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Abstract—The last-level cache is vulnerable to cross-core
conflict-based attacks as the cache is shared among multiple
cores. A fully associative last-level cache with a random replace-
ment policy can mitigate these attacks. However, it is impractical
to design a large last-level cache that is fully associative. One
of the recent works, named Mirage, provides an illusion of
a fully associative cache with a decoupled tag and data store
and a random replacement policy. However, it incurs a storage
overhead of 20%, static power overhead of 18.16%, and area
overhead of 6.86% compared to a non-secure baseline cache of
16MB. One of the primary contributors to the additional storage
requirements is the usage of extra invalid tag entries that are
used in a skewed way without changing the number of data
store entries. These invalid tag entries provide a strong security
guarantee. We observe that more than 80% of last-level cache’s
data store entries are dead on arrival, providing negligible utility
in terms of performance improvement as they do not get reused
in their lifetimes. Also, in general, the data store entries occupy
≈ eight times more storage than tag store entries. Based on
these observations, we propose Maya, a storage efficient and
yet secure last-level randomized cache that compensates for the
additional storage of tag store entries by using fewer data store
entries. Maya increases the tag store entries for security and reuse
detection and uses fewer data store entries that only store the
reused data. Our proposal provides a strong security guarantee,
which is one set-associative eviction in 1032 line fills at the last-
level cache. This is equivalent to a line installed once in 1016

years to mount an eviction attack. Maya provides this security
guarantee with a 12MB data store that occupies 28.11% less
area and 5.46% less static power when compared to a non-secure
baseline of 16MB cache.

Index Terms—Cache, Security, Performance

I. INTRODUCTION

Modern processors use multiple levels of caches to hide

the long latency main memory accesses. Typically, the level-1

and level-2 (L1 and L2) caches are private to the core, and the

last-level cache (LLC) is shared across all the cores. Cross-

core eviction-based side-channel attacks [22] [17] can cause

controlled contention at the LLC sets and later can observe

the effect of contention by measuring the latency differences

between an LLC hit and an LLC miss. Randomized LLC

designs are a promising approach to mitigate contention-based

cache attacks. Randomized LLCs like CEASER, CEASER-S,

Scatter-Cache [26], [27], [35] randomize the address to cache

set mapping. However, these designs are prone to probabilistic

*Both authors contributed equally

cache contention attacks and are not secure [7], [12], [24].

The recently proposed SassCache [14] incurs a significant

performance slowdown of more than 4% when evaluated on

all the memory-intensive SPEC CPU2017 [2] and GAP [4]

homogeneous mixes on an 8-core system.

Mirage [29] is a randomized LLC that provides the illusion

of a fully associative cache, and it uses a random replacement

policy so that an attacker cannot gather any information about

a cache line address. Mirage is motivated by the V-way

cache [25] and retains the practical set-associative lookups

by decoupling placement and replacement from tag store to

data store. Mirage uses a set-associative tag-store that over-

provisions invalid tags in sets and with load balancing that

guarantees new addresses are always filled into invalid tags

without causing any conflicts. Cache fills result in global

evictions, where a replacement candidate is selected randomly

from the entire cache. Mirage guarantees global replacement of

cache lines for the lifetime of a computer system; eliminating

conflict-based attacks. Note that Mirage does not mitigate

occupancy attacks and even a fully associative cache is prone

to occupancy attacks [32].

The Problem. Mirage provides the illusion of a fully associa-

tive LLC, incurs a marginal performance overhead, and hence

provides a sweet spot in terms of security and performance.

However, it incurs an additional storage of 20% at the LLC

with a static power overhead of 18.16%, which is a costly

tradeoff. For example, for an 8-core system with 16MB

baseline LLC, the combined storage of tag store and data

store is 16.91 MB, whereas Mirage has a storage requirement

of 20.31 MB. This additional storage requirement leads to

an increase in static power consumption, from 622mW with

the baseline 16MB LLC to 735mW with the Mirage cache.

The requirement increases significantly for a large LLC. For

a 32-core system with 32 2MB LLC slices, the baseline LLC

requires a storage of 67.63MB of tag store plus data store,

whereas Mirage requires a storage of 81.25MB LLC space,

an additional 13.62MB LLC, which is extremely high.

Our goal is to propose an LLC design that can provide the

illusion of a fully associative cache and, hence, the security

guarantee without significant storage, power, and performance

overhead. Note that one can argue for reducing the overall

capacity of the Mirage cache and getting storage overhead

similar to the baseline. According to our simulations, this
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Fig. 1. Percentage of dead blocks inserted into the LLC for 15 memory intensive SPEC CPU2017 [2] benchmarks and five GAP [4] benchmarks on a
single core system with a 2MB baseline and Mirage LLCs. The dead block percentage for a given benchmark is the average of dead blocks across all the
sim-points [2], [4] of a benchmark.

approach leads to an average performance slowdown of around

5%. This slowdown is high as the micro-architecture commu-

nity has been pushing the LLC performance for the last two

decades to achieve performance closer to Belady’s policy [31].

Our observations. Mirage increases the tag entries and pro-

vides extra tags in the form of invalid tags to provide security.

However, it does not change the data store entries, leading to

additional storage requirements. Figure 1 shows the fraction

of data store entries that are dead (not reused after they are

installed into the LLC) with the baseline cache and the Mirage

for SPEC CPU2017 [2] and GAP [4] benchmarks. On average,

more than 80% of the data entries are dead, occupying the LLC

data store. This insight is not new and is well-established in

the micro-architecture community.

Our approach. We propose Maya, a secure and storage-

efficient randomized LLC that provides the illusion of a fully

associative LLC. Maya uses a smaller data store compared

to the baseline, with additional tag entries for security and

tracking reuse to avoid any performance overhead due to the

reduced data store size. In general, data store entries occupy

eight times more storage than tag store entries. So, we can get

the maximum benefit in terms of storage neutrality (compared

to a non-secure LLC) if we optimize for the data store entries.

Second, as most of the data is dead on arrival, these data-store

entries are expendable. So, if we can use the extra tags to

manage the remainder of the data store intelligently, it is a win-

win tradeoff in terms of security, performance, and storage.

The core idea of Maya is motivated by the Reuse Cache

[5], where we install a cache line in the data store only after

it gets a reuse. To detect the reuse behavior, it uses additional

tag-only entries (on top of invalid tag entries) that monitor the

reuse behavior, and then on reuse, a data entry is allocated.

Maya uses a decoupled tag and data store design. In general,

we observe that the Maya cache provides a similar security

guarantee as Mirage because the ratio of valid tags to invalid

tags at the tag store is similar to Mirage’s ratio of valid to

invalid tags. For shared memory attacks, the LLC fills are

isolated by their respective security domain ID. Overall, we

make the following contributions:

(i) We propose Maya, a secure, fully associative, and random-

ized LLC, which is storage-efficient. The crux of our proposal

is a decoupled tag and data store with additional tag entries

but fewer data entries (Section III).

(ii) We argue about the security guarantee of Maya in terms

of the number of LLC line installs required to mount an

eviction-based attack. We prove that such an attacker must

perform more than 1032 LLC line installs (around 1016 years,

assuming one LLC fill takes an optimistic one ns.) to get

one set-associative eviction, which is larger than the system

lifetime (Section IV).

