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Abstract—A persistent and crash-consistent execution state
is essential for systems to guarantee resilience against power
failures and abrupt system crashes. The availability of non-
volatile memory (NVM) with read/write latency comparable to
DRAM allows designing efficient checkpoint mechanisms for
process persistence. Operating system (OS) level checkpoint
solutions require capturing the change in the execution state of a
process in an efficient manner. One of the crucial components of
the execution state of any process is its memory state consisting of
mutable stack and heap segments. Tracking modifications to the
program stack is interesting because of its unique grow/shrink
usage pattern and activation record write characteristics. More-
over, the stack is used in a programmer-agnostic manner where
the compiler makes use of the support provided by the underlying
ISA to use the stack and the OS manages the memory used by
the stack region in an on-demand fashion.

In this paper, we show the benefit of a checkpoint-based
mechanism for stack persistence and the inefficiency of adapting
existing generic memory persistence mechanisms for the stack
region. We propose Prosper, a hardware-software (OS) co-
designed checkpoint approach for stack persistence. Prosper
tracks stack changes at sub-page byte granularity in hardware,
allowing symbiosis with OS to realize efficient checkpoints of
the stack region. Prosper significantly reduces (on average ∼4×)
the amount of data copied during checkpoint and improves the
overall checkpoint time with minimum overhead (less than 1%
on average). Integration of Prosper with existing state-of-the-
art memory persistence mechanisms (such as SSP) for heap
provides 2.6× improvement over solely using the state-of-the-art
mechanism for the entire memory area persistence.

I. INTRODUCTION

Process persistence using checkpoint techniques [17], [25],
[31] has gained popularity with the emergence of hybrid
memory systems consisting of traditional volatile random
access memory (DRAM) and byte-addressable non-volatile
memory (NVM).

To achieve process persistence through checkpoints, it is
required to persist the process state periodically. The process
state consisting of the CPU register state, memory state, and
other associated states should be checkpointed in a manner
such that the process can resume from the last execution
point across system restarts [48]. Capturing periodic snapshots
of the memory state of processes consisting of different
mutable memory segments (e.g., heap and stack) present non-
trivial challenges, both in terms of checkpoint complexity and
checkpoint size [47]. Therefore, many research contributions
treat the general problem of persisting the memory state in
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Fig. 1: Memory operations to the stack and heap regions (in
%) demonstrating the significance of stack operations.

a consistent manner in isolation by employing techniques at
both the software layers [11], [15], [19], [24], [30], [32] and
at the hardware layer [1], [8], [41], [56].

In the context of process persistence, the OS-level check-
point solutions are more practical compared to the generic
memory persistence solutions considering the semantic prox-
imity of the OS to the notion of processes. For example, it is
non-trivial for a hardware or user space memory persistence
technique to demarcate the boundaries for the memory state of
a process spanning across the user and OS layers. On the other
hand, OS-level checkpoint procedures can potentially leverage
the additional hardware support for memory persistence (with
some adaptation) to simplify the complexities associated with
periodic memory checkpoints. In this paper, we demonstrate
that the state-of-the-art solutions are not suitable for all mem-
ory segments, specifically for memory segments with special
characteristics such as the program stack. Furthermore, we
propose specialized hardware extensions to efficiently check-
point the stack region and show that it can improve the overall
efficiency of OS-level checkpoint solutions when combined
with tailored generic memory persistence techniques.

Typically, the size of the stack segment is smaller than
the heap segment, but the number of operations on the stack
can be significant for some applications. Figure 1 shows
the fraction of memory operations in the stack region for
three representative benchmarks from the graph and cloud
workloads—Gapbs pr [5], G500 sssp [39], and YCSB [13].
We traced these benchmarks for stack and heap operations
using Intel Pin [37] on a four-core Intel(R) Xeon(R) W-



TABLE I: Comparison of existing memory persistence mechanisms.

Property SSP [41] JUSTDO [24] SoftWrAP [19] Timestone [30] Romulus [15]
Achieves process persistence ✗ ✗ ✗ ✗ ✗
Works without compiler support ✓ ✗ ✗ ✗ ✗
Stack pointer awareness ✗ ✗ ✗ ✗ ✗
Allows stack in DRAM ✗ ✗ ✓ ✗ ✗

2104 system for the highest weighted interval identified by
SimPoint [23]. For Gapbs pr, 70% operations (reads and
writes) are performed to the stack regions. We highlight some
of the important usage characteristics of the stack segment
(used to implement function calls and store program objects
in local scope) that differ from other memory segments before
discussing the applicability of state-of-the-art techniques.
Usage pattern. The stack exhibits a grow and shrink pattern,
i.e., back-and-forth movement of the stack pointer (SP) during
the lifetime of processes (and threads), which is different from
the allocate-use-free pattern of other segments such as heap.
Write characteristics. The stack region is not only write-
intensive (Figure 1), but also maintains activation records
across function invocations and returns, resulting in a signifi-
cant number of writes to a cluster of memory addresses.
Indirect usage. Unlike heap, where the application layer uses
the region through explicit allocation and de-allocation, for a
stack, the compiler or run-time system introduces the required
stack operations that are hidden from the application layer. The
role of the OS is a little different for the stack as it handles the
growth and shrinkage of a stack in an on-demand fashion [3].

For stack persistence, periodic commit-based techniques
operating in tandem with application execution [8], [19], [56]
may give rise to inefficiencies because they can not adequately
address the subtleties of stack usage. First, the stack usage
pattern may lead to unnecessary operations because the SP
may grow and shrink during an interval. We show that
having future knowledge regarding the value of SP at the
points of commits (referred to as SP awareness) significantly
improves the efficiency of existing techniques (Section II-A).
We designate a memory persistence mechanism to be SP
aware if the overhead incurred to persist the stack region is
predominantly determined by the active stack region at the
commit point. Second, considering the write-intensive nature
of the stack region, maintaining the stack in NVM leads
to performance and endurance issues [54], [55]. Approaches
that do not employ periodic checkpoints have to maintain the
stack in NVM along with the meta-data required to achieve
consistency. Third, many existing approaches, specifically the
logging-based approaches—redo, undo [4], [52] and their
variations [24])—require invocation of special APIs from the
application layer for different events such as load, store, and
commit. Considering the indirect usage of the stack region, it
requires non-trivial extensions to the compiler to insert calls
appropriately for different operations in the stack region.

Checkpoint-based solutions allow allocation and usage of
the stack in DRAM while achieving persistence by copying the
dirtied stack memory addresses into NVM at the end of every

checkpoint interval. An OS-level periodic checkpoint solution
for the stack region can address the previously mentioned
challenges for the following reasons. First, the checkpoint
mechanism is SP aware as the activity performed by OS
at the time of checkpoint (i.e., copying the dirtied stack
memory into NVM) depends upon the active stack region(s).
Second, hosting the stack region in DRAM alleviates the
problem of excessive writes to NVM. Moreover, periodic
checkpoints allow higher levels of write coalescing, addressing
the inefficiency concerns due to the write characteristics.
Third, an OS-layer checkpoint solution for stack regions can
be used in a generic manner without requiring any special
support from the compiler/run-time addressing the challenges
arising due to the indirect usage of the stack memory. One of
the challenges in capturing the snapshot for the stack region
is amplification of checkpoint size due to limited hardware
support for efficient dirty tracking. For example, as we show
in Section II-B, dirty tracking of the stack region at the OS
page granularity (e.g., SoftDirty [18], LDT [45]) results in
significantly large checkpoint sizes compared to dirty tracking
at the sub-page granularity.

Observations. Without OS-level adaptations, existing mem-
ory persistence techniques in their current form are not ade-
quate to achieve efficient process persistence. Even with OS-
layer adaptations, there can be inefficiencies when existing
techniques are used for stack considering the usage and access
pattern of the stack region. A summary of existing techniques
along with their applicability is presented in Table I. While
the OS-layer checkpoint approach for the stack can be seen
as an extension to checkpointing other non-memory states of
the process (e.g., the register state), the checkpoint overhead
due to the stack modifications should be minimized. Moreover,
generic hardware-layer solutions for dirty tracking at sub-page
granularity [9], [51] require special hardware support and is
used to address specific usage scenarios such as disaggregated
memory and capturing VM snapshots. The flexibility required
by the OS to manage and consume dirty tracking information
in a generic manner is not trivial to achieve using these
hardware extensions.

