
EnclaveSim:A Micro-architectural Simulator with
Enclave Support

Yashika Verma
Dept. of CSE

Indian Institute of Technology Kanpur
yashikav@cse.iitk.ac.in

Dixit Kumar
Dept. of CSE

Indian Institute of Technology Kanpur
malviyadx@gmail.com

Biswabandan Panda
Dept. of CSE

Indian Institute of Technology Bombay
biswa@cse.iitb.ac.in

Abstract—Intel SGX preserves the confidentiality and integrity
aspects of data and code through enclaves (that reside in the
trusted part of the memory) and protects it from different
layers of the malicious system software, including the OS. Micro-
architecture research in the presence of SGX is an interesting
theme to explore as SGX does not mitigate timing side-channel
attacks at various levels of a memory hierarchy and causes
significant performance slowdown. The research community ex-
tensively uses existing benchmark suites like SPEC CPU 2017
for evaluating new proposals on the various aspects of micro-
architecture research. As there is no benchmark suite available
for micro-architecture research with SGX, state-of-the-art micro-
architecture research in the presence of SGX assumes an entire
SPEC benchmark is running inside an enclave. In reality, Intel
SGX assumes that a major portion of the application’s code
and data do not require security, and only a tiny fraction of
it needs security via an enclave. To the best of our knowledge,
there are no open-source micro-architectural simulators that can
simulate Intel SGX fairly, for micro-architecture research. In this
regard, we propose EnclaveSim, a detailed yet flexible, trace-
based micro-architectural simulator that simulates trusted code
execution through enclaves.

I. INTRODUCTION

Trusted Execution Environment (TEE) provides confidential-
ity and integrity through secure code execution via enclaves.
Intel SGX [1] [2] [3] is one of the popular TEEs. Although
Intel SGX ensures secure code execution, it is still vulnerable
to timing attacks at the various micro-architecture units such
as caches. In addition to this, Intel SGX provides confiden-
tiality and integrity at the cost of system performance, which
motivates the computer-architecture community to improve the
micro-architecture performance in the presence of an enclave
for performance and thwarting timing channels. State-of-the-
art research in terms of evaluating different micro-architecture
ideas with the enclave [4], mostly use existing benchmark
suites like SPEC CPU benchmarks. These works evaluate the
performance of an enclave by running the entire benchmark
inside an enclave. However, Intel SGX primarily assumes that
an application will need enclave support only for a small
portion of the code and the corresponding data, and not for the
entire application; one of the main reasons because of which
an enclave page cache is assigned uses few hundreds of MBs
only.
The problem: As there is no specific benchmark suite available
for micro-architecture research in the presence of an enclave,
recent works assume the entire benchmark will run inside an

enclave. Also, there is no micro-architectural simulator that can
simulate the micro-architecture faithfully in the presence of an
enclave.
Our approach: To tackle the existing problems, we pro-
pose a highly modular open-source simulator, EnclaveSim.
EnclaveSim simulates an application code in an enclave. We
build EnclaveSim on top of a trace-driven micro-architectural
simulator, ChampSim [5]. EnclaveSim uses an application trace
generated by the Intel Pin tool [6] and isolates the trace into
the enclave and non-enclave accesses. It simulates the enclave
accesses with enclave support while non-enclave accesses do
not demand security, without enclave support. We provide spe-
cial knobs to traces, that help in enforcing isolation of enclave
and non-enclave portion of the trace. For micro-architecture
research that involves the memory system in the presence of
an enclave, we provide a way using which we can distinguish
whether a memory request is for the enclave portion of the
application or not. Through this feature, the micro-architecture
community can concentrate on improving the memory system
only for a tiny part of the application that is running within an
enclave. In a nutshell, we make the following contributions:
(i) we propose the first open-source simulator for enclave
execution. (Section III), (ii) we show the effectiveness of En-
claveSim by simulating different parameters of interest. We also
discuss the flexibility aspect of EnclaveSim and the various rich
features that we provide. (Section IV). Enclavesim is available
at: https://github.com/YashikaVerma156/EnclaveSim.git

II. BACKGROUND

A. Intel SGX

Intel SGX is an x86 architecture extension specific to Intel
processors that allows an application to protect its code/ data
from various system software layers: host OS, hypervisors, and
other privileged software. SGX enables part of an application
or complete application to run inside a secure, isolated con-
tainer known as the enclave. SGX provides confidentiality and
integrity guarantees of data residing within an enclave using
the Memory Encryption Engine (MEE) [7].