(iii) Maya provides a strong security guarantee without addi-

tional storage (storage savings of 2%). Maya saves the LLC

area by 28.11%, and leakage power by 5.46% (Section V).

II. BACKGROUND

Threat model. The attacker can mount all the possible

LLC contention attacks that exploit a timing channel, such

as eviction-based and flush-based attacks. She is not capable

of mounting cache occupancy-based attacks. For eviction and

occupancy-based attacks, she is not restricted by time to form

an eviction set and then attack the victim.

A. LLC Contention Attacks

Eviction-based cache attacks. In eviction-based attacks,

an attacker fills its data into an LLC that conflicts with the

victim’s data. Later, in the Probe step, the attacker re-accesses

its data, and if it observes longer latency, then it means that

the victim has evicted some of the attacker’s lines [22].

Shared memory-based attacks. In a shared memory-based

attack (like Flush+Reload [37]), an attacker shares its address

space with the victim (e.g., shared libraries). The attacker

flushes cache lines shared by both the attacker and the victim

and observes the victim’s access to the same cache lines by

observing memory access latency.

Occupancy-based attacks. An LLC occupancy-based attacker

observes the LLC space occupied by the victim application.

Recent attacks on website fingerprinting [32] exploit the

dynamic LLC usage between the attacker and the victim. Note

that an occupancy-based attack is possible even with a fully

associative cache.
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Flush-based eviction attack. A recent work [12] shows that

an attacker can mount an eviction-based attack by flushing

her private data while creating an eviction set. This method

is faster than conventional eviction attacks like Prime+Probe.

Note that this is different from shared memory-based flush

attacks, where the attacker flushes shared LLC lines.

B. Recent Advances in Randomized LLCs

CEASER [26]. CEASER encrypts a physical address based on

a key to get the encrypted address on an LLC access. Even in

the encrypted address space, LLC conflicts are possible, and

an eviction-based attacker can mount an attack. To mitigate

eviction-based attacks, CEASER remaps cache lines with a

different key after a fixed interval known as the remapping
period.

CEASER-S [27] and Scatter-Cache [35]. CEASER-S and

Scatter-Cache go one step ahead of CEASER and propose

randomization with a skewed associative LLC to mitigate an

agile eviction-based LLC attacker that can attack CEASER

with slow remapping rates. As per [34], an LLC line should

be remapped after 14 and 39 LLC evictions for CEASER-S

and Scatter-Cache, respectively.

Mirage [29]. Mirage proposes a fully associative LLC that

uses multi-index randomization with a global eviction policy.

It provides a proxy for a fully associative LLC with the help

of a decoupled tag store and data store. It maintains a set-

associative tag lookup and global random eviction for data

stores using pointer-based indirection. Mirage uses additional

invalid tags in a skewed associative tag-store design where

cache lines are installed without set conflict. It also uses a load-

aware skew-selection policy that guarantees the availability of

sets with invalid tags. Mirage is the secure randomized LLC

with a security guarantee of one line install in 1017 years for

mounting an eviction attack. However, it incurs 20% storage

overhead.

III. THE MAYA CACHE

The Maya cache design has four key components:

(i) It uses a skewed-associative decoupled tag store with

additional invalid tag entries for security. It also uses extra

tag entries for reuse detection.

(ii) The tag store of Maya uses a new priority bit for each

tag entry. Maya stores two kinds of tag entries: priority-0 and

priority-1. Priority-0 entries have no associated data entry in

the data store until they get a future tag hit and are promoted

to priority-1 entries. Priority-1 entries are the entries in the tag

store that have corresponding data-store entries.

(iii) For the tag store, Maya uses an insertion policy that keeps

tag priorities in mind and is also equipped with load-awareness
similar to Mirage [29]. Maya uses global random tag eviction

in the tag store for only priority-0 entries. This ensures a fixed

number of invalid tags are available in the tag store to avoid

set-associative-evictions (SAEs).

(iv) Motivated by the Reuse Cache [5], Maya uses a smaller

data store that stores entries, which will be reused. Maya uses

a global random data eviction policy that evicts a data entry

randomly downgrading its corresponding priority-1 tag entry

to priority-0.

A. Tag and data store design

Maya uses a skewed associative and decoupled cache design

where each tag entry stores a forward pointer (FPTR), which

allows it to point to an arbitrary data entry. A security domain

ID (SDID) is also stored for each tag entry to help distinguish

between copies brought in by different domains. This helps in

mitigating shared memory attacks like Flush+Reload [37].

Skewed-associative design. The tag store is split into two

skews [30], each with its independent hash function used to

determine the set mapping for a cache line. Each incoming

cache line now maps to a set in each of the two skews and

can appropriately choose between the two sets.

Priority bit. We introduce an additional bit for each tag store

entry, called the priority bit. This bit indicates if a valid tag

entry has a corresponding valid data entry in the data store.

If the priority bit for a valid tag entry is ‘0’, it indicates no

valid data entry exists corresponding to this tag. In this case,

the forward pointer is invalid. On the contrary, if the priority

bit is ‘1’, a valid data entry exists in the data store, along with

valid forward and reverse pointers linking these tag store and

data store entries.

Extra tag store ways. In the Maya cache design, we provide

extra invalid tag ways, similar to Mirage. We also provision

additional ways, termed as reuse ways, to keep track of valid

entries with priority-bit set to zero. These entries do not have

a corresponding valid entry in the data store and, thus, an

invalid forward pointer. Once such an entry gets a hit in the

tag store, its priority is set to ‘1’, and a valid data entry is

assigned, along with appropriate forward and reverse pointers.

The number of priority-1 entries in the tag store is the same as

the total number of data store entries. The cache also holds a

fixed number of priority-0 entries to ensure that the data store

is only used to store ”useful” entries. Additional invalid tags

are reserved such that on every line install, there is at least one

invalid tag available, and therefore, no SAE occurs. This helps

provide security against eviction-based attacks. Note that the

sets in the tag store are not statically partitioned for storing

priority-0, priority-1, and invalid tag entries. Rather, the total

number of entries of each type is kept constant in the tag store

once the cache is operating at its maximum capacity.

Decoupled data store. As the tag store is decoupled from the

data store, and the data store has fewer entries than the tag

store, Maya needs to store the reverse pointer (RPTR), which

points to the corresponding tag entry, for each entry in the data

store. Figure 2 shows an overview of the Maya cache design.

B. Insertion and eviction policies

Insertion policy. Because of the skewed associative design

of the Maya tag store, each new cache line gets mapped

to two different sets (one in each skew). The decision of

the skew chosen directly affects the distribution of valid tag

entries (both priority-0 and priority-1) across the sets. This,
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Fig. 2. Overview of the Maya cache design. White blocks represent invalid tag
entries, yellow represents priority-0 tag entries, and green represents priority-
1 tag entries.

in turn, affects the distribution of invalid tag entries available

in each set, which is crucial for preventing SAEs and thus

maintaining security. Previous works [27], [35] use random

skew-selection, which randomly picks one of the skews for

the incoming line to be installed in. However, such a policy

could lead to an imbalance in the number of available invalid

tags, where some sets may end up with no invalid tag and

thus become prone to an SAE. Inspired by Mirage, we use

a load-aware skew-selection policy, which fills the incoming

line into the set with more invalid tags. This promotes balanced

use of tags across sets, and an SAE can occur only if both the

mapped sets do not have any invalid tag available, which is a

rare occurrence. Experimental results show that with a load-

aware skew selection and six extra invalid tag entries per skew,

an SAE occurs once in 1016 years, well beyond the system

lifetime.