Design Approach. We propose Prosper, a hardware-
assisted checkpoint mechanism for the stack region to achieve
efficient process persistence. The hardware assistance provided
by Prosper can track stack modifications at a finer granularity
with very little overhead, reducing data copy overheads associ-
ated with dirty tracking at page granularity. To provide greater
flexibility to the OS, we propose a hardware-software co-
design approach where the OS can control and take advantage
of Prosper to checkpoint the stack region efficiently. Further,



the design of Prosper allows the OS to combine existing
hardware-layer solutions for memory persistence with Prosper
for different memory regions in the process address space.

Key results. Our experiments show that the performance
overhead introduced by the Prosper hardware extension is,
on an average less than 1% (maximum ∼3%). Leveraging
dirty tracking at sub-page granularity, Prosper significantly
reduces (on average ∼4×) the amount of data copied during
checkpoint and improves the overall checkpoint time.

For a workload performing sparse writes to the stack region,
Prosper reduces checkpoint size by 99% compared to page
granularity dirty tracking, resulting in ∼22× improvement
in the time taken to checkpoint the stack region. Prosper
performs better than state-of-the-art NVM memory persistence
schemes such as Romulus [15] and SSP [41] for providing
stack persistence. Prosper provided up to 3.6× reduction in
stack persistence overhead with respect to SSP and a maxi-
mum of 1.27× reduction with respect to page-level Dirtybit
mechanism. A process persistence solution combining Prosper
and SSP results in up to 2.6× improvement in achieving
memory state persistence compared to a scenario when only
SSP is used for the entire memory.

The summary of contributions is as follows,
• We motivate the need for specialized techniques for

program stack persistence (Section II).
• We design and implement hardware extensions for ef-

ficient dirty tracking at sub-page granularity to reduce
overheads associated with stack checkpoints (Section III).

• We demonstrate the seamless integration of Prosper with
OS-layer process persistence solution along with other
generic memory persistence solutions (Section III-D).

• Finally, we empirically demonstrate the efficacy of Pros-
per in terms of its dirty tracking efficiency and its positive
impacts towards achieving the process memory state
persistence (Section IV).

II. MOTIVATION

For the experiments presented in this section, we traced the
stack usage of some memory-intensive application benchmarks
(Figure 1) using SniP [29], an open-source stack tracing
framework, on a four-core Intel(R) Xeon(R) W-2104 system.
For Gapbs pr, the input parameters are: kronecker graph
with 227 vertices, 1000 iterations, 1e−4 tolerance, and 16
trials. G500 sssp uses scale as 16 and edge factor as 64. For
Ycsb mem, we traced Memcached while performing YCSB
workload-A load followed by workload-B run. We
traced for the highest weighted interval identified by Sim-
Point [23].

A. Inefficiency due to Stack Pointer Unawareness

Existing techniques without SP awareness perform non-
trivial operations (e.g., create a log entry) throughout the
interval to maintain the persistence state of the stack. The
overhead of such operations depends upon the specific per-
sistence mechanism under consideration. For example, a log-
based scheme may create log entries for each write to the stack
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Fig. 2: Number of total stack writes and writes beyond final
stack pointer (SP) aggregated at 100 intervals with each
interval of 10ms for Ycsb_mem benchmark.

region, resulting in overall performance overhead proportional
to the number of writes along with the cost of creating and
serializing log entries. In this case, the overhead incurred to
persist stack is not determined by the active stack region at the
end of an interval; thus a log-based scheme is not SP aware.
Towards capturing the overhead quantitatively, we calculate
the number of stack modifications during an interval that is
beyond the active stack region (i.e., beyond the value of SP)
at the end of the interval using the access traces. Figure 2
shows the total number of stack writes and writes beyond
the final SP, aggregated for 100 consistency intervals with
each interval of 10ms duration (used for process persistence in
Aurora [48]) for the Ycsb mem benchmark. On average, more
than 36% of the stack modifications are beyond the final SP for
Ycsb mem, and the behavior is similar for other benchmarks
such as Gapbs pr and G500 sssp (not shown in Figure 2).
The impact of SP unawareness on a persistence mechanism
can be significant considering the non-negligible proportion
of operations turning out to be wasteful.

Next, we analyze the benefit of incorporating SP awareness
into common memory persistence mechanisms such as flush,
undo and redo, to understand the extent of performance
penalty these mechanisms suffer due to SP unawareness.
We replayed the read/write accesses in the stack memory
traces using a custom program on an Intel(R) Xeon(R) Gold
6226R system with NVM (Optane DCPM [54]). The custom
program performed an equivalent number of reads/writes in
the trace with the configured memory persistence methods
(i.e., flush, undo or redo) in “No SP awareness” scenario,
whereas it applied the method only to the active stack region in
“SP awareness” scenario. The flush technique used a clwb
instruction after every store operation. Note that, inherently
the above memory persistence mechanisms can not have SP
awareness as they have to intervene and perform operations
for every write to NVM. The trace-driven replay allows us
to incorporate SP awareness in these techniques for analysis
purposes.

Figure 3 shows the potential benefit of incorporating SP
awareness in flush, undo, and redo techniques to achieve
stack persistence. The results show the execution time for
different mechanisms with and without SP awareness (in
NVM) normalized to execution time when no persistence
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Fig. 3: Execution time of primitive memory persistence mechanisms with SP awareness and No SP awareness normalized to
no persistence (DRAM). SP awareness: stack pointer awareness.

mechanism is used i.e., stack region is allocated in the DRAM.
We observe two important performance trends from this exper-
iment. First, as shown in Figure 3, all persistence mechanisms
benefit from having “SP awareness”; the average performance
improvement compared to “No SP awareness” scenario across
all workloads is observed to be 30%, 31%, and 33% for flush,
undo and redo, respectively. For example, the execution time
for Gapbs pr while using flush with SP awareness is 8.5
seconds, 10.6 seconds without SP awareness and 0.2 seconds
with no persistence. Even though Ycsb mem has compara-
tively fewer stack modifications (∼15% in Figure 1), it has
more number of stack modifications beyond the active stack
region compared to Gapbs pr and G500 sssp, thus benefiting
more due to “SP awareness”. Second, the overhead even with
SP awareness is significant—more than 35× slowdown across
all benchmarks. Techniques requiring to maintain the stack
in NVM and lacking the capability to merge the consistency-
preserving operations incur significant overhead considering
the write-intensive nature of stack operations. For example, for
flush, every store to the stack region would result in a write-
back to NVM. A checkpoint solution, apart from allowing
the stack allocation in DRAM, provides enough opportunities
for coalescing as the checkpoint is performed only at the end
of a checkpoint interval. Moreover, checkpoint techniques are
required to perform limited operations during an interval (i.e.,
dirty tracking) and hence, the amount of wasted work can be
minimized with efficient dirty tracking.

B. Inefficiency of Page-level Dirty Tracking

The primary sources of overhead in checkpointing any
memory region are,

1) Dirty tracking overhead, i.e., overhead associated with
designating dirty status of memory chunks.

2) Data copy overhead, i.e., time taken to copy modified
data from DRAM to NVM.

Dirty tracking techniques in contemporary systems depend
upon the information gathered during virtual to physical
address translation. There are two standard techniques for dirty
tracking at page-level granularity.

• Using the dirty bit indicator set by the address translation
hardware (e.g., the dirty bit in the page table [45]). We
refer to this as the Dirtybit approach.

• Disabling the write access by write-protecting the pages
in the page table [18], [49]. We refer to this approach as
a write-protection based approach.

The write-protection bit-based scheme forces page faults on
write access to a page during a dirty tracking interval. This
scheme removes the write permission bit from the page table
entries (PTEs) for all physically mapped addresses at the start
of a tracking interval. Therefore, the first write to such pages
in an interval would generate a page fault where the system
software (OS) may record the page as dirty, which can be used
at the end of the tracking period. In the Dirtybit approach, the
dirty bit in the page table entries (PTEs) is reset at the start
of a tracking interval. The hardware page-table walker (PTW)
sets the dirty bit in PTE if there is any writes to the pages
corresponding to the PTEs. At the end of the tracking interval,
the OS can examine the PTEs to determine the dirty pages.

