
To appear in 56th IEEE/ACM International Symposium on Microarchitecture, 2023 (MICRO-56)

CLIP: Load Criticality based Data Prefetching for
Bandwidth-constrained Many-core Systems

Biswabandan Panda
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
biswa@cse.iitb.ac.in

ABSTRACT

Hardware prefetching is a latency-hiding technique that
hides the costly off-chip DRAM accesses. However, state-
of-the-art prefetchers fail to deliver performance improve-
ment in the case of many-core systems with constrained
DRAM bandwidth. For SPEC CPU2017 homogeneous
workloads, the state-of-the-art Berti L1 prefetcher, on
a 64-core system with four and eight DRAM channels,
incurs performance slowdowns of 24% and 16%, respec-
tively. However, Berti improves performance by 35% if
we use an unrealistic configuration of 64 DRAM channels
for a 64-core system (one DRAM channel per core).

Prior approaches such as prefetch throttling and crit-
ical load prefetching are not effective in the presence
of state-of-the-art prefetchers. Existing load criticality
predictors fail to detect loads that are critical in the
presence of hardware prefetching and the best predictor
provides an average critical load prediction accuracy
of 41%. Existing prefetch throttling techniques use
prefetch accuracy as one of the primary metrics. How-
ever, these techniques offer limited benefits for state-of-
the-art prefetchers that deliver high prefetch accuracy
and use prefetcher-specific throttling and filtering.
We propose CLIP, a novel load criticality predictor

for hardware prefetching with constrained DRAM band-
width. Our load criticality predictor provides an average
accuracy of more than 93% and as high as 100%. CLIP
also filters out the critical loads that lead to accurate
prefetching. For a 64-core system with eight DRAM
channels, CLIP improves the effectiveness of state-of-
the-art Berti prefetcher by 24% and 9% for 45 and
200 64-core homogeneous and heterogeneous workload
mixes, respectively. We show that CLIP is equally effec-
tive in the presence of other state-of-the-art L1 and L2
prefetchers. Overall, CLIP incurs a storage overhead of
1.56KB/core.

1. INTRODUCTION
Hardware data prefetching techniques play an impor-

tant role in hiding the long latency DRAM accesses.
Hardware prefetchers learn memory access patterns and
fetch data into the cache hierarchy before time so that fu-
ture memory accesses get cache hits. State-of-the-art L1

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

4 8 16 32 64N
o

rm
al

iz
ed

 w
ei

gh
te

d
 s

p
ee

d
u

p

Number of DRAM channels

Berti IPCP Bingo SPP-PPF

Higher the better

Figure 1: Performance of state-of-the-art prefetchers
normalized to no prefetching for 45 64-core SPEC
CPU2017 [1] homogeneous workload mixes with DDR4-
3200 DRAM channels (peak bandwidth per channel:
25.6GB/sec).

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4 8 16 32 64

N
o

rm
al

iz
ed

 w
ei

gh
te

d
 s

p
e

ed
u

p

Number of DRAM channels

Berti IPCP Bingo SPP-PPF

Higher the better

Figure 2: Performance of state-of-the-art Prefetchers
normalized to no prefetching for 200 64-core heteroge-
neous workload mixes created from SPEC CPU2017 [1]
and GAP [2] traces with DDR4-3200 DRAM channels
(peak bandwidth per channel: 25.6GB/sec).

and L2 data prefetchers like Berti [3], instruction pointer
classifier-based prefetching (IPCP) [4], signature path
prefetching with perceptron filtering (SPP-PPF) [5,6],
and Bingo [7] have pushed the performance of L1 and
L2 prefetchers. IPCP and Berti train on the demand
memory access stream at the L1 data cache and orches-
trate prefetch requests across the cache hierarchy. Berti
is the state-of-the-art L1 prefetcher that outperforms
IPCP and provides high prefetch accuracy (an average
of more than 82.9%). Similarly, SPP-PPF, the state-
of-the-art L2 prefetcher provides more than 73.4% of
prefetch accuracy. However, all these prefetchers fail to
deliver performance improvement in the case of many-
core systems with limited DRAM bandwidth.

1



The problem. Commercial many-core systems like 60-
core Intel Xeon Platinum [8], 64-core AMD EPYC Rome
7702P [9], and a 64-core AMD Threadripper 3990X [10]
support eight DDR4-3200 channels. Figures 1 and 2
show performance improvements for homogeneous and
heterogeneous workload mixes with the state-of-the-art
L1 and L2 prefetchers on a 64-core simulated system
with a different number of DRAM channels. The per-
formance is normalized to a system with no prefetch-
ing with respective DRAM channels.All the prefetchers
perform well with high DRAM bandwidth (64 DDR4-
3200 channels for 64 cores). However, the effectiveness
of these prefetchers goes down significantly with low
DRAM bandwidth. A highly accurate Berti prefetcher
also degrades performance significantly.
Figure 3 shows the normalized increase in average

L1, L2, and L3 demand miss latencies with Berti for
a different number of DRAM channels. For four and
eight DRAM channels, the average L2 and L3 miss
latencies increase by more than 1.9X. Note that the
prefetcher can still predict future accesses with more
than 82.9% accuracy in all cases. However, in the case of
four and eight DRAM channels, prefetch lateness jumps
to 19% and 13%, respectively, which used to be 1% for
64 DRAM channels. Note that, we consider the late but
useful prefetch requests as accurate.

Overall, the low DRAM bandwidth problem manifests
into a latency problem causing a slow DRAM response.
The problem becomes worse in the presence of prefetch-
ing as prefetching accuracy is not 100% and prefetching
introduces bursty traffic. As a side effect, the additional
delay at the DRAM causes additional delays at the L3,
L2, and L1 miss status holding registers (MSHRs), on-
chip interconnect, and various queues at the different
levels of the cache hierarchy, for both the prefetch and
demand requests. As a result, demand and prefetch
requests see high miss latency even for L2 and LLC hits.
The question of interest. For many-core systems, with
constrained DRAM bandwidth, which load addresses
should be prefetched so that we can mitigate the problem
of additional latency caused by prefetching?
The ideal solution. Ideally, for many-core systems with
constrained DRAM bandwidth, prefetchers should be
100% accurate and should prefetch load addresses that
are critical for overall performance (loads that cause
retiring stalls at the head of the reorder buffer (ROB)).
Note that, not all L3 misses are costly even in the case
of low DRAM bandwidth as an aggressive out-of-order
processor with more than 500 ROB entries can hide a
good fraction of L3 miss latency.
Why prior techniques are not good enough? In the case
of low DRAM bandwidth, prefetching for loads that are
on the critical execution path [11] or loads that con-
tribute to maximum ROB stalls, is a possible solution
as it leads to a reduction in prefetch traffic without
hampering the performance, significantly. Techniques
for finding out critical loads [12–18] depend on the ef-
fectiveness of load criticality predictors used that use
instruction pointer (IP) as the signature. Keeping an L1
prefetcher in mind, we define a load as a critical load if

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

4 8 16 32 64In
cr

ea
se

 in
 a

ve
ra

ge
 m

is
s 

la
te

n
cy

 
n

o
rm

al
iz

ed
 t

o
 n

o
 p

re
fe

tc
h

in
g 

Number of DRAM channels

LLC L2 L1DLower the better

Figure 3: Increase in on-chip L1, L2, and L3 demand
miss latencies with Berti normalized to no prefetching
averaged across 245 64-core mixes (45 homogeneous and
200 heterogeneous workload mixes).

it stalls the head of the ROB while getting a response
from L2, L3, or DRAM. We find the best among the
state-of-the-art load criticality predictors provide 41%
accuracy in predicting critical load IPs. One of the pri-
mary reasons for this low accuracy is that not all the
load addresses that are generated by an IP are critical.

Another approach is to use prefetcher throttling tech-
niques [19–24] that control the prefetcher’s aggressive-
ness to minimize inaccurate prefetch requests and im-
prove performance. There are software techniques [25]
that facilitate bandwidth-conscious prefetching for the
hardware prefetchers on the real system. However,
prefetch throttling techniques are effective with prefetch-
ers like IP-stride [26] and stream [27] as the prefetch
accuracy of these prefetchers is relatively low (an average
accuracy of less than 60%). However, state-of-the-art
prefetchers deliver high prefetch accuracy. In general,
existing throttling techniques are coarse-grained (throt-
tling decisions based on the overall performance of the
prefetcher) in nature and these techniques cannot iden-
tify specific loads that are responsible for performance
loss in the case of constrained DRAM bandwidth.
Shared resource management techniques [28–32] are

also possible solutions that try to minimize the effect of
inaccurate prefetch requests at the shared resources like
a last-level cache (LLC), DRAM, and network on chip
(NOC). However, these techniques use prefetch accuracy
again at a coarse-grained level at shared resources like
DRAM, LLC, and NOC.
Hermes [33] and DSPatch [34] are two related tech-

niques that can solve this problem. Hermes predicts
the off-chip loads and expedites off-chip load accesses
by bypassing the cache hierarchy. However, we find
that Hermes is not an effective approach as we find that
not all DRAM responses cause ROB stalls and a ma-
jority of the ROB stalls (60%) come even from L2 and
LLC hits, thanks to the constrained DRAM bandwidth.
DSPatch [34] is a technique that can be applied to any
prefetcher for DRAM bandwidth-conscious prefetching.
DSPatch improves the effectiveness of prefetchers in case
of high DRAM bandwidth. It uses prefetch accuracy-
based prefetching if bandwidth is utilized heavily and
it goes to prefetching based on prefetch coverage if the
bandwidth is underutilized. Note that DSPatch con-
siders per DRAM-controller bandwidth independently
and not the overall DRAM bandwidth across all the
DRAM controllers, and hence provides a myopic picture

2



of bandwidth utilization. For bandwidth-constrained
systems, DSPatch uses prefetch coverage-based prefetch-
ing, exacerbating the problem.
Our approach. We propose CLIP, a lightweight yet
highly accurate critical load predictor that advocates
for highly accurate and critical load prefetching. CLIP
enhances the effectiveness of state-of-the-art L1 and L2
prefetchers and provides answers to questions like“which
load address to prefetch” while keeping constrained
DRAM bandwidth in mind. CLIP works in two stages:
(i) Stage I: it filters out critical loads (loads that stall the
head of the ROB while servicing an L1 load miss) and
uses a criticality predictor using a critical signature to
predict the dynamic behavior of loads. (ii) Stage II: It
uses a fine-grained accuracy filter to find out whether the
underlying prefetcher will be able to prefetch accurately
the predicted critical load addresses.
Our contributions. We provide a detailed overview of ex-
isting load criticality predictors, and prefetch throttlers,
and show why existing techniques are not effective in the
presence of constrained DRAM bandwidth(Section 3).
We overcome the limitations of existing critical IP predic-
tors and prefetch throttlers and propose CLIP (Section
4). CLIP uses fine-grained features instead of an IP to
predict the criticality and usefulness of a given load IP.
Experimental results show that CLIP provides accuracy
as high as 100% (on average 93%) in predicting critical
load addresses that leads to accurate prefetching. For
a 64-core system with eight DRAM channels, CLIP im-
proves the performance of state-of-the-art L1 prefetcher
by 24% and 9% for 45 and 200 64-core homogeneous and
heterogeneous workload mixes, respectively (Section 5).
CLIP provides these performance improvements with
additional storage of 1.56KB per core.