Note that when a cache line gets filled into the LLC, the

corresponding tag is stored in the tag store, with its priority

bit set to 0. However, the associated data is not yet stored in

the data store, which results in an LLC miss. Subsequently,

when a request arrives again for the same tag, the priority is

set to 1, the corresponding data is brought into the data store,

and the data is available in the LLC for subsequent accesses.

Eviction policy. Maya uses a random global eviction policy,

which chooses a random eviction candidate from the entire

data store to ensure no information is leaked to an attacker.

We term this as global random data eviction. When a priority-

0 entry gets a hit in the tag store and is upgraded to a priority-1

entry, a random priority-1 entry is chosen globally for eviction

from the data store, and its priority bit is reset to ‘0’, thus

downgrading it to a priority-0 entry. Maya also introduces

global eviction of priority-0 entries from the tag store, called

global random tag eviction. Such an eviction occurs every

time a new priority-0 entry is brought into the tag store and

a random priority-0 entry is invalidated from the tag store.

These two eviction policies ensure that the tag store has a fixed

number of invalid tag entries, which is crucial for security.

There can be a case where the tag store has not yet been

filled up with the appropriate number of priority-0 entries

(until all the reuse ways are filled). In such a case, when a new

priority-0 entry gets filled into the LLC, we do not perform

Invalid Priority-0

Priority-1
Dirty

Priority-1
Clean

Read Request

Read Request

Write
 Request

Random global

data eviction

Random global
data eviction

Random global
tag eviction

W
rite R

equest

Write Request

Fig. 3. State transition diagram for tag-store entries in Maya.

global random tag eviction. Similarly, if the data store is not

full and a priority-0 entry needs to be upgraded to a priority-1

entry, then we do not perform global random data eviction.

States in the tag store. With Maya, a tag entry can be in

one of three possible states: Invalid represents tag entries with

their valid bit set to ‘0’. Priority-0 entries are valid, but their

priority bit is set to ‘0’, i.e. they have tag only and no data.

Priority-1 entries are valid and with a priority set to ‘1’, i.e.

both tag and data are stored in the LLC. Dirty and clean denote

if the corresponding data entry has been modified or is up-to-

date with the main memory, respectively. Figure 3 shows all

possible transitions between these states.

A tag entry starts in the Invalid state when the LLC is

initialized. When a demand read comes in for an invalid tag,

it transitions to the priority-0 state, and a tag entry is assigned

to this tag. If a write request comes for an invalid tag, it is

automatically assigned both tag and data entries (priority-1)

and marked as dirty. Once a priority-0 entry gets accessed, it

is upgraded to a priority-1 entry, and its corresponding data is

brought into the cache. It is marked as dirty or clean based on

whether it was a write or a read request. When a clean priority-

1 entry gets a write request, it is marked as dirty since its

data is no longer up-to-date with the main memory. Priority-

1 entries can transition to the priority-0 state if selected for

random global data eviction, where a random priority-1 entry

is selected and downgraded to a priority-0 entry. Similarly, a

priority-0 entry can go to the invalid state if it gets chosen by

global random tag eviction.

C. Implementation

Our goal with the Maya cache design is to find the sweet

spot between performance, security, and storage overhead.

According to the security simulations in Section IV, we require

6 extra invalid tag entries per skew such that no set-associative

eviction occurs in the system lifetime. To compensate for the

storage overhead of the larger tag store, we reduce the size

of the data store to only 6 ways per skew (12 ways in total)

instead of the 16 ways per set for the baseline. This, along

with the 3 reuse ways per skew, leads to storage savings of

around 2% compared to the baseline. If we reduce the data

store size further, it will save more storage but also lead to

performance loss.
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TABLE I
CACHE LINE INSTALLS PER SAE AS THE REUSE WAYS VARY FROM 1 TO 7

WAYS WITH FOR 5 AND 6 INVALID WAYS PER SKEW.

Reuse ways per skew 5 invalid ways per skew 6 invalid ways per skew

1-way 1018 (30 yrs) 2·1036 (1019 yrs)

3-ways 1016 (180 days) 4·1032 (1016 yrs)

5-ways 6·1015 (80 days) 7·1031 (1015 yrs)

7-ways 1015 (12 days) 2·1030 (1013 yrs)

Table I shows the security guarantees with different reuse

and invalid tag ways per skew. We observe a reduction in the

security guarantee as we increase the number of reuse ways

because security is affected by the associativity of the tag store

(as shown in Section IV). With six extra invalid ways and one

reuse way, we get the storage-efficient Maya that provides the

best security guarantee. However, with one reuse way, there

is a marginal performance overhead (Figure 4). Therefore, we

use Maya with three reuse ways per skew as it offers a sweet

spot between performance, security, and storage.

Figure 4 shows that when we move from one reuse way to

three reuse ways, it facilitates reuse prediction. Applications

like fotonik3d see a normalized performance improvement

from 0.97 to 1.04 when we move from one way to three ways.

For five and seven reuse ways, there is a slight increase in tag

lookup latency, which causes a minor performance drop. Note

that the ratio of number of ways for priority-0 to priority-1

entries for one, three, five, and seven reuse ways are 1
6 , 3

6 , 5
6 ,

and 7
6 , respectively. We do not change the data store entries

for the sensitivity study. This is because each data store entry

carries almost eight times the number of bits as compared to a

tag store entry, which leaves little room for changing the data

store size while keeping the storage same with different reuse

ways.

Each tag entry holds 40 tag bits for a 46-bit line address.

Three coherence bits for the MOESI coherence protocol and

one priority bit are also stored for each tag entry. To map to an

arbitrary data entry, an 18-bit FPTR is used. The SDID helps

keep track of the domain responsible for bringing in a cache

line to allow duplication of shared cache lines. This ensures

that the LLC fills of one domain do not affect the fills of

another. Maya uses an 8-bit SDID for supporting up to 256

domains. In total, we use a total of 70 bits for each tag entry.

The tag store in Maya is split up into two skews, each with

16K sets (same as a non-secure baseline). Each set consists

of six base ways per skew (total 12 ways, corresponding to

the number of priority-1 entries), three reuse ways per skew

(corresponding to the number of priority-0 entries), and an

additional six invalid ways per skew to help maintain system

security. With this, we get 192K (16K × 6 ways) priority-

1 entries, 96K (16K × 3 ways) priority-0 entries, and 192K

(16K×6 ways) invalid tag entries in the tag store, resulting in

480K total tag store entries. This, multiplied by the total tag

bits (70), leads to a tag store of size 4.1MB.