Both of the above page granularity dirty tracking techniques
require the OS to walk the page table to collect dirty page in-
formation and prepare the PTEs for the next interval. However,
the write-protection-based approach incurs additional overhead
due to the page faults and may lead to significant overheads
as shown by Singh et al. [45]. On the other hand, the Dirtybit
approach is nimble and is supported by default in most of the
hardware architectures. LDT [45], a technique leveraging dirty
bit support of x86-64 systems, shows that the dirty tracking
overhead in the Linux OS can be reduced compared to the
write-protection-based technique [18]. In this paper, we use
LDT [45] as the reference implementation to design Dirtybit-
based approach for comparative analysis. For the stack region,
dirty tracking overhead should be minimized to reduce the
wasteful work during the tracking interval. However, the
granularity of tracking memory modifications is limited by
the address translation unit, typically an OS page [45], [49].
This can be a bottleneck in terms of increased checkpoint size
resulting in higher copy overheads.

Ideally, a dirty tracking approach should track modifications
at sub-page (or byte-level) granularity and copy only modified
bytes at the end of a checkpoint interval. This conventional
wisdom of tracking modifications at lower granularity [12],
[41] is much more crucial for stack than other memory
areas since the stack modifications majorly happen at lower
granularity due to procedure calls or local variable writes. To
understand the extent of reduction in checkpoint copy size with
dirty tracking at byte-level (sub-page) granularity for stack



 1
 4

 16
 64

 256
 1024
 4096

 16384

1 2 3 4 5 6 7 8 9 10

C
o
p
y
 
S
i
z
e
(
B
y
t
e
s
)

Time Interval(10ms)

8B

4096B

(a) Gapbs pr

 1

 4

 16

 64

 256

 1024

 4096

1 2 3 4 5 6 7 8 9 10
Time Interval(10ms)

8B

4096B

(b) G500 sssp

 1
 4

 16

 64
 256

 1024
 4096

 16384

1 2 3 4 5 6 7 8 9 10
Time Interval(10ms)

8B

4096B

(c) Ycsb mem

Fig. 4: Comparison of checkpoint size in page and byte level dirty tracking of stack modifications. Y axis shows copy size in
page (4096 Byte) and sub-page (8 Byte) granularity tracking for benchmarks in Figure 1.

modifications, we compared data copy size in byte-level dirty
tracking with conventional page-level granularity.

We post-processed the traces of benchmarks in Figure 1 to
calculate the data copy size with page and 8-byte granularity
dirty tracking at 10ms intervals for the stack regions. Figure 4
compares the data copy size for the page (4KB) and 8-byte
granularity dirty tracking for the stack regions. Dirty tracking
at sub-page byte granularity for stack reduces the checkpoint
size by a factor of 300× for Gapbs pr, 56× for G500 sssp
and 33× for Ycsb mem.
Summary. Observations presented in this section form the
basis of Prosper where we make a case for tracking stack
modifications at a finer (byte) granularity to reduce the check-
point size. Apart from dirty tracking at a finer granularity,
the proposed system by virtue of its design should allow
stack allocation in DRAM, better symbiosis with the OS-layer
process persistence mechanisms, support efficient software
implementation to capture stack checkpoints, and limit the
penalties of SP unawareness by efficient dirty tracking.

III. DIRTY TRACKING WITH PROSPER

To achieve process persistence through OS-level periodic
checkpoints of different process states, the memory state
of the process needs to be persisted in a crash-consistent
manner. For stack persistence, hardware-only approaches face
non-trivial challenges due to SP unawareness and integration
difficulties with the OS layer checkpoint procedures. As sum-
marized previously, a periodic checkpoint approach for stack
persistence has many advantages. However, tracking stack
modifications at sub-page granularity to reduce the checkpoint
size requires additional hardware support. A desirable solution
should provide low-overhead dirty tracking of the stack region
while supporting the OS-layer checkpointing in an organic
manner. One possible design choice can be an OS-hardware
co-design where the following non-trivial design challenges
are addressed.

i) Separation of responsibilities along with an efficient
communication protocol between the hardware and soft-
ware (OS) components is necessary. OS should notify
hardware to start/stop tracking at the beginning/end of
any checkpoint interval. For correctness, synchronization
between the OS and hardware to ensure quiescence of
the dirty information before consuming it from the OS
must be ensured.

Operating System
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Prosper h/w DRAM

Application
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2
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5 6

4
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Fig. 5: Schematic diagram of Prosper.

ii) Hardware tracker should not stall load/store requests from
the processor to the stack memory. Tracking must be
done out of the critical path of demand requests from
the processor. Hardware tracker should also generate
minimum memory requests to reduce its footprint in the
memory hierarchy.

iii) The OS and hardware components should co-ordinate
sharing the information regarding the tracking granularity,
address ranges of stacks used by different execution
entities (such as threads), their corresponding meta-data
regions to record/consume tracking information in an
efficient manner. Across different events, such as check-
points, context switches, etc., correctness and efficiency
should be ensured.

Prosper uses a hardware-software (OS) co-design approach
in which the OS records stack address range and the hardware
component tracks stack modifications. Even though Prosper is
proposed for tracking stack modifications, its generic design
can be leveraged to track modifications to any virtual address
range. For example, we can use Prosper to track modifications
to dynamically allocated virtual address range in the heap.

Figure 5 shows the division of responsibilities and hand-
shakes between the hardware and the OS components in
Prosper.

A. Prosper Software

The software (OS) component assists the hardware compo-
nent by providing required information through a set of param-
eters, addressing the first and third challenges of communica-
tion between software and hardware. Prosper’s OS component
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records the stack address range of an application thread ( 1
in Figure 5) and passes it along with other information such
as tracking granularity and address of memory area to record
metadata about stack modifications through parameters ( 2 ).
Prosper’s h/w component uses these parameters ( 3 ) for
tracking modifications to the application’s stack. Prosper saves
the tracked dirty information in memory ( 4 ) using a bitmap,
addressing the second challenge regarding metadata storage,
and OS utilizes it ( 5 ) to decide which stack areas are modified
in the current checkpoint interval. A bit in the dirty bitmap
corresponds to a stack address range based on the tracking
granularity. OS finally initiates a copy of data ( 6 ) in memory
after ensuring all dirty tracking information is in a consistent
state. Before performing bitmap inspection, the OS ensures
quiescence of the bitmap area using a two-step process—-(i)
instructs the Prosper h/w to flush all tracked dirty information,
(ii) ensures completion of flush related activities by checking a
hardware indicator. The OS may perform other activities (e.g.,
preparing for copy) between the two steps to reduce overheads
due to stalling in the second step.

The OS clears the recorded dirty bits before starting the
next checkpoint interval to ensure correct recording of dirty
information in the next interval.

The efficiency of OS processing depends on performing
targeted processing of the stack region where the OS examines
the dirty meta-data and performs copy operations only for the
active stack region. To avoid walking the entire meta-data area
to clear the bits set in the last iteration, the OS should know the
maximum active stack region during the checkpoint interval.
The Prosper hardware tracks this information and shares it
with the OS at the end of the checkpoint interval. The OS
component also handles events such as context switches and
process/thread migration, which are not shown for simplicity.

B. Prosper Hardware

The nucleus of Prosper’s hardware component is a dirty
tracker hardware as shown in Figure 6. The tracker (shown
as 1 in Figure 6) is active during a checkpoint interval (i.e.,
between a checkpoint start and end). The tracker monitors
memory store operations and filters the ones to the stack region
without interfering with the progress of the store operation,
addressing the second challenge (mentioned previously). The
primary task of the tracker is to set bit(s) in the bitmap area
(shown as 2 ) corresponding to the addresses of the filtered
store(s). Each bit in the bitmap is associated with an address
range in the stack based on the tracking granularity. The
tracker can be configured with granularity as multiple of 8-
byte.