2. RELATED WORK

2.1 Recent Data Prefetching Mechanisms
Signature path prefetching (SPP) [5] and Perceptron
Prefetch Filtering (PPF) [6] uses a lookahead mechanism
to predict the future address deltas for a given signature
(e.g., a memory region). For each region, SPP stores
the history of the past deltas observed in the form of
a signature. SPP uses this signature to predict the
next delta in the path and generates a prefetch request
accordingly. PPF allows SPP to continue the prediction
regardless of confidence. It uses a perceptron-based
prefetch filter to decide whether to issue prefetch requests
or not based on their usefulness.
Bingo [35] argues that correlating memory access pat-
terns to a single event is not enough to perform effective
prefetching. A single event stands for the occurrence
of one incident e.g. execution of the instruction with
IP ‘A’. Thus, Bingo fine-tunes its learning with longer
event recurrences. Bingo uses the following two events
for the same: (i) IP + Offset - the short event when
an IP requests the same offset in any region, (ii) IP +
Address - the long event when an IP requests the same
address. The short event gets its name from the fact
that it recurs more frequently than the long event.

Instruction pointer classifier prefetching (IPCP) [4] uses
a lightweight multi-level prefetcher. IPCP classifies IPs
into three classes and prioritizes prefetch requests by
classes. After the classification, IPCP uses a bouquet of
prefetchers corresponding to each class to generate the
prefetch requests. IPCP is trained at the L1D with the
benefits of monitoring the L1D access stream.
Berti [3] is the state-of-the-art local-delta L1 data prefetcher
that trains at L1 and orchestrates prefetch requests
across L1 to L3. Berti emphasizes the detection of timely
local (per IP) deltas along with a precise mechanism to
compute the local coverage of the detected timely deltas.
Berti uses watermarks based on local coverage of deltas
and decides the prefetch fill level. The high coverage
timely deltas lead to a highly accurate prefetcher that
outperforms IPCP, SPP-PPF, and Bingo.

2.2 Load Criticality Predictors
Focused Value Prediction based Criticality detector [14]
uses a confidence mechanism to mark instructions whose
execution is in-flight when they are present in the retire
width window (distance between the ROB head and the
instruction is less than retire width).
Criticality Aware Tiered Cache Hierarchy (CATCH) [13]
uses an enumeration of the data dependency graph
(DDG) to find out critical IPs. The costliest path in the
DDG is the critical path and all the load IPs lying on
this path are the critical load IPs. CATCH captures
the costliest path incrementally by checking the costli-
est incoming edge during the insertion of each retiring
instruction into the graph. Using the DDG along with a
confidence mechanism, CATCH marks the critical IPs.
Focused Prefetching (FP) [15] Focused Prefetching show-
cases that instructions that stall at the head of the ROB
comprise of a few loads; loads Incurring Majority of
Commit Stalls (LIMCOS). It also shows that LIMCOS
does not entirely overlap with delinquent loads i.e., a few
loads that cause the most misses in the cache hierarchy
or loads that fall on the critical path of execution.
Commit Block Predictor (CBP) [18] predicts the loads
that stall the head of the ROB. It also uses maximum
stall time or total stall time to predict a critical load.
ROB occupancy based criticality predictor (ROBO) [16]
uses ROB occupancy for critical IP detection. On a
ROB stall during retirement, higher ROB occupancy is
an indicator of a critical load. It also uses thresholds
based on ROB stalls.
Critical Slice Prefetching (CRISP) [17] is a technique
that considers loads that get LLC misses and with low
memory level parallelism (MLP) as the critical loads.
CRISP sets pre-defined thresholds on LLC miss count
and MLP for a given set of workloads.
Note that some of the above proposals are proposed

for predicting the criticality of all kinds of instructions,
and can be used for predicting critical load instructions,
only.

3. WHY NOT EXISTING SOLUTIONS?
Load criticality predictors. Existing techniques that
predict load criticality [13–18] when used along with

3



0

0.2

0.4

0.6

0.8

1

CRISP CATCH FP FVP CBP ROBO

P
re

d
ic

ti
o

n
 a

cc
u

ra
cy

 a
n

d
 

co
ve

ra
ge

Accuracy CoverageHigher the better

Figure 4: Load criticality prediction accuracy and cover-
age of state-of-the-art critical load predictors averaged
across 245 64-core workload mixes (45 homogeneous
and 200 heterogeneous mixes).

0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

4 8 16

N
o

rm
al

iz
ed

 p
er

fo
rm

an
ce Berti Berti+CRISP Berti+CATCH Berti+FP

Berti+FVP Berti+CBP Berti+ROBO

(a)

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

4 8 16

N
o

rm
al

iz
ed

 p
e

rf
o

rm
an

ce

Number of DRAM channels

Berti Berti+CRISP Berti+CATCH Berti+FP
Berti+FVP Berti+CBP Berti+ROBO

Homogeneous mixes

Heterogeneous mixes

(b)

Figure 5: Performance of Berti with critical load pre-
dictors normalized to no prefetching for (a) 45 homo-
geneous and (b) 200 heterogeneous 64-core workload
mixes.

hardware prefetching suffer from low prediction accu-
racy in detecting critical IPs while trying to achieve
higher prediction coverage. Figure 4 shows the load crit-
icality prediction accuracy and coverage of some of the
state-of-the-art load criticality predictors. We quantify
load criticality prediction accuracy as the ratio of correct
predictions made by the predictor and load IPs that stall
the head of the ROB while servicing an L1 miss. Predic-
tors like CATCH and FVP provide 100% load criticality
prediction coverage. However, in terms of load critical-
ity prediction accuracy, these techniques over-predict
leading to poor criticality prediction accuracy. One of
the primary reasons for this low criticality prediction
accuracy is that different instances of the same load IP
do not lead to a stall at the head of the ROB. However,
most of the existing predictors assume that if a load
IP is critical and stalls the head of the ROB, it will be
critical all the time (static-critical), which is not the
case for all load IPs. For example, conditional branches
and branch histories affect the loads and their criticality,
resulting in dynamic-critical IPs.

Table 1 summarizes why existing load criticality pre-
dictors fail to do a good job in the presence of hardware
prefetching. Figure 5 shows the performance of Berti in
the presence of critical load predictors. On average, crit-
ical load predictors fail to improve the performance of
Berti in the presence of constrained DRAM bandwidth.
Prefetch throttlers. Existing prefetch throttling tech-
niques like feedback-directed prefetching (FDP), hier-
archical prefetcher aggressiveness controller (HPAC),
synergistic prefetcher aggressiveness controller (SPAC),

0.7

0.9

1.1

1.3

4 8 16

N
o

rm
al

iz
ed

 
p

er
fo

rm
an

ce

Berti Berti+FDP Berti+HPAC Berti+SPAC Berti+NST

Homogeneous mixes

0.9
1

1.1
1.2
1.3
1.4

4 8 16

N
o

rm
al

iz
ed

 
p

er
fo

rm
an

ce

Number of DRAM channels

Berti Berti+FDP Berti+HPAC Berti+SPAC Berti+NST

Heterogeneous mixes

(a)

(b)

Figure 6: Performance of Berti with prefetch throttlers
normalized to no prefetching for (a) 45 homogeneous
and (b) 200 heterogeneous 64-core workload mixes.

and near side prefetch throttling (NST) [23,36–38] use
prefetch accuracy as one of the primary metrics for
controlling prefetch degree and distance. However, state-
of-the-art prefetchers are more accurate than IP-stride
and stream prefetchers (most of these throttlers are ap-
plied to IP-stride and stream prefetchers), and there is
a marginal utility in terms of performance improvement
when we apply prefetch throttlers on top of prefetchers
like Berti. Second, it is not essential to prefetch all the
loads even in the case of high prefetch accuracy because
it may not lead to any performance improvement, thanks
to a large out-of-order instruction window. Third, ex-
isting prefetch throttlers operate at a coarse granularity
and measure prefetch accuracy and other metrics of in-
terest from a shared memory system point of view, for
an epoch of a few kilo instructions or cycles. However,
even within an epoch, there are loads that provide high
accuracy even if the overall prefetch accuracy for that
epoch is low and vice versa.
Figure 6 shows the effectiveness of prefetch throt-

tlers for the Berti prefetcher with constrained DRAM
bandwidth. Some of these throttlers are effective in
improving performance marginally. However, the per-
formance slowdown is still huge for systems with low
DRAM bandwidth.
Prefetch aware shared resource management techniques.
With highly accurate prefetchers like Berti, cache pollu-
tion at the LLC is not a problem. We corroborate the
findings of a recent work [39] that shows that the impact
of inaccurate prefetching because of LLC pollution is
marginal. Nevertheless, we use the state-of-the-art LLC
replacement policy Mockingjay [40] that significantly
minimizes the prefetcher-caused negative interference.
Our baseline system uses NOC and DRAM controllers
that are prefetch aware [30] [28]. On average, the utility
of these techniques is marginal with an average perfor-
mance improvement of less than 0.72% when compared
to NOC and DRAM controllers that are not prefetch-
aware, again thanks to the high prefetch accuracy of
Berti. Overall, these techniques are effective for prefetch-
ers with a relatively lower prefetch accuracy.