The data store has 192K entries, each storing 512 bits of

data (64B cache lines). A data store entry can map to any
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Fig. 4. Effect of the number of reuse ways per skew on the performance of
Maya cache, normalized to the non-secure baseline LLC for SPEC CPU2017
homogeneous mixes.

arbitrary tag store entry, requiring a 19-bit RPTR. A total of

531 bits are stored for each data store entry, resulting in a total

data store size of 12.44MB.

For the randomizing function, we use a 12-round PRINCE

cipher [6], which is a 64-bit block cipher using 128-bit keys. It

is optimized for latency and has been used in previous works

such as [29], [35]. This adds latency of three cycles for every

LLC lookup. We also assume one additional cycle for tag and

data lookup because of the tag-to-data indirection. In total, the

Maya cache design requires four additional cycles per lookup.

IV. SECURITY ANALYSIS OF MAYA

Recent advances in eviction-based attacks show that only a

few SAEs are required to construct an eviction set and break

security. Mirage argued that if an LLC design ensures that no

SAEs occur in the system’s lifetime, it potentially mitigates

future attacks that could break the security of an LLC even

with a single SAE. To guarantee security even against such

strong attacks, we show that even a single SAE is highly

unlikely to occur in the system’s lifetime with Maya, and thus,

it guarantees security. We consider the worst-case scenario,

where every LLC access is a miss as it increases the chances

of getting SAEs. An LLC miss can be classified into three

categories: demand tag miss, demand or writeback tag hit with

priority-0 entry, and writeback tag miss. All these cases cause

a change in the tag store state, either by changing the number

of entries in a set or changing the composition of a set. Note

that a tag hit to priority-1 entry does not lead to any fills in

the tag store or data store. so we skipped it for the worst-

case scenario. Our security evaluation accommodates all these

categories of LLC miss.

A. Bucket-and-Balls Model

To estimate the probability of an SAE for the Maya cache,

we use a variation of the bucket-and-balls model as used in

[29]. The buckets represent cache sets, the balls denote tag

entries, and a ball throw represents a fill. With Maya tag

store, we can have two types of balls: priority-0 and priority-1.

Priority-0 balls represent tag entries with the priority bit set to

‘0’ (only tag and no data), whereas priority-1 balls represent

tag entries with the priority bit set to ‘1’ (both tag and data).

The buckets are initialized with a fixed number of priority-0

and priority-1 entries to model the Maya tag store design. This

ensures that we model the best-case scenario for the attacker.

Table II provides the parameters used for the bucket-and-balls
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Fig. 5. Bucket-and-Balls model for the three types of LLC accesses: (a)
demand tag miss, (b) demand or writeback tag hit, and (c) writeback tag miss

model for a 12MB Maya cache. For the experiment, each

iteration consists of three types of LLC accesses that affect

the distribution of balls in the tag store.

Demand tag miss. On a demand tag miss, two buckets are

randomly chosen, one from each skew, and the ball is installed

into the bucket with fewer balls as a priority-0 ball. This

models the load-aware skew selection. In the case that both

buckets have the same number of balls, one of the two buckets

is randomly chosen. If both buckets are full, a bucket spill is

caused, and a priority-0 ball needs to be removed from one

of the two buckets. This represents a set-associative eviction,

which is unfavorable for security. Also, after this ball has

been inserted into a bucket, a random priority-0 ball must be

randomly evicted from any bucket in either skew. This enables

the global random tag eviction policy. Figure 5(a) shows the

different events that occur on a demand tag miss. Bucket-1 is a

randomly chosen bucket where the new priority-0 ball will be

inserted, and bucket-2 is another random bucket from which

a priority-0 ball will be removed.

Demand or writeback tag hit. To model a demand or write-

back tag hit to a priority-0 entry, we choose a random priority-

0 ball and upgrade it to a priority-1 ball, modeling a tag

hit. Simultaneously, we choose a random priority-1 ball and

downgrade it to a priority-0 ball (global random data eviction).

Figure 5(b) summarizes the events on a demand/writeback tag

hit with a priority-0 entry. Bucket-1 is a randomly chosen

bucket where a priority-0 ball will be upgraded to a priority-

1 ball, and bucket-2 is another random bucket from which a

TABLE II
PARAMETERS USED FOR THE BUCKET-AND-BALLS MODEL.

Bucket-and-Balls Model Maya Cache Design

Total priority-0 balls - 96K Total priority-0 entries - 96K

Total priority-1 balls - 192K Total priority-1 entries - 192K

Skews - 2 Skews - 2

Buckets/skew - 16K Sets/skew - 16K

Average priority-0 balls/bucket - 3 Average priority-0 entries/set - 3

Average priority-1 balls/bucket - 6 Average priority-1 entries/set - 6

Bucket capacity - 9 to 15 Ways per skew - 9 to 15

Fig. 6. Number of iterations required to cause a bucket spill. As the bucket
capacity increases from 9 to 13, the frequency of bucket spills reduces.

priority-1 ball will be downgraded to a priority-0 ball.

Writeback tag miss. For a writeback tag miss in the LLC,

we perform priority-1 ball throws using load-aware skew

selection. We then downgrade a random priority-1 ball to

a priority-0 ball, representing global random data eviction.

Since the total number of priority-0 balls has increased beyond

the steady-state value, we also perform global random tag
eviction. Figure 5(c) shows the events occurring for this type

of LLC access. Bucket-1 is a randomly chosen bucket where

the new priority-1 ball will be inserted, and bucket-2 is another

random bucket from which a priority-1 ball will be demoted to

a priority-0 ball. Furthermore, we randomly choose bucket-3

to evict a priority-0 ball.

Empirical results. Figure 6 shows the expected number of

iterations required to get a bucket spill with the given bucket

capacity. As we increase bucket capacity from 9 to 15, the

frequency of spills drastically reduces. We observe no spills for

bucket capacities 14 and 15, and it is impractical to compute

the spill frequency for these configurations in a reasonable

amount of time (an experiment with one trillion iterations

already takes a few days to simulate). We now demonstrate

an analytical model to estimate the probability of a spill for

14 and 15 ways/skew.

B. Analytical Model

Using bucket-and-ball simulations for one trillion iterations

(three trillion different accesses), we observe no bucket spills

for bucket capacities 14 and 15. We propose an analytical

approach based on the bucket-and-balls model to estimate
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these cases’ spill frequency. To analytically calculate the

probability of a bucket spill, we create a model of our buckets-

and-balls system in a spill-free scenario, where the buckets

have unlimited capacity. The number of balls in a bucket is

modeled as a Birth-Death Markov chain [21], where the birth

event corresponds to a ball insertion and the death event to a

ball removal. Refer to Table III for the terminology used in

the model. A classic result for Birth-Death chains says that the

net conversion rate between any two states (here, state refers

to the number of balls in a bucket) becomes zero in the steady

state. Using this result, we obtain Equation 1, which equates

the transition probability from N to N+1 balls to the transition

probability from N+1 to N balls for a bucket.

Pr(N→N+1) = Pr(N+1→N) (1)

A bucket transitions from N to N+1 balls on a ball throw

in one of three cases: (i) both buckets randomly chosen from

skew-1 and skew-2 have N balls; (ii) the random bucket

chosen from skew-1 has N balls and the random bucket from

skew-2 has more than N balls; or (iii) the random bucket

chosen from skew-2 has N balls and the one from skew-1 has

more than N balls. The transition probability from N to N+1
balls is given by Equation 2.