With Prosper, the bitmap and volatile state of an application
reside in DRAM (shown as 3 in Figure 6). A per-thread
persistent stack is maintained in NVM (not shown in figure)
which is consistently updated in two steps. In the first step, the
OS copies ( 4 ) data to a temporary buffer in NVM (shown
as 5 Figure 6) at the checkpoint end after inspecting the
bits in the bitmap area. In the second step, the per-thread
persistent stack in NVM is updated using the data copied to
the temporary buffer in the first step. To reduce the overheads
due to bitmap inspection and copy operations, the OS looks
for coalescing opportunities within every eight bytes of the
bitmap.

We build different design elements through the following
series of questions related to the maintenance of the bitmap
area during the tracking interval.

(i) When should the tracker issue bitmap store?
A straw-man approach could be to issue bitmap-store re-

quests as and when a bit needs to be set in the bitmap due
to stack modification. However, the straw-man strategy could
interfere with the demand stores from the core because of
the additional bitmap-store requests it generates. Therefore,
we use a lookup table as a small cache within the tracker to
coalesce the bitmap store requests for a given stack range.
Bitmap store requests are generated due to—(i) eviction of an
entry from the lookup table due to lack of space in the table,
(ii) the entry has reached the coalescing threshold as explained
below, (iii) at the end of a checkpoint interval. Each entry
in the look-up table is a tuple of <bitmap location address
(64bits), bitmap value (32bits)> (Figure 7). The lookup table
has parallel search capability using the bitmap location address
as the key. The target address for each bitmap store is searched
in the table where a hit results in an update of bitmap value and
a miss results in creating a new entry in the table, evicting an
existing entry, if required. We considered two design choices
while creating a new bitmap entry in the table.
1) Accumulate and Apply: Tracker creates an empty entry in
the table without loading the old bitmap value from memory.
Bitmap value changes are accumulated in this entry until a
bitmap store request is generated for this entry. The store
request is converted into a load request for the old bitmap
value, then the accumulated bitmap value is merged with this



old value and stored back if required. Loading the old bitmap
value is delayed until a bitmap store request is initiated. The
advantage of this approach is that table entry is allocated
instantaneously without waiting for completion of the load
operation of the old bitmap value from memory.
2) Load and Update: Tracker issues a load request for the
old bitmap value from memory into the table and updates the
bitmap value in the table. The table contains the latest bitmap
value when a bitmap store request is generated for this entry.
The advantage of this approach is that no additional loads
apart from the initial load are required when the same bitmap
location is evicted from the table multiple times in an interval.
The drawback is the need to delay bitmap entry allocation until
the load for the old value is completed.

We use the first option, Accumulate and Apply in Prosper
for creating a new bitmap entry in the table as it allows quick
allocation of lookup table entries. This avoids complications
of reserving an entry marked as “not ready” in the table for
the duration of load and queuing of stores corresponding to
the same entry.

(ii) What are the coalescing thresholds? As bits correspond-
ing to stack modifications have coalesced in the lookup table
entry, the tracker should decide on an appropriate event to
issue bitmap store requests. The tracker should not be too
eager or too lazy; the former may increase the interference
in the memory hierarchy, while the latter can result in more
evictions to accommodate new bitmap store requests. In the
current design, the tracker issues a bitmap write request when
the number of bits set in any lookup table entry reaches a high-
water-mark (HWM) threshold. An optimal HWM attempts to
strike a balance between memory bandwidth usage for bitmap
store requests and the number of evictions.

(iii) What is the eviction strategy for the look-up table? As
the lookup table has a limited size, the tracker should employ
an eviction policy to accommodate new bitmap store requests.
Under the current eviction policy, the tracker selects victims
based on the number of bits set in the bitmap value of all table
entries. The tracker evicts the entries for which the number of
bits set in the look-up table is less than a threshold called low-
water-mark (LWM). The tracker may evict a random entry if
no suitable entries adhering to the LWM criteria are found.
The rationale for this simple LWM-based design is to give
priority to table entries corresponding to frequently modified
stack areas. Moreover, function call and return may touch stack
areas momentarily without a lot of reuse, which should be
evicted from the table with higher priority.

C. Multi-threading Support

As each software thread has its own stack, the stack can be
tracked on the logical CPU on which the thread is scheduled.
Prosper’s per hardware thread dirty tracker can track the stack
modifications of software threads and set bit(s) in the dedicated
bitmap areas. During the process (and thread) context switch,
the OS is required to save and restore the dirty tracker state
(i.e., configuration and bitmap information), similar to other
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Fig. 7: Working of the Prosper hardware tracker.

architectural states. During a context switch, quiescence of the
bitmap area for outgoing context is ensured using the two-step
process mentioned in Section III-A. Specifically, as soon as the
incoming context is decided by the OS, it instructs the Prosper
h/w to flush entries from the lookup table to update the bitmap
area of the outgoing context. Next, the OS ensures completion
of flushing before resuming the incoming context by loading
the saved Prosper hardware state.

One of the challenges in multi-threaded scenarios is to
handle inter-thread stack modifications, i.e., when one thread
of a process accesses (writes to) the stack region of another
thread of the same process. This is possible because threads
share the address space and can access the stack regions of
each other. However, we observed that such inter-thread stack
modifications are rare in applications such as the ones used in
Section II. Nonetheless, the issue can be addressed by com-
bining Prosper with existing privilege separation mechanisms
in multi-threaded applications [53] where inter-thread stack
accesses can be tracked by forcing OS interventions such
as raising page faults. For Propsper, this can be achieved
by maintaining separate page table entries for stack address
ranges of different threads. The permission bits in page tables
are set such that a thread has write access to its own stack but
has read-only access to the stacks of other threads. On a write
fault to any stack address, OS allows the write to proceed
after setting the required bits in the bitmap area. Similar to
the design of Wang et al. [53], changes to the stack page table
of any thread need to be propagated to the page table entries
of other threads in this design.

D. Implementation

The dirty tracker hardware employs mechanisms to identify
and filter stores of interest (SOI). The demand store requests
from the processor are inspected by the Prosper dirty tracker
while being forwarded to the L1D. To filter the SOIs, a
comparator circuit compares the store addresses against the
address range set by the OS using two custom per-core model-
specific registers (MSRs). Hardware dirty tracker identifies and
filters required information from SOIs without impacting their
progress. The comparator circuit is placed near L1D to track
accesses as early as possible before they are translated or



merged. In comparison to employing tracking further down
in the memory hierarchy (e.g., at memory controller), this
approach has two primary benefits—(i) h/w filtering logic to
identify SOIs becomes simple as the virtual address range
for the stack is contiguous which need not be the case when
filtering is based on physical addresses, (ii) the tracker has
immediate visibility of all stack modifications which may not
be possible at further levels in memory hierarchy because the
accesses can be served from the upper-level cache(s).

Figure 7 shows the working of per-core dirty tracker hard-
ware after filtering the SOIs.

The tracker uses the tracking granularity and bitmap base
address values passed through two additional MSRs to cal-
culate the corresponding bitmap address and the bit position
in the bitmap value ( 1b ). The lookup table coalesces bitmap
store operations to reduce the number of bitmap store requests
generated by the tracker. The tracker performs concurrent
address comparison to search the bitmap location address in
the lookup table 1a , by comparing against addresses stored in
the lookup table. Next, if an entry exists, the tracker sets the
appropriate bit in the bitmap value of the existing entry in the
look-up table. Otherwise, it creates a new entry where only the
corresponding bit for the SOI address is set in the bitmap value
(Accumulate and Apply approach). The tracker finally issues
a bitmap store request 1c when the number of bits set in the
lookup table value is higher than a high-water-mark (HWM)
1d . The bitmap store request for a given entry is performed in
two steps—first, the old bitmap value is loaded by generating
a load request to the address of the entry, and second, the old
value is merged with value in and stored back, if necessary.
The eviction operation also follows the same path, albeit the
entry is marked free.

Entries in the lookup table are flushed by performing evic-
tion of all entries when the OS indicates an end of checkpoint
interval. In this case, the OS polls the tracking hardware to
ensure all tracker-generated operations (load and store) are
completed before proceeding further. The tracker maintains
outstanding load and store request counters to ensure the
completion of all in-flight operations and coordination with
OS. We implement Prosper hardware component on gem5 [6],
[35] (version 21.2.1.1).