4. CLIP: DESIGN AND IMPLEMENTATION
CLIP advocates for prefetching critical load addresses

that have a high chance of getting cache hits (if the

4



Table 1: Limitations of existing load criticality predictors in the presence of hardware prefetchers.
CATCH [13] It uses the dependency graph [11] and tags loads that are in the vicinity of branch predictions as critical even if the loads do not

cause stalls. Blind to MLP, low latency loads masked by high latency loads are also flagged as critical.
FP [15] Relies on the number of stall cycles at the ROB as a metric. It does not try and predict IPs that do not stall significantly.

Overall, it marks most of the L3 misses as critical loads.
FVP [14] Identifies the root of a data dependency chain. So, it ends up identifying all those loads that are likely to delay the execution of

other loads/ instructions. The prediction accuracy is low because it ends up tagging excessively (any load that is the producer
of any other instruction in its vicinity).

ROBO [16] Once an IP is flagged critical, throughout the execution, the IP is considered critical. Thus, it is blind to the dynamic nature of
an IP’s criticality throughout its many recurrences.

CBP [18] Same as ROBO.
CRISP [17] Considers only LLC misses and MLP. It does not consider L1 and L2 misses that stall the head of the ROB.

prefetcher prefetches the critical load addresses). CLIP
considers both load criticality and fine-grained (per IP)
prefetch accuracy. CLIP drops a prefetch request to
an address X if (i) X is not predicted to be critical
or (ii) X is predicted to be critical but the prefetcher
cannot provide high prefetch accuracy for the trigger IP
corresponding to X.
CLIP identifies the IPs that are critical for overall

system performance and triggers data prefetching only
for those selected IPs provided the prefetch requests
generated by these IPs will be accurate. Note that, all
the memory requests generated by a given IP are not
critical in the presence of high-performing data prefetch-
ers. So, a simple binary classification is not useful for
our purpose. Similarly, triggering prefetching only for
critical IPs will not help unless the underlying prefetcher
is accurate in predicting the future load addresses for all
the critical IPs. To mitigate this problem, we propose
a two-stage critical and accurate IP predictor that can
lead to accurate prefetching for critical loads, only.
Stage I: CLIP shortlists IPs that stall the head of the
ROB frequently while waiting for a response from L2,
L3, or DRAM. CLIP also uses a signature called critical
signature to predict the dynamic nature of the criticality
of loads.
Stage II: Next, CLIP selects the load addresses corre-
sponding to critical IPs that can be prefetched accurately
by the underlying prefetcher.
Note that a hit at the L1 can also stall the head of

the ROB and in fact, it is the case for a majority of
the memory accesses as rightly mentioned in one of the
recent works [41]. However, an L1 data prefetcher cannot
hide the ROB stalls for loads that get L1 hits.

4.1 CLIP: Training
ROB stall and miss-level flags. To find out whether an
IP has stalled the retiring process at the head of the
ROB, we use a ROB stall flag that is set the moment
ROB stops retiring instructions. We also use a miss level
flag that is appended along with the memory request
that goes to the memory hierarchy. The miss level flag
is set to one if the load request is serviced by L2, LLC,
or DRAM but not by L1. On a load response back to
the processor, we check if the ROB stall flag is set and
the miss-level flag is non-zero. If it is the case, then
we shortlist the corresponding IP by sending it to a
structure called the criticality filter. Note that a miss
level flag of zero indicates that the load gets a hit either

at the L1 or at the LSQ.
Criticality filter and prefetch accuracy tracker. Next,
we populate the criticality filter that stores all the IPs
that stall the head of the ROB while servicing an L1
miss. We also use a criticality counter to count the
number of times an IP stalls the ROB while getting a
response from L2, L3, or DRAM. Once an IP crosses
a criticality count threshold, we start triggering the
underlying prefetching technique and monitor prefetch
accuracy at a finer granularity (per IP level) so that
we will be able to quantify its utility in terms of both,
prefetch accuracy and criticality. To find out accuracy
at a finer granularity, we use two counters: prefetch issue
count and prefetch hit count for a given IP. We use a
utility buffer that can help us in providing per IP hit
count. The utility buffer stores the following information
for each prefetch address issued by the prefetcher: the
prefetch address X, and the triggering load IP that
triggers the prefetch address. In the future, if a demand
request gets a match for the prefetch address in the
utility buffer that was issued by the prefetcher then we
increment the hit count for the corresponding IP in the
criticality filter. We measure per IP accuracy at the end
of one exploration interval. We define one exploration
interval based on the number of L1D misses. At the end
of each exploration interval, we check for IPs that deliver
a 90% hit rate per IP to initiate prefetching, for the next
window. We maintain a bit in the criticality filter that
shows whether an IP is critical as per the criticality
count and generates highly accurate prefetching. We
change this bit after every exploration interval based
on the prefetch hit rate and critical count achieved by
the IP in that same interval. Note that we use a highly
tuned Berti prefetcher that uses the best watermarks
(coverage of local deltas) for a 64-core system to achieve
the best coverage and accuracy.

4.2 CLIP: Prediction-based Prefetching
Criticality predictor. Once we filter out the IPs that stall
the head of the ROB for at least criticality-count-
threshold1 number of times and the corresponding IP
hit rate is high (90%), then we continue prefetching for
the respective IP and use the criticality predictor to
predict the criticality of future prefetch addresses that
will be generated by the same IP. We need a predictor as

1We use four as the count threshold as it provides the sweet
spot in terms of the number of IPs selected, storage, and
performance improvement achieved.

5



IP Tag crit. count 

.

.

.

.

.

.

Criticality tag.

(a) Criticality filter and accuracy tracker (b) Criticality predictor 

Hit count Issue count Saturating counter
Acc. and 
crit.?

Figure 7: Criticality filter and criticality predictor.

the behavior of an IP is dynamic in nature. For example,
in mcf_1554B, not all prefetch addresses triggered by one
IP are critical. We use a new signature called critical
signature that is created based on a hashed bitwise
XOR of an IP, virtual address, global conditional branch
history of the last 32 branches, and global criticality
history of the last 32 loads. This new signature makes
sure that we are predicting the criticality of a given
IP for a given load address along with the information
about recent control flow and recent criticality history.
The critical-signature is inspired by some of the prior
works on caching and prefetching [6, 33, 42, 43]. Each
entry in the criticality predictor maintains a criticality
tag. The predictor is indexed by the critical signature.

We maintain a k-bit saturating counter that is ini-

tialized to 2k

2 , for each entry of the criticality predictor
where we increment the counter on an L1 miss that
stalls the head of the ROB and decrement the counter
if it leads to an L1 hit or an L1 miss that does not
stall the head of the ROB. Note that on average, with
Berti prefetcher, L1 hit rate is more than 90% for SPEC
CPU2017 benchmarks. We drop a prefetch request in
two cases: (i) the most significant bit (msb) of a sat-
urating counter is zero or (ii) the msb is one but the
per IP accuracy is low. We continue prefetching if the
msb is one and the per-IP accuracy is high. With the
prefetch request, we append a criticality flag of
that goes through the entire memory hierarchy. Note
that in contrast to existing literature [3,4,6] that decides
which level in the cache the prefetch address will get
filled into, we prefetch all the requests to L1 for Berti
because we ensure that we are fetching only for critical
IPs that miss at L1 and show high utility in terms of per
IP prefetch accuracy. Figure 7(a) shows the structure of
a criticality filter with the accuracy tracker. Figure 7 (b)
shows the structure of the criticality table. Note that
the underlying prefetcher continues to learn memory
access patterns irrespective of our prediction.
Which IP for the signature? A prefetch request gener-
ated by a prefetcher does not have any IP information.
So, we use the IP of a load request that triggers a prefetch
request as our IP for the prefetch requests. So, when an
address is generated by a prefetcher for a given trigger
IP, we probe the criticality predictor with the prefetch
address and the triggered IP that will create a critical
signature. Note that a prefetch request triggered by one
IP can get a hit at the utility buffer for a future request
generated by another IP. However, we use the trigger
IP as the IP of interest for our prediction as our goal is
to decide whether to prefetch or not in the future for a
given trigger IP and a given prefetch address.
Phase change and count reset. We reset the hit count

ROB stall flag

0 0
…

ROB head

L1D

L2

L3

L1D Prefetcher

Miss-level flag

LOAD Queue

… Miss-level flag = 1

❶

❶

❷

❷

❸

Criticality
Filter and 
accuracy 
tracker

Criticality 
Predictor

LOAD IP

Accurate?

Critical?

Prefetch if critical and accurate
else drop it

❹

CRIT. SIG
Criticality flag = 1

Prefetch address, Trigger IP

ANDCRIT and ACC?

Figure 8: CLIP in action for an L1 prefetcher. The
dotted lines show the training phase.

and issue count to half of the current value (to maintain
hysteresis) after one exploration window (k number of
misses to L1D, where k is empirically determined to
be just greater than the number of cache lines at the
L1D. We also reset all the entries of the criticality fil-
ter, accuracy tracker, and criticality predictor, and stop
prefetching, on an application phase change. We use
accesses per cycle (APC) [44] at L1D as a metric to
detect phase change. We monitor the APC of the last
16 windows and take the average APC. If the current
APC is different from the average APC by more than
15% then we term it an application phase change. We
empirically select the 15% threshold based on APCs of
SPEC CPU2017 and GAP traces. This method of phase
change detection is used in one of the prior works [16].
CLIP for L2 prefetchers. So far, we show the design of
CLIP for an IP-based L1 Berti prefetcher. CLIP can
be easily extended for non-IP-based L2 prefetchers like
SPP-PPF. The criticality detection and prediction hap-
pen at the L2 considering L2 misses that stall the head
of the ROB as the critical loads. In case the IP informa-
tion is not available, then the IP hit rate is replaced by
the page hit rate.
Load Criticality conscious NOC and DRAM. With CLIP,
we pass the criticality flag along with the prefetch re-
quest that is selected by CLIP. We use the same flag
to prioritize packets at the NOC and DRAM controller
so that demand-loads and critical and accurate prefetch
requests get the same priority at the NOC and DRAM
controller.
The crux. Compared to prior works like CRISP [17] and
FP [15] that also use ROB stalls, the primary difference
with CLIP is its critical signature driven by branch his-
tory and criticality history, and the dynamic prediction
using the critical-signature.
CLIP design choices. CLIP uses the global branch his-
tory and criticality history of the last 32 branches. We
find that short histories of branch and criticality do
not help in improving the prediction accuracy and in
fact, the accuracy drops compared to a simple IP-based
prediction. Branch history beyond 16 and load critical-
ity history beyond eight start showing improvement in
prediction accuracy as it helps the critical signature in
distinguishing loads based on control flow and criticality

6



Table 2: Storage overhead of CLIP.
Structure Storage

Criticality
Filter

32-set, 4-way (128-entry). Each entry:
6-bit IP tag, 2-bit criticality count,
6-bit hit count, 6-bit prefetch count,
and Is-critical-and-accurate bit

336 Bytes

Criticality
predictor 128 sets, 4-way (512-entry) cache.