Pr(N→N+1)=Pr(n=N)2+ 2×Pr(n=N)×Pr(n>N) (2)

For a bucket, the transition from N +1 balls to N balls

can occur only on a global random tag eviction wherein a

random priority-0 ball is globally selected for removal from

all the balls. The probability of choosing a ball in a bucket

with N + 1 balls is given by the following equation:

Pr(N+1→N)=
Btot×

∑r=N+1
r=1

(
r×Pr(n0=r, n1=N+1−r)

)
b0tot

Here, r represents the number of priority-0 balls in a bucket

with a total of N+1 balls. r varies from 1 to N+1 since

a bucket with no Priority-0 balls will never be selected for

Global random tag eviction.

Using Btot/b
0
tot = (1/3) (number of buckets/priority-0

balls) and splitting Pr(n0 = r, n1 = N + 1− r) into the

conditional probability, Pr(n0=r|n=N+1)×Pr(n=N+1),
we obtain the following equation:

Pr(N+1→N)=

r=N+1∑
r=1

(
r×Pr(n0=r|n=N+1)×Pr(n=N+1)

)

3

The expression
∑r=N+1

r=1

(
r×Pr(n0=r|n=N+1) simplifies

to Er[n0=r|n=N+1], which provides the Equation 3.

Pr(N+1→N)=

(
Er[n0=r|n=N+1]×Pr(n=N+1)

)

3
(3)

Since priority-0 balls constitute a (3/9) fraction of the total

balls in the LLC (refer Table II), Er[n0 = r|n = N +1] =
(3/9)(N+1), and Equation 3 simplifies to Equation 4.

Pr(N+1→N)=
(N+1)×Pr(n=N+1)

9
(4)

TABLE III
TERMINOLOGY USED IN THE ANALYTICAL MODEL.

Symbol Interpretation

Pr(X→Y )
Probability that a bucket with X balls

transitions to Y balls

Pr(n=N) Probability that a bucket contains N balls

Pr(n0=X,n1=Y )
Probability that a bucket contains X priority-0

balls and Y priority-1 balls

Pr(n0=X|n=Y )
Probability that a bucket contains X priority-0

balls and Y total balls

EX [n0=X|n= Y ]
Expected number of priority-0 balls in a

bucket with Y total balls

Btot Total number of Buckets (32K)

b0tot Total number of priority-0 balls (96K)

Fig. 7. Probability of a bucket having N balls (Pr(n = N)) - experimental and
estimated using the analytical model.

Using the earlier results from Equation 1, 2, and 4, we get

a recursive relation for Pr(n=N) as given in Equations 5

Pr(n=N+1)=
9

N+1
×
(
Pr(n=N)2 + 2×Pr(n=N)×Pr(n>N)

)
(5)

As we increase n, Pr(n=N)→ 0 and therefore Pr(n >
N)�Pr(n=N). Using this approximation, Equation 5 can

be simplified to Equation 6 for larger values of n (we use this

approximate equation once Pr(n=N) becomes smaller than

0.01).

Pr(n=N+1) =
9

N+1
×Pr(n=N)2 (6)

We simulate the bucket-and-ball model for one trillion

iterations and obtain the probability of a bucket with no balls

as Prexp(n=0)≈7.7×10−7. Using this value in Equation 5,

we recursively calculate Prest(n=N+1) for N ∈ [1, 12], and

then use Equation 6 for N ∈ [13, 15], when the probabilities

become less than 0.01. Figure 7 shows that the estimated

values closely match the experimental values. Using the above-

described analytical model, we obtain the spill probabilities for

14 and 15 ways.

Frequency of spills. Using the analytical model described

above, we calculated a probability estimate for N = 14, 15.

If we consider a cache design with W ways per skew, the

probability of an SAE (or a bucket spill) will be given by

Pr(n = W + 1). The spill probability follows a double-

exponential reduction, as seen in Figure 7. For W =13, 14, 15,
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TABLE IV
CACHE LINE INSTALLS PER SAE AS THE BASE ASSOCIATIVITY OF THE

TAG-STORE VARIES FROM 8 WAYS TO 36 WAYS. 18-WAYS (6+3): ON

AVERAGE, IT CONSISTS OF 6 BASE AND 3 REUSE WAYS/SKEW.

Associativity

Invalid Ways 8-ways (3+1) 18-ways (6+3) 36-ways (12+6)

4 extra ways/skew 1010 (7 s) 108 (0.1 s) 107 (9 ms)

5 extra ways/skew 1020 (103 yrs) 1016 (180 days) 1014 (1 day)

6 extra ways/skew 1040 (1023 yrs) 1032 (1016 yrs) 1028 (1011 yrs)

an SAE occurs every 108, 1016, and 1032 line installs, respec-

tively. Thus, the Maya cache design with 15 ways per skew

has a frequency of one SAE in 4 ·1032 line installs or once

in around 1016 years, effectively providing complete security

against eviction-based attacks.

Key management. The key used in Maya is set during

the system boot. Although the probability of an SAE is

significantly low, in the event of an SAE, the key used in

the cipher for mapping is refreshed followed by a cache flush.

Sensitivity to associativity. We now vary the associativity

of the Maya tag store, keeping the data store size at 12MB.

The base associativity varies from 8 to 36 ways, with the

default configuration having 18 total ways (6 base and 3

reuse ways per skew). Table IV shows the rate of SAE for

these configurations. We can observe that for the same extra

invalid ways per skew, the 8-way configuration is the most

secure (one SAE in 1023 years), and security reduces as the

base associativity increases. However, even for the 36-way

configuration, the rate of SAE is once in 1010 years, which is

beyond the system lifetime.

C. Need for Domain IDs

In situations where attacker and victim do share cache lines,

various attacks like Flush+Reload [37], Flush+Flush [16],

Flush+Prefetch [15], and Evict+Reload [17], could potentially

leak victim data. Mirage stores the Security-Domain-ID

(SDID), which is 8 bits, denoting the domain installing the

line along with the tag of the line in the tag store. This

guarantees the duplication of shared lines. Similarly, Maya

includes an 8-bit SDID for each tag entry, accommodating a

maximum of 256 domains. This ensures that the LLC fills

of one domain do not affect the fills of another domain, and

thus, the system is secure against shared-memory attacks. The

length of the SDID can be adjusted to support more or fewer

domains, depending on the requirement. Maya also mitigates

Reload+Refresh [9] attack as it guarantees global evictions

with random replacement.

Maya and the private caches. In the case of a private L1

or L2 cache, which is mostly shared by a 2-way simultaneous

multi-threading (SMT) processor, it is relativity an easy design

choice to partition the private L1 or L2 among two threads

as done in the prior works [10]. Usage of randomization,

global random replacement, and additional reuse ways at L1

can lead to performance degradation as high as more than 10%.
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Fig. 8. LLC occupancy attack: number of encryptions required to break AES
and modular exponentiation with a 16-way associative cache, Maya cache,
and a fully associative cache. The number of encryptions is normalized to a
fully associative cache with a random replacement policy.

Similarly, the cache coherence directory can be partitioned

[36]. So overall, the cache hierarchy will have heterogeneous

solutions for security.