End-to-end Checkpoint Solution A typical process check-
point mechanism for hybrid memory systems consists of an
OS layer to periodically capture the process state. Thus the
OS should support hybrid memory (DRAM + NVM) and
support baseline checkpoint operations for different process
states. The OS on a system with Prosper must also incorporate
additional support for Prosper software component. While
gem5 [6], [35] supports Linux in full system mode, Linux
does not support the baseline features mentioned above for a
hybrid memory. Therefore, to design an end-to-end checkpoint
solution using Prosper, we create an application checkpoint-
restore infrastructure on GemOS [38], a lightweight and small
OS customized for gem5 simulator. The memory management
subsystem of GemOS is modified to support hybrid memory

TABLE II: gem5 Configuration

Parameter Used Setting Setup
CPU 3GHz I&II

L1-D/I 32 KiB/core (8 way, 3 cycles) I&II
L2 512KiB/core (16 way, 12 cycles) I&II
L3 2 MiB/core (shared) (16 way, 20 cycles) I&II

MSHRs 16, 32, 32/core L1-D, L2, L3 I&II
Cache line size 64 B in L1, L2, L3 I&II

DRAM interface DDR4-2400 16x4 I&II
NVM interface PCM ‡ I

NVM Write buffer 48 I
NVM Read buffer 64 I
Memory capacity 3GB DRAM + 2GB NVM I
Memory capacity 32GB DRAM II

‡PCM timing parameters based on [46]

where the process uses DRAM, and stores checkpoints in the
NVM (exposed through gem5). GemOS also enables periodic
checkpoint operations for a process by passing the checkpoint
interval as a parameter.

The GemOS baseline checkpoint mechanism captures all
process states (including the stack) in an incremental manner
and stores them in the NVM. The memory modifications for
the process are tracked at a page granularity using Dirtybit
approach (Section II-B). For byte granularity checkpointing
with Prosper, we incorporate the Prosper software component
into GemOS to perform different handshake operations with
the underlying Prosper hardware component using custom
MSRs. To test the correctness, we emulate abrupt system
crashes by killing the gem5 simulator process on the host
while an application process is active within GemOS. After
the crash, we restart gem5 and observe that the process within
GemOS restarts from the last checkpoint successfully.

IV. EXPERIMENTAL SETUP

We performed two sets of experiments using two setups
(referred to as Setup-I and Setup-II). The first set of experi-
ments demonstrates the end-to-end improvement of checkpoint
performance with Prosper while the second set of experiments
analyzes the hardware dirty tracking overhead introduced by
Prosper. We used gem5 (version 21.2.1.1) [6] with configu-
rations mentioned in Table II for the experiments. Table II
lists down the NVM parameters that are different from the
default NVM interface (i.e., NVM-2400 1x64) in gem5. The
parameters not mentioned in Table II are set to the default
settings of the gem5 simulator. Unless explicitly mentioned,
we use the lookup table size as 16, HWM as 24, LWM as 8,
and tracking granularity as 8 bytes for all experiments (refer
to Section III-D).

A. Checkpoint Performance

We used Setup-I to demonstrate the efficacy of Prosper
through the following experiments.

1) Performance of Prosper to persist the stack in consistent
manner vis-a-vis other memory persistence mechanisms
such as Romulus [15], SSP [41] and page-granularity
checkpoint using hardware dirty bit support [45] (referred
to as Dirtybit).



2) Comparatively analyze the performance of achieving pro-
cess memory state persistence by combining different
stack persistence techniques with SSP.

3) Performance of Prosper for different stack usage patterns
using micro-benchmarks (Table III).

We modified GemOS [38] for this set of experiments, run-
ning on gem5 with DRAM + NVM hybrid memory. Further,
we implemented Romulus and SSP in GemOS.

Romulus [15] provides memory persistence by maintaining
twin copies of data, both maintained in NVM, with one copy
considered backup and the other as main. The authors have
proposed Romulus as a user-space library; however, since the
compiler manages the stack operations, we have implemented
Romulus as a hardware-software co-design to interpose stack
modifications. The hardware component logs the address and
size of stack modifications. The software component copies
modifications from the main to backup by inspecting the log
entries created by the hardware.

SSP [41] ensures memory persistence at cache line granu-
larity using a subpage shadow paging scheme. SSP maintains
two physical pages for each virtual page and distributes modi-
fications across these two pages at cache line granularity. SSP
consolidates two physical pages associated with an inactive
virtual page using an OS thread. We have varied the OS page
consolidation thread invocation frequency with 10 µs, 100 µs,
and 1ms in the experiments (OS thread invocation frequency
is not mentioned in the paper). At the end of each consistency
interval, SSP writes back modified cache lines using clwb,
sends updated bitmap in extended TLB to the SSP cache, and
applies it on the commit bitmap maintained in NVM.

To study the performance of Prosper with different stack
usage scenarios, we compare it against the page-level dirty-
bit mechanism (Dirtybit) applied for the stack. The micro-
benchmarks in Table III capture different stack access cat-
egories by operating on an array allocated in the function
scope. The Sparse micro-benchmark dirties four bytes of each
memory page used for stack across recursive invocation of
a function. The Random micro-benchmark writes to a fixed
number of random words while the Stream micro-benchmark
writes to the entire stack region. The Sparse, Random, and
Stream micro-benchmarks are designed to explore the best,
average, and worst case performance of Prosper, respectively.

The Quicksort and Recursive micro-benchmarks capture the
stack access pattern with repeated function calls and returns.
Finally, we use Normal and Poisson micro-benchmarks to
study the performance when the number of stack accesses
between two computation code fragments follows a probability
distribution. To introduce stochastic behavior in terms of the
number of accesses between two compute code blocks, the
number of stack writes is chosen from a normal distribution
(with µ = 63 and σ = 20) for the Normal workload. For
Poison workload, the number writes to stack between two
compute code blocks are chosen from a Poison distribution
with λ = 63. The compute code block in these workloads
increments a register value one thousand times.

TABLE III: Micro-benchmarks

Category Name Description

Access Pattern

Random Write to random elements of
an array allocated in the stack

Stream Write to all elements of an array
allocated on stack sequentially

Sparse Write to 4KB spaced elements of
an array allocated on the stack

Quicksort Sorting elements of an
Function array allocated in the heap

Invocation Recursive Recursive function invocation
with parameterized call depth

Normal Normally distributed stack writes
Access between computation operations

Intensity Poisson Poisson distributed stack writes
between computation operations

B. Tracking Overhead Experiments

We used gem5 with Setup-II configurations and Linux (ker-
nel version 5.2.3) for measuring the dirty tracking overhead
of the Prosper hardware. We modified the Linux kernel to
incorporate the system software component of Prosper. A
kernel thread is used to coordinate with the Prosper hardware
to control and collect dirty information for the stack region(s)
in every 10ms interval. At the start of an interval, the kernel
thread communicates tracking parameters and stack address
range to Prosper hardware using custom MSRs. At the end of
the interval, the thread synchronizes with Prosper hardware to
ensure the completion of tracking activity before examining
the dirty tracking meta-data.

We use SSSP from Graph500 [39], PR from GAPBS [5],
SPEC CPU 2017 (SPECspeed) benchmarks [14], and micro-
benchmark Stream (Table III) for this study and allowed the
benchmark application to run for one minute (as warm-up
time) before starting the incremental checkpoint. The kernel
thread performed a total of 6000 checkpoints at 10ms intervals.

V. EXPERIMENTAL EVALUATION

In the first set of experiments, we evaluate the perfor-
mance benefits of Propser in providing process persistence
by comparing it against state-of-the-art memory persistence
mechanisms using Setup-I. Furthermore, the benefit of in-
tegrating Prosper with state-of-the-art memory persistence
mechanisms for achieving memory state persistence (heap and
stack combined) is investigated. We analyze the performance
of Prosper for different stack usage patterns. In the second
set of experiments, we evaluate the hardware overhead of
Prosper, the sensitivity of dirty tracker to HWM and LWM
thresholds using Setup-II, and the energy requirements of
Prosper hardware.

