric.

TABLE V: GAP workloads with the metrics of interest.

Workload | LOAD | LOAD | Unique | 250+ ACT | ACTs
MPKI | APKI rows TOWS per row

bc-0 55.8 66.2 91.1K 8933 3.08
be-12 57.3 67.9 86.4K 8499 3.19
be-3 534 63.6 80.3K 9526 3.18
be-5 514 62.4 110.6K | 8271 3.75
bfs-10 18.3 19.5 113.5K | 10712 1.77
bfs-14 16.7 17.2 123.1K | 9032 1.59
bfs-3 19.1 20.7 114.1K | 10490 1.83
bfs-8 16.8 17.4 1189K | 9177 1.6
cc-13 414 55.2 17.3K 4928 2.39
cc-14 40 534 18K 4912 2.46
cc-5 38.6 515 18.8K 5092 2.55
cc-6 45.5 60.7 17.5K 4955 2.48
pr-10 92.7 122 28.3K 13885 1.59
pr-14 92.6 122 29.1K 13858 1.59
pr-3 92.7 121.9 28.1K 14112 1.59
pr-5 92.7 121.9 29.5K 14051 1.59
sssp-10 31 39.1 167.9K | 5165 3.14
sssp-14 31 39.1 172.1K | 5196 3.14
sssp-3 31.1 39.1 166.9K | 5219 3.14
sssp-5 31 39.1 166.8K | 5364 3.14

Workloads. We run the evaluation on traces from the SPEC
CPU2017 [3] and GAP [[7] benchmarks. Tables [[V] and [V] show
all the simpoints used with their respective LLC accesses per
kilo instructions (APKI), misses per kilo instructions (MPKI),
and metrics of interest for a rowhammer tracker. We collect
statistics for 500M instructions in the region of interest for each
sim point after a warmup of 50M instructions per core. We
limit our study to memory-intensive SPEC and GAP traces (75
traces in total), with an IMB LLC/core in our modeled baseline
system. We provide a detailed analysis of 75 8-core homoge-
neous mixes with one DRAM channel where all the cores of a
many-core system run the same benchmark trace in the SPEC
RATE mode. We also show results for 45 8-core heterogeneous
mixes. For each homogeneous and heterogeneous mix, when a
core finishes its 500M instructions, it gets replayed until all
the cores finish their respective S00M instructions. We report
performance in terms of weighted speedup [39]. Weighted
speedup is equivalent to system throughput which accounts
for the number of programs completed per unit of time. The
choice of using a large number of instructions was taken so
that each trace encounters at least an entire refresh interval
during the simulation. The performance degradation associated
with enabling the RH tracking mechanism is with respect
to the same but vulnerable system without an RH tracking
mechanism.

A. Performance and hit rates at RCC and GCT

SPEC CPU2017 8-core homogeneous mixes. Figure [T0]
shows the performance slowdown for SPEC CPU2017 with HY-
DRA and rowhammer cache normalized to a non-secure system
with Berti prefetcher ON. For SPEC CPU2017, rowhammer
cache improves the performance slowdown from 28.79% to
3.05%. Note that Berti is a highly accurate prefetcher with low
prefetch accuracy of less than 50% for a few benchmarks like
mcf. To understand the performance benefits of rowhammer
cache, Figure shows the RCC hit rates with HYDRA and
rowhammer cache for SPEC CPU2017 8-core homogeneous