Each entry: 6-bit criticality tag and
3-bit saturating counter, NRU bit

640 Bytes

ROB exten-
sion

Miss level flag, 1 bit per entry (512
entries)

64 Bytes

ROB flag 1 bit 1 bit
Utility
buffer

64 entries, each entry 6-bit IP tag, 58-
bit cache-line aligned prefetch address

512 Bytes

Branch and
criticality
history

32-bit array for each 8 Bytes

APC Two 11 bit registers 22 bits
exploration
widow

10 bits for reset count 10 bits

Total 1.56 KB

history. We find zero utility in maintaining longer histo-
ries: more than 32 for branch and criticality outcomes.
We use an exploration window, which is a window with
an L1D miss count just greater than the size of the L1D
(768 cache lines). Our window is defined as a window
of 1024 L1D misses. We observe for SPEC CPU2017
benchmarks, 768 misses occur on average every 87,000
cycles. Smaller exploration windows make the training
noisy leading to noisy per IP hit rates. The threshold
for per-IP hit rate should be high else CLIP loses its
effectiveness. We find that even an IP hit rate of more
than 90% is the best threshold. However, it should not
be 100% because most of the IPs do not reach 100% per
IP hit rate. Similarly, it should not be below 80% be-
cause after that CLIP loses its effectiveness. Note that,
one can argue about the usage of existing per IP local
delta coverage of Berti as a proxy for per IP prefetch
accuracy. However, the correlation does not hold true
for all the benchmarks.

Figure 8 illustrates the events of interest. In step 1 ,
a load request passes through the LOAD queue with
a miss-level flag that is initialized to zero for all the
ROB entries. In step 2 , the load request goes to the
memory hierarchy, and miss-level flag gets updated, and
a response comes back from the memory hierarchy. At
the same time, the criticality filter and the prefetch
accuracy tracker are updated with the IP if the response
comes from L2, L3, or DRAM. In step 3 , the prefetch
addresses (X) generated by the prefetcher along with
the trigger IP go through the criticality filter and the
predictor. A hit in the criticality predictor can have
two outcomes. A hit with high confidence (as per the
saturating counter) results in prefetching if the per-IP
accuracy is high, with a criticality flag appended to the
prefetch packet. In case of a miss or low confidence,
the prefetch request is dropped and not allocated to the
MSHR of L1 (step 4 ).

4.3 Storage Overhead
CLIP incurs additional storage in the form of criti-

cality filter, criticality predictor, accuracy tracker, and

additional bits (miss-level flag) for each entry at the
ROB. We use a per-core criticality filter of 128 entries
with an IP tag of six bits and a criticality count (crit.
count) of two bits. Our replacement policy uses crit.
count bits to find a victim IP (least frequently used
policy). The filter uses two counters issue count and hit
count to keep track of the number of prefetch requests
that are triggered by a given IP and the number of cache
hits for that corresponding triggered IP. It also uses an
is-critical-and-accurate bit per entry.
We use a utility buffer of 64 entries, which is a cir-

cular buffer that stores the recent 64 pairs of prefetch
addresses and the corresponding triggering IPs in a tem-
poral order. It is implemented as a content addressable
memory (CAM) with input as the prefetch address (X)
that was prefetched within a window of the last 64
prefetch requests and the output is the IP that triggered
the prefetch address X. On a hit at the CAM, the hit
count is incremented for the corresponding IP tag at the
criticality filter. This helps in tracking the accuracy of
prefetch requests per IP. Our criticality predictor has
three ports (LOAD width of two for the request path
and a port for LOAD response path), 512 entries (128
sets, 4 ways) with a 6-bit criticality tag that uses a
3-bit saturating counter to predict the load criticality.
Table 2 shows the storage overhead of 1.56KB per core.
Existing criticality predictors take three to five KB per
core whereas existing throttlers need four to 10s of KBs
per core.
Is 512 entries enough? Our criticality predictor is of just
512 entries that are indexed by the critical signature,
thanks to our filter that makes sure we do not predict
the criticality of loads for all the IPs. As our criticality
filter and prefetch accuracy tracker filter out most of
the IPs, it helps in reducing the storage budget of our
criticality predictor by 4.75 times on average.
With 512 entries, it is possible that there will be

negative interference because of aliasing. However, we
find that our hash function used as part of the critical
signature scatters the concurrent load requests (signa-
tures) to different entries. For load addresses that get
mapped to the same entry of the criticality predictor
but recur after a long gap, we find that the saturating
counter used per entry takes care of the recent behavior
of one load, only. We also see a positive correlation,
especially for load addresses triggered by one IP within
a loop. Note that this observation holds true for SPEC
CPU2017 benchmarks [45] only. For client/server [46,47]
and CloudSuite [48] workloads, we need around 2048
entries to mitigate the aliasing and other interference
problem. However, for most of the client/server work-
loads, 512 entries are enough. For example, server_013
trace [49] has 32 thousand IPs within a window of 30M
instructions. However, only nine IPs are critical.

5. EVALUATION
Simulation methodology. We use a modified version

of ChampSim [52], a trace-driven simulator used for the
2nd and 3rd Data Prefetching Championships (DPC-
2 [53] and DPC-3 [54]). Recent prefetching propos-

7



Table 3: Simulation parameters of the baseline system.
Core 64 cores, Out-of-order, hashed perceptron branch

predictor [50], 4 GHz with 6-issue width, 4-retire
width, 512-entry ROB

TLBs L1 ITLB/DTLB: 64 entries, 4-way, 1 cycle,
STLB: 2048 entries, 16-way, 8 cycles

L1I 32 KB, 8-way, 4 cycles
L1D 48 KB, 12-way, 5 cycles, Berti [3]
L2 512 KB 8-way associative, 10 cycles, SRRIP [51],

non-inclusive
LLC 2 MB/core, 16-way, 20 cycles, Mockingjay [40],

non-inclusive
MSHRs 8/16/32 at L1I/L1D/L2, 64/core at the LLC
Network
Router

2-stage wormhole, six virtual channels per Port,
five flit buffer depth, eight flits per data packet,
and one flit per address packet.

Network Topol-
ogy

8x8 mesh, each node has a router, processor,
private L1 cache, L2 cache, and an LLC slice

DRAM con-
troller DDR4-3200, Eight channels/64-cores, PADC

[28], 64-entry RQ and WQ, reads prioritized
over writes, write watermark: 7/8th

DRAM chip 4 KB row-buffer per bank, open page, burst
length 16, tRP, RCD, CAS: 12.5 ns

als [3,4,6,7,55] are also coded and evaluated on Champ-
Sim. The recently modified ChampSim extends the
one provided with the DPC-3 with a decoupled front-
end [56] and a detailed memory hierarchy support for
address translation that further improves the baseline
performance. We extend it further by adding a detailed
network-on-chip (NOC) with sliced LLCs. We also in-
tegrate DRAMSim [57] with ChampSim as it does not
model a detailed DRAM with all the DRAM timing
constraints. ChampSim provides a knob called low-
bandwidth to simulate a single-core with low DRAM
bandwidth to understand the constrained bandwidth
effects. However, we find that the knob is not realistic
and we simulate a detailed 64-core system to see the
impact of low DRAM bandwidth on a many-core system.
Table 3 summarizes our system configuration, mimicking
an Intel Sunny Cove microarchitecture [58–60].
Workloads. We use the simpoint [61] traces from SPEC
CPU2017 [45], GAP [2,62], CloudSuite [48], and client
and server traces provided as part of Value Prediction
Championship (CVP) [46,47,49]. We limit our study to
memory-intensive SPEC, GAP, and CloudSuite traces,
those that showed at least one miss per kilo-instruction
(MPKI) with a 2MB LLC/core in our modeled baseline
system. All GAP traces and 45 SPEC CPU2017 traces
are memory-intensive. We use all the CloudSuite and
CVP traces that include client/server traces. We provide
a detailed analysis of 64-core homogeneous mixes with
eight DRAM channels where all the cores of a many-core
system run the same benchmark in the SPEC RATE
mode. We also show results for heterogeneous mixes.

We evaluate CLIP with 64-core multi-core simulations.
We warm up the caches for 100M instructions per core
(6400M instructions for a 64-core system) and collect
statistics for the next 200M per-core instructions/core.
For CloudSuite and client/server traces, we simulate 30M
instructions per core. For our simulations, we use 45
64-core homogeneous mixes and 200 randomly generated
heterogeneous mixes based on SPEC CPU2017 and GAP
benchmarks. For each mix, when a core finishes its

0.6

0.8

1

1.2

1.4

8

N
o

rm
al

iz
ed

 w
ei

gh
te

d
 

sp
ee

d
u

p

Berti Berti+CLIP IPCP IPCP+CLIP

Bingo Bingo+CLIP SPP-PPF SPP-PPF+CLIP

0.7

0.9

1.1

1.3

8

N
o

rm
al

iz
ed

 w
ei

gh
te

d
 

sp
ee

d
u

p

Berti Berti+CLIP IPCP IPCP+CLIP

Bingo Bingo+CLIP SPP-PPF SPP-PPF+CLIP

(a) 45 homogeneous mixes

(b) 200 heterogeneous mixes

Figure 9: CLIP with state-of-the-art prefetchers for (a)
45 homogeneous and (b) 200 heterogeneous mixes on a
64-core system with eight DRAM channels.