Performance of Prosper: Figure 8 shows the performance
comparison of Prosper with existing NVM memory persis-
tence mechanisms—Romulus, SSP, and page-level Dirtybit
scheme, when used to achieve persistence of the stack region
of different applications. Figure 8 shows the execution time
of different applications with one of the memory persistence
mechanisms applied for the stack normalized to execution time
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Fig. 8: Application performance comparison with different
memory persistence mechanisms applied to stack. Y-axis
shows application execution time with memory persistence
normalized to no persistence, the lower the better.

without memory persistence. For SSP, the invocation interval
for the OS page consolidation thread is varied from 10µs to
1ms (referred to as SSP-10µs, SSP-100µs and SSP-1ms).
Propser performs better than Romulus, SSP for all workloads
and performs better than page-level Dirtybit for all except
Random and Stream. SSP and Romulus require the memory
area to be allocated in NVM. In contrast, Dirtybit and Prosper
allow allocating stack in DRAM which leads to improved
performance due to the access latency differences of DRAM
and NVM. For SSP, the page consolidation OS thread also
contributes to the performance overhead, as the merging of
pages may interfere with the application execution. In Dirtybit
and Propser, metadata inspection and data copy happen at the
end of the checkpoint interval. Romulus results in significant
performance overheads across all workloads as the hardware
generates redo log entries for all stack modifications, and the
software may copy overlapping addresses from the primary
memory location to the backup memory location (in the
absence of coalescing as is the case in our implementation). On
the other hand, Dirtybit and Propser coalesce bitmap updates
for the same location and avoid redundant copying at the
interval end. The performance benefit of Prosper compared to
Dirtybit results from the reduction in copy size due to the sub-
page granularity dirty-tracking support of Prosper and efficient
inspection/preparation of the dirty information metadata (Sec-
tion III). Prosper results in an average of 2.1× (maximum of
3.6× for Ycsb mem) reduction in stack persistence overhead
compared to SSP-10µs and a maximum of 1.27× reduction
in stack persistence overhead for G500 sssp with respect to
Dirtybit. The stack persistence overhead for SSP decreases
with an increase in page consolidation OS thread invocation
interval from 10 µs to 1ms. For example, ∼2× reduction
for Gapbs pr from 10µs to 1ms is observed, but SSP incurs
higher overheads compared to Prosper even with 1ms setting.
Prosper efficiently provides stack persistence compared to
other existing memory persistence mechanisms applied for
stack persistence. Prosper design allows changing tracking

granularity based on the dirty behavior of an application or
disabling it to use a page-level Dirtybit scheme.

Process memory state persistence: The stack and the
heap regions are two primary mutable regions in a process.
To analyze the performance overhead of achieving memory
state persistence of different applications, we used different
combinations of SSP, Dirtybit and Prosper for the heap and
stack segments. The combinations used for this experiment
are—(i) SSP for both stack and heap, (ii) SSP for heap and
Dirtybit for stack, and (iii) SSP for heap and Prosper for stack.
Design of Prosper is inclusive enough to integrate with other
memory persistence schemes such as logging for heap area.

Figure 9 shows the execution time of different applications
with one of the memory persistence mechanisms applied
for heap and stack normalized to execution time without
memory persistence. Figure 9 clearly demonstrates the benefit
of combining Prosper or Dirtybit with SSP to achieve memory
persistence compared to using SSP for the entire memory area
under all three OS thread invocation intervals. SSP-Prosper
performed better than SSP-Dirtybit and SSP across all three
SSP page consolidation thread invocation interval scenarios.
SSP-Prosper provided an average 2× (maximum of 2.6×
for Ycsb mem) reduction in memory persistence overhead
compared to SSP with 10 µs thread invocation interval and an
average of ∼1.4× and ∼1.3× reduction in memory persistence
overhead compared to SSP with 100µs and 1ms, respectively.
An increase in SSP OS thread invocation interval benefits
all three stack memory persistence mechanisms, with SSP
showing 2.4× reduction in memory persistence overhead for
1ms compared to 10µs for Ycsb mem.

A combination of Prosper with other existing memory
persistence mechanisms can provide persistence for the entire
memory area with minimum overhead.

Prosper with different stack usage scenarios: We study
the performance impact of different stack usage patterns
with Prosper using micro-benchmarks in Table III. For this
experiment, five different tracking granularity (8byte, 16byte,
32byte, 64byte, and 128byte) are used with a fixed checkpoint
interval of 10 ms. Figure 10 shows the performance of Prosper
for different workloads vis-a-vis the baseline, i.e., the Dirtybit
(page-granularity) scheme.

Figure 10a shows the checkpoint size for the stack averaged
over all checkpoint intervals. Figure 10b shows the time taken
to complete the checkpoint with Prosper normalized to the
time taken for the page-level Dirtybit scheme. The checkpoint
time consists of the time taken for inspecting dirty tracking
bitmap, clearing bits in the bitmap, and copying the modifi-
cations from DRAM to NVM. While inspecting the bitmap,
contiguous bits set in the bitmap are coalesced, allowing faster
bitmap processing. Thus, the time for inspecting dirty tracking
bitmap depends upon the bitmap area size (based on tracking
granularity) and pattern of bits set in the bitmap (based on the
stack access pattern of the application).

Prosper benefited the most in reducing checkpoint size
when the stack modification in a checkpoint interval is lo-
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Fig. 10: Stack checkpoint performance for different micro-
benchmarks with Prosper.

calized to a range of stack region of size equal to or less than
the tracking granularity. For example, compared to the Dirtybit
scenario, checkpoint size is reduced by ∼200× for Sparse with
8-byte tracking granularity. Due to the significant reduction
in checkpoint size for Sparse, maximum checkpoint time
reduction is observed with all tracking granularity (average
22× compared to the baseline).

The checkpoint performance of Prosper is negatively im-
pacted when the stack modification in a checkpoint interval
is to a contiguous range of memory pages in the stack
region (as in the case of the Stream workload). In such a
case, checkpoint sizes for both byte-level and page-level dirty
tracking are similar, and there is no reduction in the data copy
overhead with Prosper. Apart from having no benefits of byte-
granularity dirty tracking, the Stream benchmark incurred high
checkpoint time due to the additional dirty bitmap processing
operations at the end of the checkpoint and resulted in a

slowdown of ∼1.5× compared to the baseline with 8-byte
granularity. As the size of the dirty meta-data (i.e., dirty bitmap
area in Prosper) decreases with increased tracking granularity,
the checkpoint time overhead for Stream reduces with an
increase in tracking granularity, showing the lowest for 128-
byte granularity.

The Random micro-benchmark resulted in the second lowest
reduction in checkpoint size compared to the page granularity
checkpoint scenario. Even though 8-byte helped in reducing
checkpoint size, the checkpoint time overhead of ∼1.2× in
Figure 10b is due to the overhead in dirty bitmap processing.
The random access pattern limits the coalescing opportunities
in dirty bitmap processing. For Random, tracking at higher
granularity helped, showing ∼1.8× reduction in checkpoint
time with 128-byte, benefited from improvement in dirty
bitmap processing. This is because a lower normalized check-
point time in Figure 10b is contributed by two components: a
reduction in checkpoint size with respect to the page-level
Dirtybit scheme and a decrease in bitmap inspection time
(decided by the bitmap area size and coalescing opportunities
in bitmap). The tracking granularity plays an essential role in
balancing the size of checkpoint and bitmap area size, as a
higher tracking granularity reduces bitmap area size but may
increase checkpoint size.

Prosper performed better with all tracking granularity for
Normal and Poisson micro benchmarks. The Quicksort bench-
mark sorted elements in a heap to ensure that the stack usage is
only due to function calls. Compared to the baseline, Quicksort
performs better with Prosper, showing maximum checkpoint
time reduction with 128-byte tracking granularity.

While Prosper reduces checkpoint size and checkpoint time
for most stack access patterns, granularity setting should
be dynamically adjusted (from the OS layer) to reduce the
overhead for workloads like Stream.

Prosper with different checkpoint Intervals: The check-
point interval influences the stack checkpoint size as the
stack grows and shrinks multiple times during a checkpoint
interval. A large checkpoint interval also allows the coalescing
of multiple modifications to the same stack location in a
checkpoint interval.

We studied the influence of checkpoint interval on the stack
checkpoint size using function call benchmarks Quicksort, and
Recursive (Table III) with call depths four (Rec-4), eight (Rec-
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Fig. 11: Influence of checkpoint interval on checkpoint size
with dirty stack tracking using Prosper.