OO0 RowHammer Cache

B HYDRA

Lower the better

NV3INO3ID
9L9TE-S 2X'LS9
920€T-S 2X'£S9

gE€TG-S SWOI 59
gY67-S SWOI 59
9E6T-S SWOI 59
gETIT-S SWoI$S59
G06€ET-S SWOIpS9
90£0T-S swol 59
9L00T-S SWoIyS9
95778-S PENIU0I0Y 619
gy80L-S PENIU0I0Y 619
99£1T-S PEAIU0I0L 619
9188015 PENIU0IOY 69
412521-S qeuyy9
g€80T-S €|93|'TH9
g.1-s zdod gz
gELS-S pWeI L79
8061~ yWed /79
96€-S Y9TX'ST9

g81-s ¥9TX'ST9
g00L-S wiqouelex €z9
9765-S wiqoue|ex e€z9
g5CE-S wgauelex €z9
9202-S qwiqouelex'e€z9
g591-S qwiqoue|ex'e€z9
g0T-S JWaduelex €9
g00T8-S JMTZ9
§5908-S M 129
9€£99-S HMTT9
gv£8-s~ddyauwo0z9
g1yT-s~ddyauwo oz9
g897h-S WqI'6T9
€99L€-S” WqI'6T9
9/££97-S”WqI'6T9
99£92-S” WqI'6T9
gv00p-s NSSgN12e2°,09
9LLYE-S NSSENeI' /09
gTeie-s NSSgn1ded’ /09
7665 JOW'S09
g78L-5 JPW'S09
9599-S JoW'S09
gr8y-s JOW'S09
9TLY-S JPWS09
YY9T-S PW 509
YSST-S PW 09
g9€ST-S W S09
g97STT-S w509
g168-5 S9ABMQ'E09
gTEGT-S SIABMY"E09
96097-S S9ABMQ"E09
gOVLT-S SOABMY"E09
aveL-s 298209
9SL€T-S 228209
992¢Z-s 298209
g0S8T-5 298209

1X€s.

SPEC CPU2017 homogeneous m

Performance slowdown

o

IOVHINY

49/9TE-S 2X'LS9
970€T-S 2X'LS9

gETS-S SWorys9
9y6¢-S SWoIyS9
gE6C-S SWOIyS9
9ETIT-S SWoU 'y
g06ET-S SWou 59
90L0T-S” SWouyS9
9£00T-S swou 59
95278-S PEAIU0I0Y 619
gv80L-S PEIU0I0Y 619
g9LTT-S PEAIU0IOY 619

“-S”PENIU0IOY 69

412SCI-S qeuyy9
9€80T-S €|93|'TH9
4,1-s ¢dod'gr9
9€L5S ywed'/z9
g06v-S ywex'/z9
96€-S ¥9TX'ST9

g8T-S ¥9TX'ST9
€00L-S qwigduelex'ez9
9765-S qwgoueex g9
457E-S wgduelex'€z9
920¢-s qwqoue|exez9
9S9T-S qwqoue|ex'€z9
90T~ JjWgIUe[eX€Z9
40018-S HM'TZ9
95908-S HM'TZ9
9€£99-S UM TZ9
ay/8-s ddipuwo oz9
4aTy1-s” ddipuwooz9
9897p-S Wq|'619
€99.€-S Wq|'6T9
9£/92-S Wq|'6T9
€9£97-S Wq|'6T9
ar00p-S~ NSSgn19e2°/09
9LLyE-S NSSEN19e2'£09
aTTye-s NSSgn1oed’/09
av66-S JOW'S09
g78L-S JoW'S09
9599-S JOW'509
ar8y-s JoW's09
9CLy-S W S09
ary9T-s W 509
arSST-S PW 509
g9€EST-S w509
g7STT-S PW509
9168-S SIAEMQ"E09
9TE6T-S SaNBM'EQ9
8609¢-S S9ABMQ €09
g0vLT-S S9ABM E09
aveL-s 298209
9S/€¢-5 298°209
992¢Z-s 298209
905815 298°209

W HYDRA O RowHammer Cache

RCC hit rate for SEPC CPU2017 with rowhammer cache.