200M instructions, it gets replayed until all the cores
finish their respective 200M instructions. We report
performance in terms of weighted speedup [63] with
respect to no prefetching as no-prefetching performs
better than state-of-the-art prefetchers in the presence
of constrained DRAM bandwidth. Weighted speedup
is equivalent to system throughput which accounts for
the number of programs completed per unit of time. We
provide detailed analysis for homogeneous mixes as it
is relatively easier to reason about with all the 64 cores
running the same trace.
Energy model. We also report the dynamic energy
consumption of the memory hierarchy. We obtain the
energy consumption of reads and writes to tag and data
arrays at each cache level and DRAM with CACTI-P [64]
and Micron DRAM power calculator [65]. Then, we
compute the total energy expenditure by accounting for
the number of accesses of each type across the memory
hierarchy. We use the 7 nm process technology.
Evaluated Techniques. We compare the effectiveness
of CLIP with high-performing L1D and L2 prefetchers
like Berti, IPCP, Bingo and SPP-PPF. However, we
focus mostly on Berti as Berti is the high-performing
prefetcher among the evaluated prefetchers. As a re-
lated comparison, We compare CLIP with Hermes and
DSPatch too. For all prefetchers, we use a highly tuned
implementation as provided by the authors and tune it
again for the parameters mentioned in Table 3.
Key results. Figures 9 shows the normalized perfor-
mance improvement (weighted speedup) of CLIP with
state-of-the-art L1 and L2 prefetchers. CLIP is equally
effective across all the prefetchers. For the most accu-
rate prefetcher Berti, CLIP provides an improvement of
24% and 9% for 45 homogeneous and 200 heterogeneous
workload mixes, respectively. Note that 200 64-core
heterogeneous mixes were created from SPEC CPU2017
and GAP benchmarks, randomly with no bias towards
any specific benchmark. Compared to homogeneous
mixes, heterogeneous mixes have mixes where there is
no significant performance drop even in the case of low
DRAM bandwidth. This happens for the mixes where
half of the benchmarks are almost cache friendly and
their respective LLC MPKI is closer to one. With large
LLCs of 128MB, these mixes get most of their demand

8



0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2

6
0

0
.p

er
lb

en
ch

_s
-5

7
0

B

6
0

2
.g

cc
_

s-
1

8
5

0
B

6
0

2
.g

cc
_

s-
2

2
2

6
B

6
0

2
.g

cc
_

s-
7

3
4

B

6
0

3
.b

w
av

es
_s

-1
7

4
0

B

6
0

3
.b

w
av

es
_s

-2
6

0
9

B

6
0

3
.b

w
av

es
_s

-2
9

3
1

B

6
0

3
.b

w
av

es
_s

-8
9

1
B

6
0

5
.m

cf
_s

-1
1

5
2

B

6
0

5
.m

cf
_s

-1
5

3
6

B

6
0

5
.m

cf
_s

-1
5

5
4

B

6
0

5
.m

cf
_s

-1
6

4
4

B

6
0

5
.m

cf
_s

-4
7

2
B

6
0

5
.m

cf
_s

-4
8

4
B

6
0

5
.m

cf
_s

-6
6

5
B

6
0

5
.m

cf
_s

-7
8

2
B

6
0

5
.m

cf
_s

-9
9

4
B

6
0

7
.c

ac
tu

B
SS

N
_s

-2
4

2
1

B

6
0

7
.c

ac
tu

B
SS

N
_s

-3
4

7
7

B

6
0

7
.c

ac
tu

B
SS

N
_s

-4
0

0
4

B

6
1

9
.lb

m
_s

-2
6

7
6

B

6
1

9
.lb

m
_s

-2
6

7
7

B

6
1

9
.lb

m
_s

-3
7

6
6

B

6
1

9
.lb

m
_s

-4
2

6
8

B

6
2

0
.o

m
n

et
p

p
_s

-1
4

1
B

6
2

0
.o

m
n

et
p

p
_s

-8
7

4
B

6
2

1
.w

rf
_s

-6
6

7
3

B

6
2

1
.w

rf
_s

-8
0

6
5

B

6
2

3
.x

al
an

cb
m

k_
s-

1
0

B

6
2

3
.x

al
an

cb
m

k_
s-

1
6

5
B

6
2

3
.x

al
an

cb
m

k_
s-

2
0

2
B

6
2

8
.p

o
p

2
_s

-1
7

B

6
4

1
.le

el
a_

s-
1

0
8

3
B

6
4

9
.f

o
to

n
ik

3
d

_s
-1

0
8

8
1

B

6
4

9
.f

o
to

n
ik

3
d

_s
-1

1
7

6
B

6
4

9
.f

o
to

n
ik

3
d

_s
-7

0
8

4
B

6
4

9
.f

o
to

n
ik

3
d

_s
-8

2
2

5
B

6
5

4
.r

o
m

s_
s-

1
0

0
7

B

6
5

4
.r

o
m

s_
s-

1
0

7
0

B

6
5

4
.r

o
m

s_
s-

1
3

9
0

B

6
5

4
.r

o
m

s_
s-

1
6

1
3

B

6
5

4
.r

o
m

s_
s-

2
9

3
B

6
5

4
.r

o
m

s_
s-

2
9

4
B

6
5

4
.r

o
m

s_
s-

5
2

3
B

6
5

7
.x

z_
s-

2
3

0
2

B

G
eo

m
ea

n

N
o

rm
al

iz
ed

 w
ei

gh
te

d
 s

p
ee

d
u

p
Berti Berti+CLIP

Higher the better

Figure 10: Performance normalized to no prefetching
for 45 64-core homogeneous mixes with eight DRAM
channels.

50

250

450

650

850

1050

6
0

0
.p

er
lb

en
ch

_s
-5

7
0

B

6
0

2
.g

cc
_

s-
1

8
5

0
B

6
0

2
.g

cc
_

s-
2

2
2

6
B

6
0

2
.g

cc
_

s-
7

3
4

B

6
0

3
.b

w
av

es
_s

-1
7

4
0

B

6
0

3
.b

w
av

es
_s

-2
6

0
9

B

6
0

3
.b

w
av

es
_s

-2
9

3
1

B

6
0

3
.b

w
av

es
_s

-8
9

1
B

6
0

5
.m

cf
_s

-1
1

5
2

B

6
0

5
.m

cf
_s

-1
5

3
6

B

6
0

5
.m

cf
_s

-1
5

5
4

B

6
0

5
.m

cf
_s

-1
6

4
4

B

6
0

5
.m

cf
_s

-4
7

2
B

6
0

5
.m

cf
_s

-4
8

4
B

6
0

5
.m

cf
_s

-6
6

5
B

6
0

5
.m

cf
_s

-7
8

2
B

6
0

5
.m

cf
_s

-9
9

4
B

6
0

7
.c

ac
tu

B
SS

N
_s

-2
4

2
1

B

6
0

7
.c

ac
tu

B
SS

N
_s

-3
4

7
7

B

6
0

7
.c

ac
tu

B
SS

N
_s

-4
0

0
4

B

6
1

9
.lb

m
_s

-2
6

7
6

B

6
1

9
.lb

m
_s

-2
6

7
7

B

6
1

9
.lb

m
_s

-3
7

6
6

B

6
1

9
.lb

m
_s

-4
2

6
8

B

6
2

0
.o

m
n

et
p

p
_s

-1
4

1
B

6
2

0
.o

m
n

et
p

p
_s

-8
7

4
B

6
2

1
.w

rf
_s

-6
6

7
3

B

6
2

1
.w

rf
_s

-8
0

6
5

B

6
2

3
.x

al
an

cb
m

k_
s-

1
0

B

6
2

3
.x

al
an

cb
m

k_
s-

1
6

5
B

6
2

3
.x

al
an

cb
m

k_
s-

2
0

2
B

6
2

8
.p

o
p

2
_s

-1
7

B

6
4

1
.le

el
a_

s-
1

0
8

3
B

6
4

9
.f

o
to

n
ik

3
d

_s
-1

0
8

8
1

B

6
4

9
.f

o
to

n
ik

3
d

_s
-1

1
7

6
B

6
4

9
.f

o
to

n
ik

3
d

_s
-7

0
8

4
B

6
4

9
.f

o
to

n
ik

3
d

_s
-8

2
2

5
B

6
5

4
.r

o
m

s_
s-

1
0

0
7

B

6
5

4
.r

o
m

s_
s-

1
0

7
0

B

6
5

4
.r

o
m

s_
s-

1
3

9
0

B

6
5

4
.r

o
m

s_
s-

1
6

1
3

B

6
5

4
.r

o
m

s_
s-

2
9

3
B

6
5

4
.r

o
m

s_
s-

2
9

4
B

6
5

4
.r

o
m

s_
s-

5
2

3
B

6
5

7
.x

z_
s-

2
3

0
2

B

A
ve

ra
ge

A
vg

. L
1

 m
is

s 
la

te
n

cy
 (

cy
cl

e
s) Berti Berti+CLIPLower the better

Figure 11: Average L1 miss latency for 45 64-core ho-
mogeneous mixes with eight DRAM channels.

hits at the LLC.Next, to understand the subtleties bet-
ter, we show a detailed performance analysis of CLIP
with Berti for 45 homogeneous workload mixes.