At a 10K feet view, SGX reserves up to 256 MB of DRAM
space as Processor Reserved Memory (PRM). PRM holds
Enclave Page Cache (EPC) that stores sensitive code/data and
metadata associated with the enclaves. The processor restricts
any non-enclave memory access in this PRM region, including

https://github.com/YashikaVerma156/EnclaveSim.git

 xxxxxxx
 xxxxxxx
 xxxxxxx

Pin tool Trace

Un-trusted
(ChampSIm)

Enclave
Creation

Enclave
Execution

Enclave
Teardown

2
start-point

4

end-point

5
Ready for untrusted

3
Trusted code execution

Application Binary

1

EnclaveSim

Trusted

Un-trusted

Fig. 1: High Level Design of EnclaveSim.

system software accesses. Current Intel processors support
PRM of size 64, 128, and 256 MB [8], which is configurable
at boot time. SGX also provides a set of instructions to support
enclave memory management and secure code execution. Some
of the ring-0 level instructions such as ECREATE, EADD, and
EINIT manage EPC and ring-3 level instructions such as
EENTER, ERESUME, and EEXIT allow user applications to
run their code inside an enclave.

1) Life Cycle of an Enclave: The life cycle of an enclave
consists of three major phases: creation, execution, and tear-
down. The OS uses ECREATE instruction to initiate the enclave
creation process; it allocates a region of virtual memory within
an application for trusted code and data. An instruction such as
EADD loads initial code and data that is supposed to run within
an enclave into the EPC region. While loading an enclave, the
OS uses EEXTEND to compute the cryptographic hash of the
content. After loading, EINIT establishes the enclave identity
and sets up the enclave for execution. The application then uses
EENTER to switch the processor into enclave mode and starts
secure code execution. After executing the trusted code, the
application uses EEXIT to clear the enclave mode and returns
the execution control to the caller untrusted code.

When an enclave finishes its job, the OS uses EREMOVE
instruction to deallocate corresponding EPC pages and destroys
the enclave. ChampSim: ChampSim [5] is a trace-based micro-
architectural simulator that simulates a detailed memory hierar-
chy with an out-of-order processor. Recent micro-architecture
championships at ISCA 2015, ISCA 2017, ISCA 2019, and
ISCA 2020 use ChampSim as the infrastructure to evaluate
data prefetchers, instruction prefetchers, and cache replacement
policies.

III. HIGH-LEVEL DESIGN

EnclaveSim provides two flavors of enclave simulation: (i)
Programmer-defined, where the programmer, while writing the
code, specifies which part of the application code should
run within an enclave. Then it generates the application’s
trace using the Intel Pin tool, which marked trusted code/data
differently in the trace. We term this trace as enclave aware
trace. EnclaveSim uses this trace to decide which portion of
the application should run inside an enclave or not. (ii) User-
defined, where the user generates trace of an existing binary
which is not enclave aware. EnclaveSim provides different
knobs to simulates specific portions of these traces inside the

enclave.
EnclaveSim extends the functionality of ChampSim to sup-

port enclave simulation. EnclaveSim provides two additional
features on top of ChampSim: (i) It mimics the life cycle of
enclaves, and performs enclave memory management (ii) It
provides a unique enclave-id field in data packets to distinguish
between trusted and untrusted requests throughout the memory
hierarchy.
A. Design overview