Fig. 11

B HYDRA @O RowHammer Cache

< 100
80
60
40

20
0

JOVYINY
9/9TE-S 2X'LS9
970€T-S 2X'LS9

gETSS SWOIpSY
av6Z-S SWouyS9
gE6T-S SWOIHS9
9ETIT-S SWoIyS9
906€ET-S SWOIyS9
90£0T-S swWouyS9
9/00T-S swol 59
95¢78-S PENIU0I0) 619
gv80L-S PENIU0I0) 619
g9LTT-S PENIU0I0) 619
91880T-S PEYIU0I0S 679
aTZSeT-s qeuyy9
9€80T-S €93’ T
g/1-s ¢dod'gz9
gE€L5-S ywed'/z9
g06v-S yWwed/z9
86€-S ¥9TX'ST9

g81-S ¥97X'SZ9

900L-S jwqgoueex-€z9
9765-S wgduelex€z9
9STE-S Wduelex €79
420Z-s jwqgoueex'€z9
459T-S jwqoueex'€z9
g0T-S Jwgduelex'ez9
90018-S HM'TZ9
95908-S HM'TZ9
9€£99-S UM TZ9
ay/g-s~ ddisuwo 0z9
aTpT-s ddiduwo ozg
9897y~ WqI'6T9
999L€-S WqI'6T9
9££97-S"WqI'6T9
€9/9¢-S Wq|'6T9
gv00p-S NSSgN19ed°£09
9/LYE-S NSSEN2eI'£09
gTTe-s NSSgN12ed’£09
v66-S OW'S09
9¢8L-S PW 509
9599-S pPW’S09
gv8y-s W S09
9TLY-S PWS09
arp9T-s W 09
arSST-S oW 509
€9€ST-S oW 509
g7STT-S W s09
9168-S SIABMQ'E09
gTEBT-S SINBMQ'E09
860975 SIABMQ"E09
g0VLT-S SaABMQ'E09
gveL-s 298209
9SLET-S 298209
992¢Z-s 228209
90581-s 228209

£
Q
o+
©
—
=t
e
[
O
O

GCT-only hit rate for SEPC CPU2017 with rowhammer cache.

Fig. 12

Lower the better WHYDRA [RowHammer Cache

=50
=40
<30
[1LI | ||III |
Elgﬂﬂﬂﬂﬂﬁﬂﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ
B I T, N B S S =T B = T A S
80 88222 LU 88LLasan By
< 5 = ° ° o o 2 2 3 8 3
w n o
2
(Y]
Fig. 13: Performance slowdown: GAP homogeneous mixes

100 = - = =

Hit rate (in %)

—
/—————

—
sssp-5 Mmm—

WA U N ®©W
S5 o060 6o
—

—
——

bfs-1(—

bfs-3 m—
—

—

2YTLIITILILECLIILSTILLY
Q% o , o g RO - T -3

2 v 9 9 w5 5 v o © L = a a @ <

k] g 2 2 5 ¢ S o 22 2 =

v n v w

a a s

<<

m HYDRA O RowHammer Cache GAP 8-core mixes

Fig. 14: RCC hit rate for GAP with rowhammer cache.

mixes. Rowhammer cache improves the RCC hit rate from an
average of 63.58% to 97.16%. Note that rowhammer cache
does not improve the hit rate of GCT, significantly (34.87%
becomes 42.01% as shown in Figure @) However, a minor
increase in the hit rate of GCT coupled with a high RCC
hit rate contributes significantly to performance. There are
applications with no slowdown (cactuBSSN) as the count of
250+ ACT rows is low (Table [[V).

GAP 8-core homogeneous mixes. For GAP mixes, the
rowhammer cache improves the performance slowdown from
42.57% to 6.97% (Figure [13). To understand the performance
benefits, next we show the RCC and GCT hit rates. For GAP,
the rowhammer cache improves the RCC hit rate from an
average of 49.33% to 96.75% (Figure[T4). There is a drop in hit
rate by an average of 1.23% with prefetching. Figure |15[shows
the marginal increase in the GCT hit rate. One of the primary
reasons for performance slowdown with rowhammer cache
and prefetcher ON is the reliance on the agility of the tracker
for security. If the access count maintained by rowhammer
cache goes out of sync with the actual access count due to
delays in servicing reads to the RCT, some rows may breach
the rowhammer threshold and induce bitflips. Hence, DRAM
requests from rowhammer cache are always prioritized over
demand loads and prefetch requests. With prefetching ON,
some of the accurate prefetch requests get delayed causing
additional slowdown. Also, prefetching introduces bursty traffic
that exacerbates the problem with HYDRA. In summary, there
is a performance cost that the system has to pay in order to
get the rowhammer tracking right. Overall, rowhammer cache
improves the effectiveness of HYDRA significantly with minor
changes to the LLC organization.