5.1 Performance analysis
Figure 10 shows the normalized performance improve-

ment of Berti with CLIP, for 45 64-core homogeneous
mixes. On average, CLIP enhances Berti’s performance
by 24% (16% slowdown becomes 8% improvement).
With CLIP, out of 45 64-core homogeneous mixes, only
three mixes show performance slowdowns whereas, with-
out CLIP, more than 26 mixes show performance slow-
downs. Note that the contribution of criticality-conscious
NOC and DRAM is just 2.8% out of 24% of enhanced
performance. Also, on average, 77.5% of the performance
benefit comes from criticality filtering and prediction,
and the rest comes from accuracy filtering.
Latency improvement. To understand the primary con-
tributors of performance benefits, Figure 11 shows im-
provement in average L1 miss latencies with CLIP when
compared with Berti without CLIP. On average across
45 64-core mixes, the average L1 miss latency drops from
168 cycles to 132 cycles, with maximum improvements
of more than 900 cycles for one of the mixes that contain
64 copies of lbm. The improvement in latency also helps
in improving prefetch lateness (on average, it improves
from 13% to 5.8%). Note that CLIP improves the aver-
age miss latency. However, this comes at the cost of the
prefetch coverage as CLIP drops prefetch requests that
are not critical and accurate.
Miss coverage. Figure 12 shows the average drop in
prefetch coverage at L1, L2, and LLC. There is a sig-
nificant drop at the L1 (7%) whereas, at L2 and LLC,
the coverage drops by 2% and 3%, respectively. This
trend provides an interesting trade-off in terms of miss

30

35

40

45

50

55

60

L1 L2 L3

M
is

s 
C

o
ve

ra
ge

 (
in

 %
)

Berti Berti+CLIP Higher the better

Figure 12: L1, L2, and LLC miss coverage (in %) for
Berti running on a 64-core system with eight DRAM
channels. L1 and L2 miss coverage is averaged across
64 cores.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

6
0

0
.p

er
lb

en
ch

_s
-5

7
0

B
6

0
2

.g
cc

_s
-1

8
5

0
B

6
0

2
.g

cc
_s

-2
2

2
6

B
6

0
2

.g
cc

_s
-7

3
4

B
6

0
3

.b
w

av
es

_s
-1

7
4

0
B

6
0

3
.b

w
av

es
_s

-2
6

0
9

B
6

0
3

.b
w

av
es

_s
-2

9
3

1
B

6
0

3
.b

w
av

es
_s

-8
9

1
B

6
0

5
.m

cf
_s

-1
1

5
2

B
6

0
5.

m
cf

_s
-1

5
3

6
B

6
0

5
.m

cf
_s

-1
5

5
4

B
6

0
5

.m
cf

_s
-1

6
4

4
B

6
0

5
.m

cf
_s

-4
7

2
B

6
0

5
.m

cf
_s

-4
8

4
B

6
0

5
.m

cf
_s

-6
6

5
B

6
0

5
.m

cf
_s

-7
8

2
B

6
0

5
.m

cf
_s

-9
9

4
B

6
0

7
.c

ac
tu

B
SS

N
_s

-2
4

2
1

B
6

0
7

.c
ac

tu
B

SS
N

_s
-3

4
7

7
B

6
0

7
.c

ac
tu

B
SS

N
_s

-4
0

0
4

B
6

1
9

.lb
m

_s
-2

6
7

6
B

6
1

9
.lb

m
_s

-2
6

7
7

B
6

1
9

.lb
m

_s
-3

7
6

6
B

6
1

9
.lb

m
_s

-4
2

6
8

B
6

2
0

.o
m

n
et

p
p

_s
-1

4
1

B
6

2
0

.o
m

n
et

p
p

_s
-8

7
4

B
6

2
1

.w
rf

_s
-6

6
7

3
B

6
2

1
.w

rf
_s

-8
0

6
5

B
6

2
3.

xa
la

n
cb

m
k_

s-
1

0
B

6
2

3
.x

al
an

cb
m

k_
s-

1
6

5
B

6
2

3
.x

al
an

cb
m

k_
s-

2
0

2
B

6
2

8
.p

o
p

2
_s

-1
7

B
6

4
1

.le
el

a_
s-

1
0

8
3

B
6

4
9

.f
o

to
n

ik
3d

_s
-1

0
88

1
B

6
4

9
.f

o
to

n
ik

3d
_s

-1
1

76
B

6
4

9
.f

o
to

n
ik

3d
_s

-7
0

84
B

6
4

9
.f

o
to

n
ik

3d
_s

-8
2

25
B

6
5

4
.r

o
m

s_
s-

1
0

0
7

B
6

5
4

.r
o

m
s_

s-
1

0
7

0
B

6
5

4
.r

o
m

s_
s-

1
3

9
0

B
6

5
4

.r
o

m
s_

s-
1

6
1

3
B

6
5

4
.r

o
m

s_
s-

2
9

3
B

6
5

4
.r

o
m

s_
s-

2
9

4
B

6
5

4
.r

o
m

s_
s-

5
2

3
B

6
5

7
.x

z_
s-

2
3

0
2

B
A

ve
ra

ge

P
re

d
ic

ti
o

n
 a

cc
u

ra
cy

Critical Signature Best of prior predictors

Higher the better

Figure 13: Critical load prediction accuracy of
Berti+CLIP averaged across 64 cores for homogeneous
mixes with eight DRAM channels.

rate and miss. latency as CLIP improves performance
even if there is a drop in coverage thanks to the average
improvement in L1 miss latency (36 cycles).
Load criticality prediction accuracy and coverage. The
improvement in average miss latency is caused by high
critical load prediction accuracy as compared to the best
of critical load predictors(Figure 13). However, a high
prediction accuracy does not necessarily result in high
load criticality prediction coverage (Figure 14). On aver-
age, CLIP provides a load criticality prediction accuracy
of 93% that helps in covering 76% of the critical loads
that stall the head of ROB while getting responses from
L2, LLC, and DRAM. This high load criticality predic-
tion accuracy and coverage led to a significant drop in
the prefetch requests generated by Berti.
Number of critical IPs. Figure 15 shows the absolute
number of critical IPs (divided into static-critical and
dynamic-critical ones) as detected by CLIP over a win-
dow of 200M simulated instructions. The dynamic IPs
are the IPs that sometimes behave like critical IPs and
sometimes not. For 20 mixes, the number of critical
and accurate IPs selected by CLIP is just 20, whereas
the actual number of IPs is in the hundreds.On average,
around 50% of the IPs are dynamic-critical IPs. Overall,
there are a few IPs that stall the head of the ROB while
getting a response from L2, LLC, or DRAM, which helps
in reducing the prefetch traffic.
Figure 16 shows the drop in prefetch requests gen-

erated by Berti in the presence of CLIP. On average,

9



0.4

0.5

0.6

0.7

0.8

0.9

1

6
0

0
.p

er
lb

en
ch

_s
-5

7
0

B
6

0
2

.g
cc

_s
-1

8
5

0
B

6
0

2
.g

cc
_s

-2
2

2
6

B
6

0
2

.g
cc

_s
-7

3
4

B
6

0
3.

b
w

av
es

_s
-1

7
4

0
B

6
0

3
.b

w
av

es
_s

-2
6

0
9

B
6

0
3

.b
w

av
es

_s
-2

9
3

1
B

6
0

3
.b

w
av

e
s_

s-
8

9
1

B
6

0
5

.m
cf

_s
-1

1
5

2
B

6
0

5
.m

cf
_s

-1
5

3
6

B
6

0
5

.m
cf

_s
-1

5
5

4
B

6
0

5
.m

cf
_s

-1
6

4
4

B
6

0
5

.m
cf

_s
-4

7
2

B
6

0
5.

m
cf

_s
-4

8
4

B
6

0
5

.m
cf

_s
-6

6
5

B
6

0
5

.m
cf

_s
-7

8
2

B
6

0
5

.m
cf

_s
-9

9
4

B
6

0
7

.c
ac

tu
B

SS
N

_s
-2

4
2

1
B

6
0

7
.c

ac
tu

B
SS

N
_s

-3
4

7
7

B
6

0
7

.c
ac

tu
B

SS
N

_s
-4

0
0

4
B

6
1

9
.lb

m
_s

-2
6

7
6

B
6

1
9

.lb
m

_s
-2

6
7

7
B

6
1

9.
lb

m
_s

-3
7

66
B

6
1

9
.lb

m
_s

-4
2

6
8

B
6

2
0

.o
m

n
et

p
p

_s
-1

4
1

B
6

2
0

.o
m

n
et

p
p

_s
-8

7
4

B
6

2
1

.w
rf

_s
-6

6
7

3
B

6
2

1
.w

rf
_s

-8
0

6
5

B
6

2
3

.x
al

an
cb

m
k_

s-
1

0
B

6
2

3
.x

al
an

cb
m

k_
s-

1
6

5
B

6
2

3
.x

al
an

cb
m

k_
s-

2
0

2
B

6
2

8
.p

o
p

2
_s

-1
7

B
6

4
1

.le
el

a_
s-

1
0

8
3

B
6

4
9

.f
o

to
n

ik
3

d
_s

-1
0

88
1

B
6

4
9

.f
o

to
n

ik
3d

_s
-1

1
76

B
6

4
9

.f
o

to
n

ik
3d

_s
-7

0
84

B
6

4
9

.f
o

to
n

ik
3d

_s
-8

2
25

B
6

5
4

.r
o

m
s_

s-
1

0
0

7
B

6
5

4
.r

o
m

s_
s-

1
0

7
0

B
6

5
4

.r
o

m
s_

s-
1

3
9

0
B

6
5

4
.r

o
m

s_
s-

1
6

1
3

B
6

5
4

.r
o

m
s_

s-
2

9
3

B
6

5
4

.r
o

m
s_

s-
2

9
4

B
6

5
4

.r
o

m
s_

s-
5

2
3

B
6

5
7

.x
z_

s-
2

3
0

2
B

A
ve

ra
ge

P
re

d
ic

ti
o

n
 c

o
ve

ra
ge Higher the better

Figure 14: Critical load prediction coverage of
Berti+CLIP averaged across 64 cores for homogeneous
mixes with eight DRAM channels.