EnclaveSim takes an application trace generated by the
Intel Pin tool and simulates multiple enclaves per application.
We propose EnclaveSim in two flavors: (i) Programmer-
defined flavor, where the programmer marks a certain por-
tion of the code and data to be executed inside an en-
clave. For example, if a programmer wants to run a spe-
cific function of SPEC CPU 2017 benchmark mcf in-
side an enclave, then the programmer has to specify the
region of trusted code by wrapping it inside two func-
tion calls, enable_trusted_code_execution() and
disable_trusted_code_execution(). Our proposed
tracer translates these function calls to start-point and end-
point in the trace file, which indicates enclave entry and
exit. Thus, programmer-defined flavor demands code re-writing
of existing benchmarks. (ii) User-defined flavor, where the
programmer has privilege to use the existing benchmarks. For
this flavor, we provide special run-time knobs in EnclaveSim
that specify start-point and end-point of an enclave. Here, start-
point defines the entry point, from where an enclave starts its
execution, and end-point defines the exit point, at which the
enclave finishes its execution, in terms of instruction numbers.

Figure 1 shows a high level design of EnclaveSim. En-
claveSim extends ChampSim with three additional modules:
enclave creation, execution, and teardown. EnclaveSim starts
execution of an application with the untrusted (non-isolation)
part of the code (1⃝). When execution of an application
reaches the start-point (2⃝), EnclaveSim sets up the enclave
using the enclave creation module and enables the processor
to execute trusted code (3⃝). Once the enclave is set up,
enclave execution module performs various functions such as
enclave memory management, initializing an enclave-id and
communicating the same throughout the memory systems, and
imitating the MEE cryptographic operations. During an enclave
execution, when the enclave reaches its end-point, EnclaveSim
assumes the enclave has finished its execution and starts the

enclave teardown phase. (4⃝) Enclave teardown module releases
the memory resources occupied by the enclave, switches the
processor into the non-enclave mode, and resumes the untrusted
code execution. (5⃝).
B. Implementation Details

Enclave Creation: Enclave creation module uses
check_enclave_init() function to keep track of
an application’s execution. When execution reaches the start-
point for an enclave, this module switches the processor’s mode
to an enclave mode using enable_enclave_mode(). The
processor starts enclave code execution only after the enclave
mode is enabled.
Enclave Execution: Enclave execution module is the heart of
EnclaveSim. The function va_to_pa_enclave() manages
EPC and performs enclave page allocation/eviction. It takes a
virtual address(va) as an argument and allocates a physical
page in EPC or NON-EPC region, depending on whether the
processor is in enclave mode or not (see Figure 2). When
an enclave page-fault occurs, va_to_pa_enclave() selects
the least recently used page from EPC, moves the content of the
selected page to a NON-EPC region, and allocates the selected
page to the ’va’ translation request. In EnclaveSim, on an
SGX page swap, we flush the TLB entries used by the enclave
and add a latency of an average 40K processor cycles [9] [10]
for each enclave page-swap. This overhead includes system
calls, context switches, and page swaps.

Enclave execution module uses the function
assign_enclave_id() to assign an enclave-id (eid) to
all the memory requests generated by the application in its
enclave mode; ’eid’ helps in identifying a particular enclave
when multiple applications are running their trusted code inside
the enclaves. On every off-chip EPC access, i.e., on LLC miss
and LLC write-back, MEE encrypts/decrypts the data blocks
and checks EPC data integrity. EnclaveSim adds a combined
latency of around 500 cycles for encryption/decryption and
integrity verification. The integrity verification latency varies
according to the height of the integrity tree [9]. The function
check_enclave_endpoint() keeps track of execution
of an enclave, once the execution reaches the end-point, it
calls enclave teardown module.
Enclave Teardown: Enclave teardown module has three major
functions: invalidate_page(), deallocate_page(),
and disable_enclave_mode() (see Figure 3). The func-
tion invalidate_page() flushes cache lines, and TLB
entries of the corresponding enclave page (epage) while
deallocate_page() removes the epage from the EPC
region. It further swaps-out the epage to NON-EPC region,
in case the epage is dirty. EnclaveSim adds a latency of
12K cycles for every dirty page swap-out. At the end, Enclave
teardown module uses disable_enclave_mode() to reset
the processor enclave mode and resume the untrusted code
execution.