Heterogeneous mixes. Figure [16] shows performance slow-
downs with HYDRA and rowhammer cache for 45 heteroge-
neous mixes. We create mixes based on their LLC MPKI values
(a few mixes with low MPKI, a few with high MPKI, and a few
random mixes). These mixes have performance slowdowns of

S 50

= 40 MHYDRA O RowHamme Cache
v 30
20
Al [LLL]
51 NN
© gog4esg3oIvesIoLaIgLy
o T o6 O T) N I R - - A - N - %
& a
>
<

Fig. 15: GCT-only hit rate for GAP with rowhammer cache.

3.52% to 49.87% with HYDRA. On average, the rowhammer
cache improves the performance slowdown from 28.68% to
3.14%. The insights that we see for homogeneous mixes are
also applicable to heterogeneous mixes.

Storage and performance tradeoff. HYDRA incurs an SRAM
storage of 56.5KB that leads to a performance slowdown of
23.63% and 36.47% for 8-core homogeneous SPEC and GAP
mixes, respectively. HYDRA with 32KB of GCT and 384KB
of RCC results in a performance slowdown of less than 3%
and 6% for SPEC CPU2017 and GAP mixes, respectively.
Rowhammer cache uses 512 bytes of SRAM storage and
leads to performance slowdowns of only 2.25% and 5.61%
for SPEC and GAP mixes, respectively. The baseline HYDRA
outperforms the rowhammer cache if we use 512KB of GCT
and 384KB of RCC.

B. Sensitivity studies

Per-core LLC size. Figure shows the effect of rowham-

mer cache on an 8-core system with different sizes of LLC-slice
per core (1MB/core to 4MB/core). Intuitively, the performance
slowdown improves with larger LLC per core as fewer misses
go to DRAM. Nevertheless, rowhammer cache shows its
effectiveness in improving the slowdown, significantly. Note
that we use the same storage (storage used for IMB LLC)
for GCT and RCC even with 2MB and 4 MB LLC per core.
So far, we have shown the effectiveness of rowhammer cache
with the highly accurate state-of-the-art Berti prefetcher. We
also evaluate rowhammer cache with other state-of-the-art L1
and L2 prefetchers like IPCP [30], Bingo [8]], and SPP [10].
In case of aggressive prefetchers causing more DRAM traffic
and hence more performance slowdowns, then ideas based on
criticality [19], [31], [32] can be used. Rowhammer cache is
resilient to all the prefetchers, delivering improvements at the
same scale across all the prefetchers.
Rowhammer tracking threshold. Figure [T8] shows the effect
of the rowhammer tracking threshold (T7) on the effectiveness
of rowhammer cache. We use extremely low T values like
62 and 31 to check the effectiveness of the rowhammer cache.
Rowhammer cache is equally effective across all thresholds as
it significantly bridges the gap between a non-secure system
and a HYDRA tracker.