D. The cat and mouse game

Sophisticated attacker. One can argue that the timing dif-

ference between accessing a priority-1 entry and a priority-

0/invalid tag entry can be exploited to mount a new timing-

based side-channel attack. However, in the Maya cache design,

the entries owned by the victim and the attacker have different

SDIDs and are filled in isolation. The only way the attacker

can exploit the reuse-based fills is by mounting an eviction-

based attack, which we have already shown to be impossible

since there are no set-associative evictions for 1016 years.

Cache occupancy attack and Maya. The Maya cache, by

design, does not mitigate cache occupancy attacks and even

a fully associative cache is prone to cache occupancy attacks.

However, the Maya cache, while mitigating conflict-based at-

tacks, should not make it easier to mount an occupancy-based

attack. To evaluate the same, we mount an LLC occupancy-

based attack. We attack AES (OpenSSL implementation with

T tables) and modular exponentiation and compare the number

of encryptions required to break the keys using cacheFX [13].

To make it a strong attack, we simulate AES and modular

exponentiation with two different keys, each having different

reuse profiles at the LLC so that an attacker can exploit the

Maya cache. The goal of the attacker is to distinguish these

keys based on the reuse profiles. We run the attack 1,000,000

times and report the median of number of encryptions required

for distinguishing the keys.

Normalized to a fully associative cache that uses a random

replacement policy, the Maya cache behaves almost similarly

(not the same) to a fully associative cache, with normalized

values of 0.996 and 0.992 for AES and modular exponenti-

ation, respectively (Figure 8). Note that we normalize the

number of encryptions to the number of encryptions required

for a fully associative cache (10590 for AES and 94 for

modular exponentiation). As expected, a 16-way associative

cache makes it easier to mount an attack, with normalized

encryptions of 0.85 (15% easier) and 0.63 (37% easier) for

AES and modular exponentiation, respectively.

39



TABLE V
SIMULATION PARAMETERS OF THE BASELINE SYSTEM.

Core 8 cores, Out-of-order, hashed perceptron [19], 4 GHz with
6-issue width, 4-retire width, 512-entry ROB

TLBs L1 ITLB/DTLB: 64 entries, 4-way, 1 cycle, STLB: 2048
entries, 16-way, 8 cycles

L1I 32 KB, 8-way, 1 cycle

L1D 48 KB, 12-way, 5 cycles, IPCP prefetcher [23]

L2 512 KB 8-way associative, 10 cycles, LRU, non-inclusive

LLC 2 MB/core, 16-way, 24 cycles, SRRIP [18], non-inclusive

MSHRs 8/16/32 at L1I/L1D/L2, 64/core at the LLC

DRAM controller DDR4-3200, two channels/8-cores 4 KB row-buffer per
bank, open page, burst length 16, tRP, RCD, CAS: 12.5 ns

V. PERFORMANCE ANALYSIS

A. Methodology

We use the ChampSim [3] micro-architecture simulator to

evaluate different cache designs. We use a non-secure 8-core

16MB, 16-way set-associative last-level cache with 64-byte

cache lines as the baseline. Table V provides the simulated

parameters of the baseline non-secure system configuration.

We evaluate 42 homogeneous workloads created from 42

different sim-points from the SPEC CPU2017 benchmark suite

[2] and 20 homogeneous workloads from 20 different sim-

points from the GAP benchmark suite [4], with more than

one LLC miss per kilo instruction (MPKI) for the baseline

configuration. Note that we select benchmarks based on their

LLC MPKI for a single core 2MB LLC. We also use a set of

21 heterogeneous mixes with randomly chosen benchmarks

from the SPEC CPU2017 and GAP suites. Table VI shows

the heterogeneous mixes representing the behavior of more

than 1000 heterogeneous mixes. Table VII shows the average

LLC MPKI for a 16MB LLC with eight cores of SPEC

CPU2017 and GAP homogeneous mixes and heterogeneous

mixes, respectively. Note that with Maya, there are tag-only

misses at the LLC on top of tag+data misses.

We simulate 1.6B instructions for eight cores (200M in-

structions per core in the region of interest after a warmup of

200M instructions per core). We use the weighted speedup [33]

performance metric to compare the performance of different

cache designs for an 8-core multi-core system. We compare

the performance of the Maya cache design with a non-secure

baseline and the Mirage cache design. We also perform a

sensitivity study on the LLC size per core and later analyze

the performance of Maya for higher-core systems.

B. Performance

Homogeneous mixes. Figure 9 shows the performance for

Maya and Mirage normalized to the baseline for various ho-

mogeneous SPEC and GAP workloads. For the SPEC bench-

marks, on average, Maya outperforms Mirage marginally, with

a marginal performance improvement over the baseline. For

benchmarks such as mcf, wrf, fotonik3d, we observe

a substantial increase in performance for Maya despite the

higher LLC latency. We observe that for these benchmarks,

Maya reduces the inter-core interference in the data store by

more than 70% compared to the baseline due to the notion of

TABLE VI
HETEROGENEOUS MIXES AS PER TABLE VII.

Mix Composition Bin

M1 cactuBSSN(2)-wrf(1)-xalancbmk(1)-pop2(1)-roms(1)-xz(1)-sssp(1) L

M2 bwaves(1)-mcf(1)-cactuBSSN(1)-wrf(1)-xalancbmk(1)-xz(1)-bfs(1)-
sssp(1)

L

M3 mcf(1)-cactuBSSN(1)-omnetpp(1)-xalancbmk(1)-roms(1)-bfs(1)-
cc(1)-sssp(1)

L

M4 perlbench(1)-bwaves(1)-mcf(3)-cam4(1)-xz(1)-bc(1) L

M5 perlbench(1)-mcf(2)-cactuBSSN(1)-roms(1)-xz(1)-bc(1)-pr(1) L

M6 gcc(1)-mcf(2)-cactuBSSN(1)-lbm(2)-fotonik3d(1)-roms(1) L

M7 bwaves(1)-mcf(1)-cactuBSSN(1)-pop2(1)-xz(1)-bc(2)-sssp(1) L

M8 gcc(2)-bwaves(1)-x264(1)-bc(1)-cc(1)-pr(1)-sssp(1) M

M9 gcc(1)-cactuBSSN(1)-lbm(1)-xalancbmk(1)-x264(1)-cam4(1)-pr(1)-
sssp(1)

M

M10 mcf(3)-lbm(1)-wrf(1)-fotonik3d(2)-sssp(1) M

M11 mcf(3)-lbm(1)-omnetpp(1)-pop2(1)-roms(1)-cc(1) M

M12 mcf(2)-cactuBSSN(1)-fotonik3d(1)-roms(2)-cc(1)-pr(1) M

M13 bwaves(1)-mcf(1)-xalancbmk(1)-fotonik3d(1)-roms(2)-bc(1)-sssp(1) M

M14 mcf(1)-lbm(1)-xalancbmk(1)-roms(1)-bc(1)-cc(1)-sssp(2) M

M15 bwaves(1)-cactuBSSN(1)-lbm(1)-roms(2)-bfs(1)-pr(1)-sssp(1) H

M16 mcf(3)-cactuBSSN(1)-lbm(1)-bfs(2)-cc(1) H

M17 mcf(1)-cactuBSSN(1)-wrf(1)-xalancbmk(1)-x264(1)-bc(1)-pr(2) H

M18 omnetpp(1)-wrf(1)-fotonik3d(1)-roms(1)-bc(2)-cc(1)-sssp(1) H

M19 bwaves(1)-mcf(2)-cactuBSSN(1)-xalancbmk(1)-bfs(1)-pr(1)-sssp(1) H

M20 perlbench(1)-mcf(2)-omnetpp(1)-fotonik3d(1)-pr(1)-sssp(2) H

M21 gcc(1)-bwaves(1)-mcf(2)-lbm(1)-bc(1)-pr(2) H

TABLE VII
AVERAGE LLC MPKIS.