IV. EVALUATION AND VALIDATION

We evaluate EnclaveSim on both single-core and multi-
core configurations with programmer-defined and user-defined
enclaves. Due to space constraints, we are showing results

va_to_pa_enclave(va)

assign_enclave_id(eid)

check_enclave_endpoint(eid)

Fig. 2: Enclave Execution

invalidate_page(epage)

deallocate_page(epage)

disable_enclave_mode(cpu)

Fig. 3: Enclave Teardown

1 2 3 4 5 6 7 8
Application Number

0

2

4

6

8

Sl
ow

do
wn

 (I
n

x)

3.
03 3.

34

2.
53

5.
08

6.
35

4.
15

1.
03

1.
01

Fig. 4: Slowdown with enclave execution for single-core.

for user-defined enclaves only, with a multi-core environment.
Table I shows various parameters used in the experiments. We
define two variants of applications: enclave application (EA)
and non-enclave application (NEA). An EA has both trusted
and untrusted code, while an NEA consists only of the untrusted
code. We associate different parameters with EA and NEA. An
EA has three parameters: application’s name, number of en-
claves, and a <start-point, end-point> pair for each enclave. An
NEA only has one parameter: the application’s name. We use a
subset of SPEC CPU 2017 benchmarks for creating mixes. The
subset selection is made based on application cache sensitivity,
which is measured in terms of Misses Per Kilo Instructions
(MPKI) at LLC (see Table II). EA [A, 1, {10, 35}] specifies an
enclave application, in which ’A’ represents benchmark name
(refer Table II), ’1’ denotes number of enclaves and the pair
{10, 35} denotes start-point and end-point of the enclave in
terms of millions of instructions.

Experiments: Figure 4 shows the performance overhead
due to enclave execution. A high MPKI application having
20% portion running within an enclave (like App-1, 2, and 3)
causes a slowdown of 2 to 3X. However, when we increase
the trusted code portion to 40% for the same high MPKI
applications (App-4, 5, and 6), we observe even a steeper

TABLE I: Parameters of simulated system.

Processor 8-core, 4GHz, out-of-order
L1-I, L1-D, L2, Last-level Cache (LLC) 32KB, 48KB, 512KB, 2MB/core, 64B line size
DRAM Controller DDR3 3200 MHz (40-40-40)
EPC size 192 MB
Enclave LLC-miss/major-fault/minor-fault/teardown latency 500/40K/28K/12K cycles

TABLE II: Selected SPEC CPU2017 benchmarks.
Naming Benchmarks LLC MPKI

A, B, and C 623.xalancbmk, 605.mcf, and 602.gcc High
D and E 641.leela and 648.exchange2 Low

TABLE III: Applications for single core simulation.

App. No. Enclave applications
1 EA [A, 1, {20, 10}]
2 EA [B, 1, {20, 10}]
3 EA [C, 1, {20, 10}]
4 EA [A, 2, {5, 10}, {20, 10}]
5 EA [B, 2, {5, 10}, {20, 10}]
6 EA [C, 2, {5, 10}, {20, 10}]
7 EA [D, 2, {5, 10}, {20, 10}]
8 EA [E, 2, {5, 10}, {20, 10}]

slowdown of 4 to 6X. In contrast, for low MPKI applications
(like App-7, 8), we observe negligible slowdown even with
40% of trusted code. Figure 5 showcases the contribution of
individual enclave event overhead in the overall slowdown.
Enclave-minor-fault and enclave-LLC-miss are the major con-
tributors of performance slowdown. We validate the correctness
of EnclaveSim by correlating enclave event overheads with
the overall performance slowdown. Table IV shows different
kinds of 8-core mixes that we simulate on EnclaveSim. We
create the mixes from a pool of SPEC’17 benchmarks and
simulate 50 million instructions with a 10 million warm-up.
We create mixes based on two features: EPC sensitivity and
LLC sensitivity. We define the three categories as shown in
Table IV. Mixes with category ET-LT cause a slowdown in
range of 4-28X, while EPC-Fitting mixes EF-LT and EF-LF
cause a slowdown up to 1.43X. These slowdown numbers vary
according to the number of EAs, duration of enclave execution,
and LLC sensitivity of the applications.