VI. RELATED WORK

SRAM based trackers. Graphene [33]] is a tracking mechanism
that uses the Misra-Gries algorithm to find the top-N frequently
activated rows. The algorithm uses gives a space-efficient
way to compute the frequently accessed elements. However,

D
o

Lower the better

BN WA U
o O oo

o

X
S
c
2
o
o
2
o
7]

o

mlmh (L

HYDRA O RowHammer Cache

HNMQ’LDLDI\OOO\S

GEOMEAN [Se——

Fig. 16: Performance slowdown: 8-core heterogeneous mixes

30
§ Lower the better. HYDRA @ RowHammer Cache
= 20
o
g
510
3
o
w 0

1MB/core 2MB/core 4MB/core
LLC size/core
Fig. 17: LLC size sensitivity
50

Lower the better

W HYDRA

0 RowHammer Cache

250 125 62

Tracking threshold

31

Fig. 18: Tracking threshold sensitivity

the number of entries the algorithm needs to keep track of
to ensure rowhammer mitigation is inversely proportional to
Try. Consequently, the storage overhead increases to around
500KB of expensive CAM at Try = 500. D-CBF [44] uses
area-efficient bloom filters to track the row activation counts.
The counting bloom filters map multiple DRAM rows to a

single entry that stores the total activation counts of these rows.

Although more area efficient than trackers with similar SRAM
overhead, D-CBF still uses over 400KB of SRAM and over
50KB of CAM even for Tgy = 1K. D-CBF must maintain
the same false-positive rate even at even lower rowhammer
thresholds to limit the additional refresh operations. However,
this quickly becomes impractical due to the increased SRAM
overhead. TWiCe [23]] keeps a table of counters to track the row
activations counts of frequently accessed rows. This is done
by pruning the counts for rows that are activated infrequently
and hence unlikely to cross Trz. However, pruning becomes
ineffective at low thresholds as the pruning threshold (thpr)
drops to 0. At thresholds like Try = 500, TWiCe tables
have to store activation counts for each DRAM row, hence
demanding extremely high SRAM overhead. Nohammer [24]
mitigates eviction-based RH attacks by temporarily extending
the associativity of the cache set that is being targeted by
utilizing another cache set as the extended set. This keeps the
cache lines of aggressor rows on the extended set under the

10

eviction-based RH attack.

DRAM based trackers. The CRA [21] scheme maintains row
activation counts for each row in the DRAM. In the baseline
DRAM system with 222 rows and Ty = 250, this would require
4MB of space. As it would be too expensive to implement
in SRAM, the counters can be stored in a reserved region of
DRAM. However, even with a dedicated cache for the counters,
this mechanism induces a high-performance overhead.
Probabilistic mechanisms. Unlike the previously discussed
works, PARA [22] is a probabilistic rowhammer mitigation
mechanism. This means that PARA does not guarantee rowham-
mer prevention but rather makes bit flips extremely unlikely
to occur in practice. PARA works by refreshing adjacent rows
with a small probability each time a row is opened and closed.
As it is stateless, implementing PARA requires little hardware
overhead. However, the probability with which adjacent rows
must be refreshed to ensure safety increases as Ty decreases.
Due to these extra refreshes, PARA’s energy and performance
overhead increases rapidly at lower rowhammer thresholds.
Other probabilistic mechanisms like ProHIT [40], and MRLoc
[45] have been shown to be vulnerable to specific adversarial
patterns, which significantly increase the probability of a
successful attack [33]].

VII. CONCLUSION

Rowhammer attack is here to stay and with ultra-low
rowhammer tracking threshold, rowhammer tracking, and
mitigation techniques play an important role in designing a
secure memory system. The state-of-the-art HYDRA tracker is
a promising technique. However, HYDRA when evaluated
with realistic simulation parameters and memory-intensive
workloads, incurs significant performance slowdown. We
proposed the rowhammer cache, a simple and lightweight
enhancement to HYDRA that steals space from the last-level
cache for the SRAM structures of HYDRA. rowhammer cache
uses two ways from LLC, which is good enough in improving
the slowdown significantly.

VIII. ACKNOWLEDGEMENT

We would like to thank all the anonymous reviewers for
their insightful comments and suggestions. We would also like
to thank members of the CASPER group especially Sumon,
Shubham, and Anubhav, for their feedback on the initial draft.

[1

—

[2]
[3]

[5

—

[6]
[7]

[8

—

[9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

“Utahsim Documentation,” https://users.cs.utah.edu/~rajeev/pubs/usimm
pdf, May 2012.