8), and sixteen (Rec-16). We used eight bytes as tracking gran-
ularity for this experiment. Figure 11 shows the checkpoint
size (averaged over all checkpoint intervals) for 1 ms, 5 ms,
and 10 ms checkpoint intervals. For Recursive, checkpoint size
increases with an increase in checkpoint interval, denoting that
the stack access pattern of Recursive does not provide coalesc-
ing opportunity, and also the stack does not shrink within the
increased checkpoint interval. Whereas, stack access pattern of
Quicksort provides benefit with increased checkpoint interval
as the checkpoint size for Quicksort is reduced with a 10 ms
interval.

We also observed that even though the checkpoint size
is minimum with a 1 ms interval for Recursive, per byte
checkpoint time (i.e., time to checkpoint a byte, measured
as checkpoint time to size ratio) is the highest for Recursive
benchmark with 1 ms interval; 22 ns with 1 ms interval in
comparison to 11 ns with 10 ms interval for Rec-4. This is
because 1 ms interval results in several checkpoints with no
stack modifications (i.e., checkpoint size is 0) and incurs only
dirty bitmap inspection overhead without any data copying.
Therefore, very small checkpoint intervals may be counter-
productive because of unnecessary bitmap inspections.

The benefit of a longer checkpoint interval depends on the
stack access pattern, and having a shorter interval may be
counterproductive, resulting in high checkpoint overheads.

Context switch overhead of Prosper: To study the context
switch overheads, we use the Setup-I (Table II) i.e., GemOS
with Prosper modifications executing on gem5 with Prosper
hardware. In GemOS, while handling the timer interrupt, if the
outgoing process is persistent, the OS instructs the Prosper
hardware to flush tracked information in the lookup table
to memory. The scheduling logic in GemOS continues with
other activities related to context-switch, such as selecting and
preparing the new context. Before scheduling the incoming
context, OS ensures quiescence of the dirty tracker state
for the outgoing process by checking a counter maintained
in the Prosper hardware (Section III-C). Depending on the
persistence requirement of the incoming process, OS loads
the required Prosper parameters of the incoming context (by
setting the MSRs) to notify the Prosper hardware.

To evaluate the context switch overhead introduced by
Prosper, we used a multi-threaded micro-benchmark with two
threads. Each thread performs a fixed number of random writes
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to its stack, and the main thread waits for its completion.
The stack area of each thread other than the main thread
is persistently maintained using Prosper. To measure the
overhead introduced due to Prosper during context-switch,
we capture the time taken to flush the outgoing context’s
dirty tracker state and set incoming context parameters. The
additional overhead introduced due to the save-restore of the
tracker state was observed to be ∼870 cycles on average.

Dirty Tracking Overhead of Prosper: To analyze the
overheads introduced by Prosper due to hardware track-
ing of stack modifications, we performed experiments with
selected benchmarks 605.mcf s, 620.omnetpp s, 600.perl-
bench s, 641.leela s from the SPEC CPU 2017, SSSP from
Graph500, PR from GAPBS and micro-benchmark Stream
(Table III).

For this experiment, we use the gem5 configuration for
Setup-II (Table II) and the modified Linux kernel (see Sec-
tion IV). Each benchmark application was executed initially
for one minute without dirty tracking (for warm-up), and then
the kernel thread performed 6000 checkpoints, each at a 10 ms
interval. We used three tracking granularity—8bytes, 64bytes,
and 128bytes for Prosper. At the end of an interval, an
inspection of the bitmap area corresponding to the active stack
region is performed for Prosper, and for Dirtybit, an inspection
of dirty-bit in page table entries for the stack address range is
performed.

Figure 12 shows the application’s performance with dirty
tracking for a fixed interval of 6000 checkpoints, calculated
with respect to its performance with no dirty tracking. To
isolate the performance of the benchmark application from
kernel interference, we captured the number of instructions and
number of cycles spent only in the user space, and speedup in
Figure 12 is based on IPC in the user space. Prosper resulted
in minimum overhead (on an average less than 1%, maximum
∼3% for G500 sssp) across all applications for all tracking
granularity. Note that, even the IPC values for user mode can
be impacted by the execution of OS background services (e.g.,
due to cache pollution), and therefore, the results should be
interpreted considering the inherent variations [2], [22].

Dirty Tracker Sensitivity to HWM and LWM Parameters:
The HWM and LWM parameters influence the state of the
lookup table, and impact the amount of memory load and store
operations to maintain the dirty bitmap area (Section III-B).
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Fig. 13: Sensitivity of HWM and LWM for bitmap load and
store operations. For HWM study LWM is fixed at 4 and for
LWM study HWM is fixed at 24.

We analyzed the influence of HWM and LWM values on the
number of bitmap loads and stores generated with mcf from
SPEC CPU2017 and SSSP from Graph500 using the gem5
configuration for Setup-II (Table II) and the modified Linux
kernel (see Section IV). Figure 13 shows the number of bitmap
loads and stores issued by Prosper with varying HWM and
LWM thresholds. We have fixed the LWM threshold value
to 4 while varying HWM (Figure 13a and Figure 13c) and
the HWM value to 24 while varying the LWM (Figure 13b
and Figure 13d) for this study. For SSSP, the number of
bitmap loads and stores decreases with an increase in HWM,
indicating spatial locality in its stack access. At the same time,
LWM variation marginally influences the loads and stores,
indicating that creating more vacancies in the lookup table
has no added benefits. On the other hand, for mcf, the trend
is reversed where the number of bitmap loads and stores
increases with increased HWM, indicating the lack of spatial
locality. Further, we observe a decrease in number of load
and store operations with an increase in LWM, implying more
evictions can be useful. The influence of HWM and LWM on
bitmap loads and stores depends on the stack access pattern.
While we have used a fixed setting (LWM = 8, HWM = 24)
in the previous experiments, a dynamic scheme based on the
access pattern is left as a future direction.

Energy and area overhead: We obtain the dynamic energy
consumption for read and write operations on the lookup table
(Section III-B) configured with two read ports and one write
port, using CACTI-P [33] for 7nm FINFET technology. The
total dynamic read energy per access is 0.0000773194 nJ, the
write energy per access is 0.000128375 nJ, and the leakage
power of a bank is 0.01067596 mW. The lookup table with
16 entries occupies a cache area of 0.000704786 mm2.

VI. RELATED WORK

Persistent process semantics allow the resumption of an
application from its last saved consistent state. In traditional
OSes implementing application execution around the classical
process/thread execution model, data, and pointer references
to the data last till the lifespan of a process [10]. This requires
special mechanisms and support from OS to persist the state of
a process in a crash-consistent manner. Recent research such as
NV-Process [34] provides a fault-tolerant process abstraction
using NVM by decoupling the notion of processes from OS.
On the other hand, Twizzler [7] proposes a data-centric OS for
NVM, extending the design principles of Grasshopper [16],
a single-level store OS. Proper is designed to handle stack
persistence in an efficient manner which can be leveraged
by traditional OSes as well as specialized OSes such as NV-
Process and Twizzler.

Maintaining the memory state persistence in a consistent
manner requires specialized techniques. The existing mech-
anisms for memory persistence in hybrid memory systems
can be broadly categorized as tracking-based and non-tracking
based on the method they use to capture memory changes.

In tracking-based techniques, memory modifications are
tracked in the hardware and/or software, and persisted in a
periodic manner. Aurora [48] tracks memory changes using
the per-page dirty bit [21] to provide checkpoint-based process
persistence in the OS layer by incrementally saving various
subsystem states associated with a process, including memory.
Kona [9] proposes tracking memory modifications at cache
line granularity using a memory exposed through FPGA.
Improvements in memory dirty tracking techniques using
software and hardware enhancements ( [9], [42], [45], [51])
attempt to reduce the dirty tracking overhead or support dirty
tracking at a finer granularity. However, OS-driven checkpoint
solutions not only require tracking at finer granularity, but
also require flexibility in terms of programming/orchestrating
the additional hardware support from the OS layer. Prosper
proposes an efficient hardware tracking mechanism at sub-
page byte granularity designed to integrate with the OS-layer
checkpoint solutions in an organic manner.