Extensibility: EnclaveSim is easy to extend and can be
integrated with many state-of-the-art enclave based proposals.
EnclaveSim leverages capabilities of the underlying simula-
tor ChampSim, which allows EnclaveSim to study important
micro-architectural features like prefetchers, cache replacement
policy, TLB management, page-table walkers, DRAM con-
trollers for enclaves.

Security evaluation: EnclaveSim can be used for micro-
architecture defenses. For example, page-based and cache based
timing channels are some of the side-channels that are preva-
lent in Intel SGX too. Defences like MI6 [4] can be easily
implemented. We provide the implementation of MI6 as a case
study with our Github link, so that the architecture community
can use it easily. Apart from defenses, even the attacks that
exploit micro-architecture units can be reproduced.

TABLE IV: List of mixes used in 8-core simulations. EA:
Enclave application, NEA: Non-enclave application.

Category Mix no. Mix
3*ET-LT 1 8 EA [A, 2, {10, 35}, {40, 45}] + 0 NEA

2 8 EA [B, 2, {10, 35}, {40, 45}] + 0 NEA
3 8 EA [C, 2, {10, 35}, {40, 45}] + 0 NEA

3*EF-LT 4 4 EA [A, 1, {25, 30}] + 4 NEA[A]
5 4 EA [B, 1, {25, 30}] + 4 NEA[B]
6 4 EA [C, 1, {25, 30}] + 4 NEA[C]

2*EF-LF 7 8 EA [D, 1, {10, 35}] + 0 NEA
8 8 EA [E, 1, {10, 35}] + 0 NEA

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8

C
o

n
tr

ib
u

ti
o

n
 in

 %

Application Number

Enclave Major Fault Enclave Minor Fault Enclave Teardown Enclave LLC Miss

Fig. 5: Major contributors of performance slowdown.

V. CONCLUSION

We proposed EnclaveSim for detailed micro-architecture
research involving memory systems in the presence of an
enclave. EnclaveSim comes with two flavors: programmer-
defined and user-defined. EnclaveSim will help the micro-
architecture community for security and performance trade-off
research.

VI. ACKNOWLEDGEMENT

This work is supported by the SRC grant SRC-2853.001.
REFERENCES

[1] Victor Costan et al., Intel SGX explained. Cryptology ePrint Archive,
Report 2016/086, February 2017. https://eprint.iacr.org/2016/086.pdf.

[2] Intel® Software Guard Extensions Programming Reference, Intel Corp.,
October 2014. Ref. #329298-002US

[3] Matthew Hoekstra et al., Using Innovative Instructions to Create Trust-
worthy Software Solutions. In 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy, 2013

[4] T. Bourgeat et al., Mi6: Secure enclaves in a speculative out-of-order
processor. In MICRO, pages 42-56, 2019.

[5] ChampSim, https://github.com/ChampSim/ChampSim
[6] Chi-Keung Luk et al., Pin: building customized program analysis tools

with dynamic instrumentation. In PLDI pages 190–200, 2005.
[7] Shay Gueron, A memory encryption engine suitable for general pur-

pose processors. Cryptology ePrint Archive, Report 2016/204, 2016.
https://eprint.iacr.org/2016/204.

[8] 10th Generation Intel® Core™ Processor Families, Datasheet, Volume
1 of 2. Intel Corp., April 2020. Document Number: 341077-003.

[9] Meysam Taassori et al., VAULT: Reducing paging overheads in SGX
with efficient integrity verification structures. In 23rd ASPLOS, pages
665–678, 2018.

[10] Meni Orenbach et al., Eleos: Exitless OS services for SGX enclaves. In
EuroSys, pages 238–253, 2017.

	Introduction
	Background
	Intel SGX
	Life Cycle of an Enclave

	High-level design
	Design overview
	Implementation Details

	Evaluation and Validation
	Conclusion
	Acknowledgement
	References