“Utahsim simulator,” https://github.com/pranith/usimm|, May 2012.
“The 2nd data prefetching championship (dpc-2),” Jun. 2015. [Online].
Available: https://comparch-conf.gatech.edu/dpc2/

“The 3rd data prefetching championship (dpc-3),” Jun. 2019. [Online].
Available: https://dpc3.compas.cs.stonybrook.edu/

“SPEC CPU 2017 traces for champsim,” https://dpc3.compas.cs
stonybrook.edu/champsim-traces/speccpu/, Feb. 2019.

“ChampSim simulator,” http://github.com/ChampSim/ChampSim, May
2020.

“GAP traces for champsim,” |https://utexas.app.box.com/s/
2k54kp8zvrqdfaa8cdhfquvexwh7yn85/folder/132804598561, Mar.
2021.

M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Bingo spatial data prefetcher,” in 25th, Feb. 2019, pp. 399—411.
T. Bennett, S. Saroiu, A. Wolman, and L. Cojocar, ‘“Panopticon: A
complete in-dram rowhammer mitigation,” in Workshop on DRAM
Security (DRAMSec), vol. 22, 2021, p. 110.

E. Bhatia, G. Chacon, S. H. Pugsley, E. Teran, P. V. Gratz, and D. A.
Jiménez, “Perceptron-based prefetch filtering,” in 46¢h, Jun. 2019, pp.
1-13.

A. EPYC, “Amd epyc 7702,” https://www.amd.com/en/products/cpu/amd-
epyc-7702p, May 2019.

S. Eyerman, W. Heirman, and I. Hur, “Dram bandwidth and latency stacks:
Visualizing dram bottlenecks,” in 2022 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2022, pp.
322-331.

P. Frigo, E. Vannacci, H. Hassan, V. van der Veen, O. Mutlu, C. Giuffrida,
H. Bos, and K. Razavi, “TRRespass: Exploiting the Many Sides of Target
Row Refresh,” in S&P, May 2020, best Paper Award, Pwnie Award for
Most Innovative Research, IEEE Micro Top Picks Honorable Mention,
DCSR Paper Award.

Z. Greenfield and L. Tomer, “Throttling support for row-hammer counters,”
Feb. 2 2016, uS Patent 9,251,885.

D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. Ox27;Connell,
W. Schoechl, and Y. Yarom, “Another flip in the wall of rowhammer
defenses,” in 2018 IEEE Symposium on Security and Privacy (SP). Los
Alamitos, CA, USA: IEEE Computer Society, may 2018, pp. 245-261.
[Online]. Available: https://doi.ieeecomputersociety.org/10.1109/SP.2018
00031

D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in javascript,” in Proceedings of the 13th
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment - Volume 9721, ser. DIMVA 2016. Berlin,
Heidelberg: Springer-Verlag, 2016, p. 300-321. [Online]. Available:
https://doi.org/10.1007/978-3-319-40667-1_15

D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A remote
software-induced fault attack in javascript,” in Proceedings of the 13th
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment - Volume 9721, ser. DIMVA 2016. Berlin,
Heidelberg: Springer-Verlag, 2016, p. 300-321. [Online]. Available:
https://doi.org/10.1007/978-3-319-40667-1_15

A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High performance
cache replacement using re-reference interval prediction (rrip),” ACM
SIGARCH computer architecture news, vol. 38, no. 3, pp. 60-71, 2010.
N. S. Kalani and B. Panda, “Instruction criticality based energy-efficient
hardware data prefetching,” IEEE Computer Architecture Letters, vol. 20,
no. 2, pp. 146-149, 2021.

I. Kang, E. Lee, and J. H. Ahn, “Cat-two: Counter-based adaptive tree,
time window optimized for dram row-hammer prevention,” IEEE Access,
vol. 8, pp. 17366-17377, 2020.