Workloads Baseline Mirage Maya

SPEC and GAP-RATE 13.9 12.5 12.5

HETERO
LOW 8.01 8.05 8.53

MEDIUM 14.72 14.73 15.31

HIGH 21.51 21.48 21.04

storing only “useful” entries in the data store. This compen-

sates for the higher access latency and results in a performance

gain for Maya. For benchmarks such as lbm, cactuBSSN,

and cam4, Maya incurs a performance slowdown compared to

the baseline. The cam4 and cactusBSSN workloads have a

relatively low dead block percentage in the LLC and low inter-

core interference, even for the baseline. Therefore, it benefits

from the larger data store of the baseline and Mirage, and

we observe a performance slowdown of with Maya. For lbm,

which is a streaming workload with almost zero load hit rate in

the LLC, Mirage incurs a slowdown of around 8% compared

to the baseline because of the extra 4-cycle access latency.

On average, Maya performs 5% better than the baseline for

GAP workloads. The average improvement is influenced by

50% performance improvement with pr. For the pr workload,

Mirage and Maya deliver 57% and 50% better performance

than the baseline, respectively. This trend is contributed by a

weak baseline for pr, where the IPCP prefetcher impacts the

baseline performance as it behaves worse than no prefetching

and LRU policy. The bc, cc and sssp workloads incur a

high performance slowdown compared to the baseline due to
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Fig. 9. Performance of Maya for 8-core homogeneous mixes.
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Fig. 10. Performance of Maya for 8-core heterogeneous mixes.

an increase in the inter-core interference in the data store.

Heterogeneous mixes. For the heterogeneous workloads

(shown in Figure 10), Maya shows a 1.5% average perfor-

mance improvement compared to the baseline, whereas Mirage

incurs a marginal performance slowdown. Maya shows an

improvement of more than 4% in performance for low-MPKI

mixes because of the reduction in inter-core interference.

Whereas medium-MPKI and high-MPKI mixes get a marginal

performance slowdown because of their large working sets. In

general, Maya helps improve performance for workloads with

high inter-core interference and a high dead block percentage

in the LLC. Note that in many mixes, Maya increases the miss

rate at the LLC as it does not fill the cache line into the LLC

on its first miss, providing tag-only hits. However, overall, it

improves the performance as the useful entries are retained.

Performance of LLC fitting benchmarks. As Maya reduces

the data store sizes, benchmarks that fit into the LLC may

result in performance slowdowns. We simulate LLC fitting

benchmarks from SPEC CPU2017 (LLC MPKI less than 0.5)

and observe an average performance loss of 0.63% compared

to a non-secure baseline.

Impact of random global tag eviction on performance.
Random global tag evictions enhance the security provided by

Maya. However, it can impact performance when a priority-0

entry that is yet to get reused (to be promoted to priority-1)

gets invalidated by random global tag eviction. We quantify

this event across all homogeneous mixes, and on average, less

than 0.022% of the random global tag evictions to priority-0

entries would have gotten reused if we had used a non-random

(SRRIP [18]) policy.

Sensitivity to LLC size. For the Maya cache, we used an

LLC data store size of 12MB (1.5MB per core). We now

evaluate the performance of Maya with 6MB to 96MB data

TABLE VIII
STORAGE OVERHEADS.

Configurations Baseline Mirage Maya

Tag

Entry

Tag Bits 26 40 40

Coherence 3 3 3

Priority - - 1

FPTR - 18 18

SDID - 8 8

Total bits 29 69 70

Tag Entries 262144 458752 491520

Tag Store Size 928 KB 3864 KB 4200 KB

Data

Entry

Data Bits 512 512 512

RPTR - 19 19

Total Bits 512 531 531

Data Entries 262144 262144 196608

Data Store Size 16384 KB 16992 KB 12744 KB

Total Storage 17312 KB 20856 KB (+20%) 16994 KB (-2%)

stores (baseline LLC size varying from 8MB to 128MB). Note

that we also scale the tag store proportionately to the data

store. We observe that the 6MB Maya configuration shows the

best performance compared to its counterpart baseline config-

uration. Performance decreases marginally as we increase the

LLC size beyond 24MB as a large fraction of the working set

starts getting LLC hits.

Sensitivity to number of cores. Compared to an 8-core

system, with 16 and 32-core systems, we observe marginal

performance improvements over their respective baselines.

We observe that the performance degradation for 32 cores

compared to 16 cores is smaller than that of 16 cores compared

to 8 cores, which signifies that the performance loss saturates

as the number of cores increases. This shows that the Maya

cache design can be extended to many-core systems.

VI. STORAGE, AREA, AND POWER OVERHEADS

Storage. A self-contained Table VIII shows the storage re-

quirements of Maya, Mirage, and the baseline.

Power consumption and energy. To estimate the static power

and the dynamic access energy, along with the area required,

we use the 7nm FinFET technology simulated using P-CACTI

[1]. Table IX summarizes the observed dynamic energy and

static power results for all three cache designs. We observe

a reduction of 15.55% in dynamic read energy and 11.40%

in dynamic write energy for the Maya cache compared to the
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TABLE IX
ENERGY, POWER, AND AREA OVERHEADS. MAYA ISO AREA IS MAYA

WITH A SIMILAR AREA (16.085 mm2) AS MIRAGE.

Design Read Energy
/ Access (nJ)

Write Energy
/ Access (nJ)

Static
Power (mW)

Area
(mm2)

Baseline 3.153 4.652 622 14.868

Mirage 3.274 4.857 735 15.887

Maya 2.661 4.116 588 10.686

Maya ISO 3.276 4.862 760 16.085

TABLE X
STORAGE AND PERFORMANCE OVERHEADS. PERFORMANCE IS

EVALUATED ON SPEC CPU2017 HOMOGENEOUS MIXES.

Cache Design Security (Installs per SAE) Storage Performance

Maya 1032 ( 1016 yrs) −2% +0.20%

Mirage 1034 (1017 yrs) +20% −0.55%

Mirage-Lite 1021 (22, 000 yrs) +17% −0.55%

Maya ISO 1030 (1014 yrs) +26% +1.84%

baseline. On the other hand, Mirage shows a 3.81% increase

in dynamic read energy and 4.52% increase in dynamic write

energy compared to the baseline. We observe that the dynamic

read/write energy is largely dominated by the energy required

by the data store. Since Maya uses a smaller data store, we

observe savings in dynamic energy for both reads and writes.