435 277

0
20
40
60
80

100
120
140
160
180

6
0

0
.p

e
rl

b
e

n
ch

_s
-5

7
0

B
6

0
2

.g
cc

_
s-

1
8

5
0

B
6

0
2

.g
cc

_
s-

2
2

2
6

B
6

0
2

.g
cc

_
s-

7
3

4
B

6
0

3
.b

w
av

es
_s

-1
7

4
0

B
6

0
3

.b
w

av
es

_s
-2

6
0

9
B

6
0

3
.b

w
av

es
_s

-2
9

3
1

B
6

0
3

.b
w

av
es

_s
-8

9
1

B
6

0
5

.m
cf

_s
-1

1
5

2
B

6
0

5
.m

cf
_s

-1
5

3
6

B
6

0
5

.m
cf

_s
-1

5
5

4
B

6
0

5
.m

cf
_s

-1
6

4
4

B
6

0
5

.m
cf

_s
-4

7
2

B
6

0
5

.m
cf

_s
-4

8
4

B
6

0
5

.m
cf

_s
-6

6
5

B
6

0
5

.m
cf

_s
-7

8
2

B
6

0
5

.m
cf

_s
-9

9
4

B
6

0
7

.c
ac

tu
B

SS
N

_
s-

2
4

2
1

B
6

0
7

.c
ac

tu
B

SS
N

_
s-

3
4

7
7

B
6

0
7

.c
ac

tu
B

SS
N

_
s-

4
0

0
4

B
6

1
9

.lb
m

_s
-2

6
7

6
B

6
1

9
.lb

m
_s

-2
6

7
7

B
6

1
9

.lb
m

_s
-3

7
6

6
B

6
1

9
.lb

m
_s

-4
2

6
8

B
6

2
0

.o
m

n
et

p
p

_s
-1

4
1

B
6

2
0

.o
m

n
et

p
p

_s
-8

7
4

B
6

2
1

.w
rf

_s
-6

6
7

3
B

6
2

1
.w

rf
_s

-8
0

6
5

B
6

2
3

.x
al

an
cb

m
k_

s-
1

0
B

6
2

3
.x

al
an

cb
m

k_
s-

1
6

5
B

6
2

3
.x

al
an

cb
m

k_
s-

2
0

2
B

6
2

8
.p

o
p

2
_

s-
1

7
B

6
4

1
.le

el
a_

s-
1

0
8

3
B

6
4

9
.f

o
to

n
ik

3
d

_s
-1

0
8

8
1

B
6

4
9

.f
o

to
n

ik
3

d
_s

-1
1

7
6

B
6

4
9

.f
o

to
n

ik
3

d
_s

-7
0

8
4

B
6

4
9

.f
o

to
n

ik
3

d
_s

-8
2

2
5

B
6

5
4

.r
o

m
s_

s-
1

0
0

7
B

6
5

4
.r

o
m

s_
s-

1
0

7
0

B
6

5
4

.r
o

m
s_

s-
1

3
9

0
B

6
5

4
.r

o
m

s_
s-

1
6

1
3

B
6

5
4

.r
o

m
s_

s-
2

9
3

B
6

5
4

.r
o

m
s_

s-
2

9
4

B
6

5
4

.r
o

m
s_

s-
5

2
3

B
6

5
7

.x
z_

s-
2

3
0

2
B

N
u

m
b

er
 o

f 
cr

it
ic

al
 ip

s

static-critical dynamic-critical

Figure 15: Number of critical and accurate IPs (static-
critical and dynamic-critical) per core selected by CLIP
for 45 64-core SPEC CPU2017 homogeneous mixes over
a window of 200M instructions.

there is a 50% drop in prefetch requests and as high
as 90% (for cactubssn). Note that the improvement
in the accuracy of critical and accurate IP predictor
results in an increase in overall prefetch accuracy, with
the average prefetch accuracy of Berti improving from
82.9% to 94.2%. The benchmarks that see the maximum
improvements are mcf, omnetpp, cactubssn. For cac-
tubssn_2421B, prefetch accuracy improved from 12%
with Berti to 89.65% with Berti+CLIP. For mcf_1536B,
CLIP improves Berti’s accuracy from 51.1% to 93%.
Dynamic energy. CLIP improves run-time that directly
leads to improvement in static energy. For homogeneous
mixes, CLIP improves the dynamic energy of the memory
hierarchy by 18.21% over Berti, thanks to an average
50% reduction in prefetch traffic. For heterogeneous
mixes, the improvement in dynamic energy is just less
than 7%. Note that, in our energy calculations, we
include the dynamic energy consumed by the additional
structures used by CLIP.
CLIP with CloudSuite and CVP workloads. We evaluate
CLIP with CloudSuite [48,66] and CVP traces [46,47] in
the form of 64-core homogeneous mixes. Note that the
evaluated prefetchers improve performance by less than
10% even in the case of 64 DRAM channels for a 64-core
system. So, compared to SPEC CPU2017 homogeneous
mixes, the problem of constrained DRAM bandwidth is
not significant as the prefetchers find it hard to predict
the future addresses for most of the CloudSuite and
CVP benchmarks. Figure 17 shows the effectiveness of
CLIP for CloudSuite and CVP benchmarks with different
numbers of DRAM channels.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

6
0

0
.p

er
lb

en
ch

_s
-5

7
0

B
6

0
2

.g
cc

_s
-1

8
5

0
B

6
0

2
.g

cc
_s

-2
2

2
6

B
6

0
2

.g
cc

_s
-7

3
4

B
6

0
3

.b
w

av
es

_s
-1

7
4

0
B

6
0

3
.b

w
av

es
_s

-2
6

0
9

B
6

0
3

.b
w

av
es

_s
-2

9
3

1
B

6
0

3
.b

w
av

es
_s

-8
9

1
B

6
0

5
.m

cf
_s

-1
1

5
2

B
6

0
5

.m
cf

_s
-1

5
3

6
B

6
0

5
.m

cf
_s

-1
5

5
4

B
6

0
5

.m
cf

_s
-1

6
4

4
B

6
0

5
.m

cf
_s

-4
7

2
B

6
0

5
.m

cf
_s

-4
8

4
B

6
0

5
.m

cf
_s

-6
6

5
B

6
0

5
.m

cf
_s

-7
8

2
B

6
0

5
.m

cf
_s

-9
9

4
B

6
0

7
.c

ac
tu

B
SS

N
_s

-2
4

2
1

B
6

0
7

.c
ac

tu
B

SS
N

_s
-3

4
7

7
B

6
0

7
.c

ac
tu

B
SS

N
_s

-4
0

0
4

B
6

1
9

.lb
m

_s
-2

6
7

6
B

6
1

9
.lb

m
_s

-2
6

7
7

B
6

1
9

.lb
m

_s
-3

7
6

6
B

6
1

9
.lb

m
_s

-4
2

6
8

B
6

2
0

.o
m

n
et

p
p

_s
-1

4
1

B
6

2
0

.o
m

n
et

p
p

_s
-8

7
4

B
6

2
1

.w
rf

_s
-6

6
7

3
B

6
2

1
.w

rf
_s

-8
0

6
5

B
6

2
3.

xa
la

n
cb

m
k_

s-
1

0
B

6
2

3
.x

al
an

cb
m

k_
s-

1
6

5
B

6
2

3
.x

al
an

cb
m

k_
s-

2
0

2
B

6
2

8
.p

o
p

2
_s

-1
7

B
6

4
1

.le
el

a_
s-

1
0

8
3

B
6

4
9

.f
o

to
n

ik
3d

_s
-1

0
88

1
B

6
4

9
.f

o
to

n
ik

3
d

_s
-1

1
76

B
6

4
9

.f
o

to
n

ik
3

d
_s

-7
0

84
B

6
4

9
.f

o
to

n
ik

3
d

_s
-8

2
25

B
6

5
4

.r
o

m
s_

s-
1

0
0

7
B

6
5

4
.r

o
m

s_
s-

1
0

7
0

B
6

5
4

.r
o

m
s_

s-
1

3
9

0
B

6
5

4
.r

o
m

s_
s-

1
6

1
3

B
6

5
4

.r
o

m
s_

s-
2

9
3

B
6

5
4

.r
o

m
s_

s-
2

9
4

B
6

5
4

.r
o

m
s_

s-
5

2
3

B
6

5
7

.x
z_

s-
2

3
0

2
B

G
eo

m
ea

n

N
o

rm
al

iz
ed

 p
re

fe
tc

h
 t

ra
ff

ic

Lower the better

Figure 16: Reduction in prefetch requests with
Berti+CLIP normalized to Berti for 45 64-core homo-
geneous mixes with eight DRAM channels.

0.98

1

1.02

1.04

1.06

1.08

4 8 16N
o

rm
al

iz
ed

 w
ei

gh
te

d
 s

p
ee

d
u

p

Number of DRAM channels

Berti Berti+CLIPHigher the better 

Figure 17: Performance normalized to no prefetching
averaged across CloudSuite and CVP 64-core homoge-
neous workloads.

5.2 Sensitivity Studies
CLIP table size. To understand the sensitivity of hard-
ware tables used by CLIP, we sweep both tables with
the following table sizes: 0.25X, 0.5X, 2X, and 4X of
the proposed table size. Note that we sweep through
these sizes keeping the other table fixed to the baseline
size. Increasing the table sizes to 2X and 4X provides
marginal performance improvement with few outliers
like 621.wrf and 628.pop2 that show an additional
3.23% performance improvement. However, when we
reduce the table size to 0.5X and 0.25X, we see a perfor-
mance drop of more than 7% compared to the proposed
Berti+CLIP. Figure 18 shows the trend.
CLIP and the number of DRAM channels. Figures 19
and 20 show the performance of CLIP for L1 and L2
prefetchers with four, eight, and 16 DRAM channels
for 45 and 200 64-core homogeneous and heterogeneous
mixes, respectively. For four and eight DRAM channels,
CLIP is highly effective and as expected for 16 DRAM
channels the effectiveness is marginal in terms of perfor-
mance improvement. This shows that CLIP is extremely
effective for many-core systems with constrained DRAM
bandwidth.
CLIP and the number of cores. As a sensitivity study,
we evaluate CLIP with 8, 16, 32, 64, and 128 cores
with four, eight, 16, 32, and 64 DRAM channels. The
effectiveness of CLIP remains similar for all these con-
figurations. Based on our experiments, we find that the
effectiveness of CLIP is not significant if we have at least
one DRAM channel for two to four cores.
CLIP with different LLC sizes. We perform a sensi-
tivity study based on the LLC capacity as the LLC

10



0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Criticality filter and accuracy tracker Criticality PredictorN
o

rm
al

iz
ed

 w
ei

gh
te

d
 s

p
e

ed
u

p
0.25X 0.50X 1X 2X 4XHigher the better

Figure 18: Sensitivity study across 45 homogeneous and
200 heterogeneous mixes: Size of the hardware tables.