Non-tracking techniques employ two main approaches—
logging [20], [28], [50], [52], [57], [58] and shadow pag-
ing [40], [41]. SSP [41] is a shadow paging-based mechanism
at cache-line granularity that redirects modifications to two
different physical pages using hardware-assisted cache line
remapping and consolidates these pages using a background
OS thread. Atom [27] uses hardware-based undo logging
and manages log allocation, ordering, and truncation in the
hardware. InCLL [12] is based on in-cacheline undo logging
for providing fine-grained checkpointing. Compiler-assisted
techniques can add log instructions for each store inside
a transaction and use special log-registers to improve the
performance of log-based checkpoint solutions. Shin et al. [44]
use hardware support to order log write and data update
operations to realize an efficient compiler-assisted logging
solution. LOC [36] uses logging by extending CPU load/store



interface and cache, ensuring memory persistence through a
relaxed order of writes within and between persistent memory
transactions (PTM). Capri [26] modifies the compiler to assist
the hardware in maintaining undo+redo logs in a targeted
fashion. HOOP [8] uses hardware-based redo logging while
JUSTDO [24] is a software logging approach that minimizes
log size by storing only the most recent store instruction
executed within an atomic session.

ThyNVM [43] provides a hardware-assisted dual check-
pointing scheme for DRAM+NVM hybrid memory that dy-
namically decides the checkpoint size to reduce overhead.
The software, hardware, or software-hardware combined ap-
proaches mentioned above require non-trivial operation during
a persistence interval. Therefore, applying them for stack per-
sistence loses the opportunity to limit the persistence overhead
to the active stack region at the end of a persistence interval.
On the other hand, Prosper is designed to limit the persistence
overhead by efficient dirty tracking at configurable tracking
granularity during the interval and being stack-usage aware.

VII. CONCLUSION

Process persistence requires persisting its memory state con-
sisting of mutable stack and heap segments. In this paper, we
present Prosper, a sub-page byte granularity checkpoint based
persistence mechanism for process stack that handles unique
stack properties, providing an average of 2.1× (maximum of
3.6×) reduction in stack persistence overhead with respect
to state-of-the-art memory persistence mechanism (SSP). We
showed that Propser complements well with existing mem-
ory persistence mechanisms for persisting the entire memory
area of a process for process persistence; Prosper with SSP
provided an average 2× (maximum of 2.6×) reduction in
memory persistence overhead for persisting the entire memory
area of a process. Our evaluation using SPEC CPU 2017,
SSSP from Graph500, PR from GAPBS showed that Prosper
causes negligible tracking overhead compared to baseline (on
an average less than 1%). Prosper addresses the unique stack
properties for achieving stack persistence efficiently that can
complement different varieties of existing application check-
point mechanisms in hybrid memory systems.
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APPENDIX

A. Abstract

The artifact contains full source code and implementa-
tion of Prosper and other state-of-the-art memory persistence
mechanisms—SSP and Romulus, used for comparison with
Prosper. It includes full-system architecture simulator (gem5),
operating system (gemOS/Linux) modifications, and scripts to
run experiments and generate outputs. The code is suitable to
be executed on Linux systems.

B. Artifact check-list (meta-information)
• Program: For evaluating the “Performance of Prosper” sub-

section under experimental evaluation section, disk images
containing memory traces of benchmark applications Gapbs pr,
G500 sssp, and Ycsb mem are provided at GitHub1.
For evaluating the “Dirty tracking overhead of Prosper”
subsection under experimental evaluation section, a
disk image containing benchmark binaries is provided
on GoogleDrive URL: https://drive.google.com/file/d/
1QPTfRPezp3P2YrPnOFRisFDhPBD0N3Es/view.

• Compilation: Scripts for compilation are included, we use GCC
version 8.4.0.

• Binary: Linux kernel binaries are included for evaluating
tracking overhead of Prosper. We have provided details on
GitHub1.

• Run-time environment: A system with Ubuntu 20.04.3, having
Linux kernel 5.4.0. The system has support for Linux KVM. We
provide a Docker export with all required dependencies for easy
setup at GitHub1.

• Hardware: Intel x86-64 with hardware virtualization support
and virtualization enabled in BIOS.

• Output: Python scripts are provided to parse gem5 stats and
generate output files. Bash scripts are provided to invoke these
Python scripts and format output files for easy comparison with
expected results. Plots are based on this formatted data.

• Experiments: Manual invocation of scripts, which launch
corresponding experiments and generate outputs in designated
folders.

• How much disk space required (approximately)?: 40–50 GB
of disk after compilation.

• How much time is needed to prepare workflow (approxi-
mately)?: 20-30 minutes for gem5 compilation and 1-2 minutes
for gemOS compilation.

• How much time is needed to complete experiments (ap-
proximately)?: Each experiment with gemOS under the “Per-
formance of Prosper” subsection takes three to four hours. Each
experiment of Romulus in Figure 8 takes ∼20 hours to run. Each
experiment with Linux under the “Dirty tracking overhead of
Prosper” subsection takes approximately 15 to 20 hours.

• Publicly available?: Yes
• Archived (provide DOI)?: Zenodo2

C. Description

1) How to access: All the source code of Prosper is
available at GitHub1 and Zenodo2.

2) Hardware dependencies: Intel x86-64 with hardware
virtualization support is required for using gem5’s KVM CPU,
allowing fast Linux booting. We used Intel(R) Xeon(R) for
running our experiments.

1 https://github.com/arunkp1986/Prosper.git
210.5281/zenodo.10123527

3) Software dependencies: A Linux system that supports
building gem5. We used Ubuntu 20.04.3 with Linux kernel
5.4.0 for our experiments, and the GCC version used is 8.4.0.
We used Ubuntu’s “expect” package to automate interaction
with the gem5 console. We provide a Docker export with all
required dependencies for easy setup. The link to download
Docker export and instructions to use the container are avail-
able at GitHub1.

D. Installation

Prosper installation consists of building two components—
gem5 simulator and operating system (gemOS/Linux). The
GitHub1 contains bash scripts to build the gem5 with relevant
modifications and compile gemOS to produce gemOS kernels
required for running on gem5. We have provided pre-built
Linux kernels for measuring the dirty tracking overhead of
Prosper. The README file in GitHub1 details how to use these
scripts to build/run gem5, gemOS/Linux, and generate results.
We also provide Python scripts to parse and format the output
files along with the expected output files.

In addition to Prosper, the GitHub1 also contains im-
plementations of other state-of-the-art memory persistence
mechanisms, SSP and Romulus, used for comparison with
Prosper.

We also provide a Docker export containing dependencies
required for building gem5, gemOS. How to set up a Docker
container using this export is provided at GitHub1.

E. Experiment workflow

We provide the source code of our implementation and
bash scripts (in GitHub1 to build and execute evaluations
corresponding to results under the “Performance of Prosper”
subsection (Figures 8, 9, 10, 11) and results under the “Dirty
tracking overhead of Prosper” subsection (Figures 12, 13). The
Workflow involves invoking these scripts to generate outputs.

You can run bash scripts in parallel to reduce the overall
execution time of experiments as explained in the README
file in GitHub1.

F. Evaluation and expected results

We provide Python scripts to parse results generated by
gem5 in respective output folders. We use bash scripts to
invoke these Python scripts and format output files generated
by Python. We have provided ”expected” results under each
output folder. Please refer to the README file in GitHub1 for
further details.

For evaluating the “Performance of Prosper”, expected re-
sults are execution time normalized to time with no persistence
(i.e., vanilla). We also report checkpoint size and time to
checkpoint with Prosper normalized to checkpoint time with
Dirtybit. The Python scripts produce normalized final values
used in plots.

For evaluating the “Dirty tracking overhead of Prosper”, the
expected results are speedup with respect to no dirty tracking
and count of bitmap loads, stores with different HWM and
LWM values. The Python scripts produce normalized final
values used in plots.

https://drive.google.com/file/d/1QPTfRPezp3P2YrPnOFRisFDhPBD0N3Es/view
https://drive.google.com/file/d/1QPTfRPezp3P2YrPnOFRisFDhPBD0N3Es/view
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