Regarding the static power, Maya incurs 5.46% less power

compared to the baseline. In contrast, Mirage incurs a power

overhead of 18.16%, owing to the larger tag store and same-

sized data store compared to the baseline.

Area. The data store largely takes up the area of the LLC.

Because of this, the small data store design of the Maya cache

can show savings of over 28.11% compared to the baseline,

as seen in Table IX, whereas Mirage suffers a 6.86% area

overhead due to the larger tag store. Note that Maya with

ISO area budget consumes more static power as the ISO area

implementation incurs a slight increase in area.

Summary. Table X shows a comparison of the Maya, Mirage,

Mirage-Lite, and Maya ISO area. The Maya cache design

provides an optimal balance between security, storage, and per-

formance. Maya ISO area incurs a storage overhead of 26%,

static power overhead of 22.1%, and improves performance by

1.84%, whereas Maya provides a performance improvement of

0.20% with a storage savings of 2% and static power savings

of 5.46%. One can argue that the storage overhead of Mirage

can be mitigated by removing the decoupled nature of the data

store and extra FPTR/RPTR bits and ensuring that the total

number of valid entries is below a particular threshold in the

cache to ensure security. On a miss, the line can be installed

into the set with fewer valid entries (load-aware selection),

and random global evictions are enabled once the total valid

entries in the cache reach a threshold. Using our bucket-and-

balls model for 16MB LLC with 75% maximum cache entries

(equivalent to a 12MB LLC), we observe that this method

leads to an SAE after less than 109 cache installs (<1s) due

TABLE XI
PERFORMANCE AND STORAGE OVERHEADS WITH SECURE PARTITIONING

TECHNIQUES FOR AN 8-CORE SYSTEM WITH 16MB LLC.

Technique Performance Storage

Page coloring [8] −19% +0.5%

DAWG [20] −16% +0.5%

BCE [11] −9% +2%

to only four extra invalid ways per skew.

Comparison with secure LLC partitioning techniques.
Dynamically Allocated Way Guard (DAWG) [20] at the LLC

uses a software configurable mask to decide way allocations

among multiple security domains running on a multi-core

system. One of the limitations of DAWG is the upper limit on

the isolated domains that are bounded by the number of LLC

ways. Maya does not have this limitation. Page Coloring [8]

at the LLC creates isolated regions at the LLC set level. LLC

partitioning via page coloring creates different DRAM regions

and uses DRAM region bits with LLC index bits to access

LLC. One of the limitations of the page coloring technique is

that it cannot manage LLC and DRAM spaces independently.

Bespoke Cache Enclave (BCE) [28] makes a case for flexible

cache partitioning that provides isolation by creating partitions

as small as 64KBs. One of the key benefits of BCE is that the

number of partitions is not restricted by the number of LLC

ways, and LLC space allocation is independent of DRAM

space allocation, making it a scalable technique compared

with DAWG and page coloring. Note that LLC partitioning

techniques can mitigate both conflict and occupancy-based at-

tacks. However, these techniques incur significant performance

overheads. Table XI shows performance and storage overheads

with three state-of-the-art secure LLC partitioning techniques

for SPEC CPU2017 homogeneous mixes.

VII. CONCLUSION

We presented Maya, a randomized fully associative last-

level cache that uses additional tag entries and fewer data

entries. Overall, Maya guarantees that it will take 1016 years

for one set associative eviction to initiate a conflict-based

attack, which is more than the system’s lifetime. Maya is

energy-efficient (5.46% less static power) and area-efficient

(28.11% savings) thanks to a smaller data store. Maya provides

a strong security guarantee with storage savings (and not over-

head) compared to a non-secure baseline cache. Overall, Maya

provides the sweet spot in terms of security, performance, area,

and energy overhead.
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APPENDIX

A. Abstract

This artifact contains all the information necessary to repro-

duce the main results in the paper in Figures 1, 6, 7, and 9.

We describe how the required software and the elements that

compose it can be obtained, and how to run the artifact.

B. Artifact check-list (meta-information)

• Program: ChampSim
• Compilation: GNU GCC 7.5.0
• Data set: SPEC CPU2017 traces from 3rd Data

Prefetching Championship (https://dpc3.compas.cs.
stonybrook.edu/champsim-traces/speccpu/), GAP traces (https:
//utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/
folder/132804598561)

• Run-time environment: an Intel x86 64 processor
• Hardware: tested on an Intel Xeon Gold 5220R
• Metrics: Weighted Speedup
• Output: four PDF files with graphs
• How much disk space required (approximately)?: 35 GB
• How much time is needed to prepare workflow (approxi-

mately)?: 30 minutes
• How much time is needed to complete experiments (approx-

imately)?: 5-6 days
• Publicly available?: yes
• Archived (provide DOI)?: 10.5281/zenodo.11070624

C. Description

1) How to access: The software can be obtained from

GitHub: https://github.com/AnubhavBhatla/maya-cache

Use the following command to clone the repository:

$ git clone
https://github.com/AnubhavBhatla/maya-cache

2) Software dependencies: We test the artifact on a system

with these features:

• Ubuntu 20.04.4 LTS

• Linux Kernel 5.15.0

• Python 3.8.10

• Bash 5.0.17

• GCC 7.5.0

• Python3 Packages
– matplotlib 3.7.3

– numpy 1.24.4

– pandas 2.0.3

– scipy 1.10.1

The Python3 packages can be downloaded using the command:

$ pip install -r requirements.txt

3) Data sets: For this artifact, the SPEC CPU2017

traces from the 3rd Data Prefetching Championship (https:

//dpc3.compas.cs.stonybrook.edu/champsim-traces/speccpu/)

and the GAP traces (https://utexas.app.box.com/s/

2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561)

are needed. These SPEC traces are automatically downloaded

by the artifact but the GAP traces will have to be manually

downloaded.

D. Installation & Experiment workflow
The overall flow for running the artifact is as follows:

1) Clone the repository:

$ git clone
https://github.com/AnubhavBhatla/maya-cache

2) Enter the performance-analysis directory:

$ cd maya-cache/performance-analysis
3) Download the required traces:

The zip file for the required GAP traces can

be downloaded from https://utexas.app.box.com/

s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/

132804598561. Download it to the traces directory.

To download the required SPEC CPU2017 traces, run

the command: $ ./traces.sh This also extracts

the GAP traces in the correct directory.

4) Generate the required binaries:

$ ./compile.sh
5) Run the performance simulations:

$ ./run.sh
This step will take a large amount of time to complete

(5-6 days).

6) Generate the performance plots:

Once all the performance simulations have been com-

pleted, the plots can be generated using

$ ./plot.sh 0
We have also provided our simulation results which can

be used to generate the plots using:

$ ./plot.sh 1
7) Enter the security-analysis directory:

$ cd ../security-analysis
8) Generate the required binaries:

$ make
9) Run the security simulations:

$ ./run.sh
10) Generate the security plots:

Once all the security simulations have been completed,

the plots can be generated using

$ python3 plot.py

E. Evaluation and expected results
In the performance-analysis directory, two graphs

are generated, namely, fig1.pdf and fig9.pdf. In the

security-analysis directory, two graphs are generated,

namely, fig6.pdf and fig7.pdf.
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