D.-H. Kim, P. J. Nair, and M. K. Qureshi, “Architectural support
for mitigating row hammering in dram memories,” IEEE Computer
Architecture Letters, vol. 14, no. 1, pp. 9-12, 2014.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in Proceeding of the
41st Annual International Symposium on Computer Architecuture, ser.
ISCA ’14. IEEE Press, 2014, p. 361-372.

11

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

(35]
(36]

[37]

[38]

[39]

[40]

[41]

E. Lee, I. Kang, S. Lee, G. E. Suh, and J. H. Ahn, “Twice:
Preventing row-hammering by exploiting time window counters,”
in Proceedings of the 46th International Symposium on Computer
Architecture, ser. ISCA ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 385-396. [Online]. Available:
https://doi.org/10.1145/3307650.3322232

S. Lee, K. Kang, G. Park, N. Kim, and D. Kim, “Nohammer: Preventing
row hammer with last-level cache management,” IEEE Computer
Architecture Letters, vol. 22, no. 02, pp. 157-160, jul 2023.

S. Li, Z. Yang, D. Reddy, A. Srivastava, and B. Jacob, “Dramsim3:
A cycle-accurate, thermal-capable dram simulator,” IEEE Computer
Architecture Letters, vol. 19, no. 2, pp. 106-109, 2020.

H. Luo, A. Olgun, A. G. Yaglik¢t, Y. C. Tugrul, S. Rhyner, M. B. Cavlak,
J. Lindegger, M. Sadrosadati, and O. Mutlu, “Rowpress: Amplifying read
disturbance in modern dram chips,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, 2023, pp. 1-18.
O. Mutlu, “The rowhammer problem and other issues we may face
as memory becomes denser,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, 2017, pp. 1116-1121.

O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 39, no. 8, pp. 1555-1571, 2020.

A. Navarro-Torres, B. Panda, J. Alastruey-Benedé, P. Ibdnez, V. Vifials-
Yifera, and A. Ros, “Berti: an accurate local-delta data prefetcher,” in
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). 1EEE, 2022, pp. 975-991.

S. Pakalapati and B. Panda, “Bouquet of instruction pointers: Instruction
pointer classifier-based spatial hardware prefetching,” in 47th, Jun. 2020,
pp. 118-131.

B. Panda, “Clip: Load criticality based data prefetching for bandwidth-
constrained many-core systems,” in Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’23. New York, NY, USA: Association for Computing Machinery,
2023, p. 714-727. [Online]. Available: https://doi.org/10.1145/3613424
3614245

B. Panda and S. Balachandran, “Introducing thread criticality awareness
in prefetcher aggressiveness control,” in 2014 Design, Automation Test
in Europe Conference Exhibition (DATE), 2014, pp. 1-6.

Y. Park, W. Kwon, E. Lee, T. J. Ham, J. Ho Ahn, and J. W. Lee,
“Graphene: Strong yet lightweight row hammer protection,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020, pp. 1-13.

M. Qureshi, A. Rohan, G. Saileshwar, and P. J. Nair, “Hydra: enabling
low-overhead mitigation of row-hammer at ultra-low thresholds via hybrid
tracking,” in Proceedings of the 49th Annual International Symposium
on Computer Architecture, 2022, pp. 699-710.

A. Ryzen, “Amd ryzen threadripper,” 2019.

G. Saileshwar, B. Wang, M. Qureshi, and P. J. Nair, “Randomized row-
swap: mitigating row hammer by breaking spatial correlation between
aggressor and victim rows,” in Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2022, pp. 1056—-1069.

A. Saxena, G. Saileshwar, P. J. Nair, and M. Qureshi, “Aqua: Scalable
rowhammer mitigation by quarantining aggressor rows at runtime,” in
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2022, pp. 108-123.

I. Shah, A. Jain, and C. Lin, “Effective mimicry of belady’s min policy,”
in 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), 2022, pp. 558-572.

A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a
simultaneous multithreading processor,” in ASPLOS-IX Proceedings
of the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems, Cambridge, MA, USA,
November 12-15, 2000, L. Rudolph and A. Gupta, Eds. ACM Press, 2000,
pp. 234-244. [Online]. Available: https://doi.org/10.1145/378993.379244
M. Son, H. Park, J. Ahn, and S. Yoo, “Making dram stronger against
row hammering,” in Proceedings of the 54th Annual Design Automation
Conference 2017, 2017, pp. 1-6.

J. Woo, G. Saileshwar, and P. J. Nair, “Scalable and secure row-swap:
Efficient and safe row hammer mitigation in memory systems,”
in IEEE International Symposium on High-Performance Computer
Architecture, HPCA 2023, Montreal, QC, Canada, February 25 -
March 1, 2023. 1EEE, 2023, pp. 374-389. [Online]. Available:
https://doi.org/10.1109/HPCA56546.2023.10070999

https://users.cs.utah.edu/~rajeev/pubs/usimm.pdf
https://users.cs.utah.edu/~rajeev/pubs/usimm.pdf
https://github.com/pranith/usimm
https://comparch-conf.gatech.edu/dpc2/
https://dpc3.compas.cs.stonybrook.edu/
https://dpc3.compas.cs.stonybrook.edu/champsim-traces/speccpu/
https://dpc3.compas.cs.stonybrook.edu/champsim-traces/speccpu/
http://github.com/ChampSim/ChampSim
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://www.amd.com/en/products/cpu/amd-epyc-7702p
https://www.amd.com/en/products/cpu/amd-epyc-7702p
https://doi.ieeecomputersociety.org/10.1109/SP.2018.00031
https://doi.ieeecomputersociety.org/10.1109/SP.2018.00031
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1145/3307650.3322232
https://doi.org/10.1145/3613424.3614245
https://doi.org/10.1145/3613424.3614245
https://doi.org/10.1145/378993.379244
https://doi.org/10.1109/HPCA56546.2023.10070999

[42]
[43]

[44]

I. Xeon, “Xeon platinum,” 2023.

A. G. Yaglik¢i, M. Patel, J. S. Kim, R. Azizi, A. Olgun, L. Orosa,
H. Hassan, J. Park, K. Kanellopoulos, T. Shahroodi et al., “Blockhammer:
Preventing rowhammer at low cost by blacklisting rapidly-accessed dram
rows,” in 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 1EEE, 2021, pp. 345-358.

A. G. Yaglik¢i, M. Patel, J. S. Kim, R. Azizi, A. Olgun, L. Orosa,
H. Hassan, J. Park, K. Kanellopoulos, T. Shahroodi, S. Ghose, and
O. Mutlu, “Blockhammer: Preventing rowhammer at low cost by
blacklisting rapidly-accessed DRAM rows,” in [EEE International
Symposium on High-Performance Computer Architecture, HPCA 2021,

12

[45]

[46]

Seoul, South Korea, February 27 - March 3, 2021. 1EEE, 2021, pp. 345—
358. [Online]. Available: https://doi.org/10.1109/HPCAS51647.2021.00037
J. M. You and J.-S. Yang, “Mrloc: Mitigating row-hammering based on
memory locality,” in Proceedings of the 56th Annual Design Automation
Conference 2019, 2019, pp. 1-6.

Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom,
“Pthammer: Cross-user-kernel-boundary rowhammer through implicit
accesses,” in 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). Los Alamitos, CA, USA: IEEE
Computer Society, oct 2020, pp. 28-41. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/MICR0O50266.2020.00016

https://doi.org/10.1109/HPCA51647.2021.00037
https://doi.ieeecomputersociety.org/10.1109/MICRO50266.2020.00016

	Introduction
	Background
	Limitations of HYDRA
	Capacity bottleneck
	Scaling with number of cores
	Effect of hardware prefetchers

	Rowhammer Cache
	Evaluation
	Performance and hit rates at RCC and GCT
	Sensitivity studies

	Related Work
	Conclusion
	ACKNOWLEDGEMENT
	References