Higher the better

0.6

0.8

1

1.2

1.4

4 8 16N
o

rm
al

iz
ed

 w
ei

gh
te

d
 s

p
e

ed
u

p

Number of DRAM channels

Berti Berti+CLIP IPCP IPCP+CLIP

Bingo Bingo+CLIP SPP-PPF SPP-PPF+CLIP

Figure 19: CLIP with state-of-the-art prefetchers with
different numbers of DRAM channels for 45 homoge-
neous mixes.

capacity plays a big role in terms of requests that go
to the DRAM. In our baseline, we use 2MB LLC/core.
Next, we sweep the size of the LLC from 512KB/core
to 4MB/core keeping the number of DRAM channels at
eight. For homogeneous workloads, as expected, the per-
formance of Berti for a 4MB LLC/core improves with an
average slowdown of 9% as compared to a 16% slowdown
with 2MB LLC/core. Similarly, Berti shows a perfor-
mance slowdown of 29% with 512KB LLC/core. The
effectiveness of CLIP improves with smaller LLC/core
and in all cases, CLIP makes sure, we get performance
improvement with hardware prefetching.

5.3 CLIP vs. Hermes and DSPatch
Hermes [33] with Berti does a relatively better job

than Berti alone, thanks to its high prediction accuracy
that accurately predicts the loads that will go to DRAM.
However, Berti+CLIP outperforms Berti+Hermes for
four and eight DRAM channels. There are two pri-
mary reasons for this improvement: (i) Not all the loads
that go to DRAM are critical for overall system per-
formance. Hermes does not pay attention to L2 and
LLC hit that stall the head of the ROB for a signif-
icant amount of time. (ii) Hermes does not reduce
the number of requests that go to the DRAM, signifi-
cantly (less than 1%) whereas CLIP reduces the DRAM
traffic significantly thanks to high prediction accuracy
in identifying critical loads that can lead to accurate
prefetching. Figure 21 shows the effectiveness of Hermes
and CLIP with Berti. For low DRAM bandwidth (four
and eight DRAM channels), CLIP outperforms Hermes.
However, for a system with 16 DRAM channels Hermes
beats CLIP, which was expected and we corroborate the
findings of Hermes for many-core systems with ample
DRAM bandwidth. DSPatch [34] as expected performs
poorly as compared to CLIP because, for most of the
benchmarks, the DRAM bandwidth utilization is low

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4 8 16

N
o

rm
al

iz
ed

 w
ei

gh
te

d
 s

p
ee

d
u

p

Number of DRAM channels

Berti Berti+CLIP IPCP IPCP+CLIP
Bingo Bingo+CLIP SPP-PPF SPP-PPF+CLIP

Higher the better

Figure 20: CLIP with state-of-the-art prefetchers with
different numbers of DRAM channels for 200 heteroge-
neous mixes.

0.6

0.8

1

1.2

1.4

4 8 16

N
o

rm
al

iz
ed

 
p

er
fo

rm
an

ce

Berti Berti+Hermes Berti+DSPatch Berti+CLIP

0.9
1

1.1
1.2
1.3
1.4

4 8 16

Berti Berti+Hermes Berti+DSPatch Berti+CLIP

N
o

rm
al

iz
ed

 
p

er
fo

rm
an

ce

(a) Homogeneous mixes

(b) Heterogeneous mixes

Figure 21: Hermes, DSPatch, and CLIP with Berti for
45 homogeneous and 200 heterogeneous 64-core mixes.

in the constrained DRAM bandwidth scenarios. The
low DRAM bandwidth utilization forces DSPatch to
optimize for prefetch coverage compromising prefetch
accuracy, which increases the average L1 miss latency
with a marginal improvement in the prefetch coverage.
Overall, the tradeoff between miss latency and miss cov-
erage does not help and Berti+DSPatch performs poorly
as compared to CLIP for a 64-core system with four and
eight DRAM channels (Figure 21).
Dynamic CLIP. CLIP is a technique that improves the
performance of hardware prefetchers when the available
DRAM bandwidth is low. However, it is not a useful
technique for systems with high per-core DRAM band-
width (e.g., only a few cores out of 64 cores are active
and utilizing the eight DRAM channels). As a future
work, similar to DSPatch, a dynamic version of CLIP
can be explored that can turn off CLIP in the case of
systems with high per-core DRAM bandwidth.

6. CONCLUSION
Hardware prefetchers lose their effectiveness in the

case of many-core systems with constrained DRAM band-
width. We showed that prior works on prefetcher throt-
tling, prefetch-aware resource management techniques,
and load criticality-based prefetching are not effective in
mitigating this problem. We proposed CLIP, a highly ac-
curate fine-grained critical load predictor that can detect
critical loads that stall the head of the ROB while get-
ting a response from L2, LLC, or DRAM. CLIP detects
the critical loads and filters out the loads that will lead
to accurate prefetching, making sure that the prefetch
requests generated by a prefetcher are actually for loads

11



that contribute to the overall performance improvement.
CLIP enhances the effectiveness of prefetchers like Berti
by 24% and 9% for homogeneous and heterogeneous
mixes on a 64-core system with eight DRAM channels,
respectively. CLIP provides this performance improve-
ment with a storage overhead of 1.56KB per core.

7. ACKNOWLEDGEMENT
We would like to thank all the anonymous reviewers

for their insightful comments and suggestions. Special
thanks to Neelu Kalani, Ramya Prabhu, and Sheetal for
discussions during the early phase of the this work. We
would also like to thank members of CASPER group
especially Sumon, Shubham, Anubhav, and Kritish for
their feedback on the initial draft. Finally, thanks to
CAPS research group members especially Alberto Ros
and Sawan Singh for their feedback on the draft. This
work is supported by the Qualcomm faculty award 2022
and Google India research award 2022.

REFERENCES

[1] SPEC CPU 2017 traces for champsim. https://dpc3.
compas.cs.stonybrook.edu/champsim-traces/speccpu/,
February 2019.

[2] GAP traces for champsim. https://utexas.app.box.com/s/
2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561,
March 2021.

[3] Agust́ın Navarro-Torres, Biswabandan Panda, Jesús
Alastruey-Benedé, Pablo Ibáñez, Vı́ctor Viñals-Yúfera, and
Alberto Ros. Berti: an accurate local-delta data prefetcher.
In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 975–991, 2022.

[4] Samuel Pakalapati and Biswabandan Panda. Bouquet of
instruction pointers: Instruction pointer classifier-based
spatial hardware prefetching. In 47th Int’l Symp. on
Computer Architecture (ISCA), pages 118–131, June 2020.

[5] Jinchun Kim, Seth H. Pugsley, Paul V. Gratz,
A. L. Narasimha Reddy, Chris Wilkerson, and Zeshan
Chishti. Path confidence based lookahead prefetching. In
49th Int’l Symp. on Microarchitecture (MICRO), pages
60:1–60:12, October 2016.

[6] Eshan Bhatia, Gino Chacon, Seth H. Pugsley, Elvira Teran,
Paul V. Gratz, and Daniel A. Jiménez. Perceptron-based
prefetch filtering. In 46th Int’l Symp. on Computer
Architecture (ISCA), pages 1–13, June 2019.

[7] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman
Lotfi-Kamran, and Hamid Sarbazi-Azad. Bingo spatial data
prefetcher. In 25th Int’l Symp. on High-Performance
Computer Architecture (HPCA), pages 399–411, February
2019.

[8] Intel Xeon. Xeon platinum. 2023.

[9] AMD EPYC. Amd epyc 7702.
https://www.amd.com/en/products/cpu/amd-epyc-7702p,
May 2019.

[10] AMD Ryzen. Amd ryzen threadripper. 2019.

[11] Brian Fields, Shai Rubin, and Rastislav Bod́ık. Focusing
processor policies via critical-path prediction. In 28th Int’l
Symp. on Computer Architecture (ISCA), pages 74–85, June
2001.

[12] Samantika Subramaniam, Anne Bracy, Hong Wang, and
Gabriel H. Loh. Criticality-based optimizations for efficient
load processing. In 2009 IEEE 15th International
Symposium on High Performance Computer Architecture,
pages 419–430, 2009.

[13] Anant Vithal Nori, Jayesh Gaur, Siddharth Rai, Sreenivas

Subramoney, and Hong Wang. Criticality aware tiered cache
hierarchy: A fundamental relook at multi-level cache
hierarchies. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pages
96–109, 2018.

[14] Sumeet Bandishte, Jayesh Gaur, Zeev Sperber, Lihu
Rappoport, Adi Yoaz, and Sreenivas Subramoney. Focused
value prediction: Concepts, techniques and implementations
presented in this paper are subject matter of pending patent
applications, which have been filed by intel corporation. In
2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pages 79–91, 2020.

[15] R. Manikantan and R. Govindarajan. Focused prefetching:
Performance oriented prefetching based on commit stalls. In
Proceedings of the 22nd Annual International Conference on
Supercomputing, ICS ’08, page 339–348, New York, NY,
USA, 2008. Association for Computing Machinery.

[16] Neelu Shivprakash Kalani and Biswabandan Panda.
Instruction criticality based energy-efficient hardware data
prefetching. IEEE Computer Architecture Letters,
20(2):146–149, 2021.

[17] Heiner Litz, Grant Ayers, and Parthasarathy Ranganathan.
Crisp: Critical slice prefetching. In Proceedings of the 27th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
’22, page 300–313, New York, NY, USA, 2022. Association
for Computing Machinery.

[18] Saugata Ghose, Hyodong Lee, and José F. Mart́ınez.
Improving memory scheduling via processor-side load
criticality information. SIGARCH Comput. Archit. News,
41(3):84–95, jun 2013.

[19] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N.
Patt. Feedback directed prefetching: Improving the
performance and bandwidth-efficiency of hardware
prefetchers. In 13th Int’l Symp. on High-Performance
Computer Architecture (HPCA), pages 63–74, February
2007.

[20] Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N.
Patt. Coordinated control of multiple prefetchers in
multi-core systems. In 42nd Int’l Symp. on
Microarchitecture (MICRO), pages 316–326, December 2009.

[21] Biswabandan Panda and Shankar Balachandran.
CAFFEINE: A utility-driven prefetcher aggressiveness
engine for multicores. ACM Transactions on Architecture
and Code Optimization (TACO), 12(3):30:1–30:25, August
2015.

[22] Biswabandan Panda and Shankar Balachandran. Expert
prefetch prediction: An expert predicting the usefulness of
hardware prefetchers. IEEE Computer Architecture Letters,
15(1):13–16, January 2016.

[23] Biswabandan Panda. Spac: A synergistic prefetcher
aggressiveness controller for multi-core systems. IEEE
Transactions on Computers, 65(12):3740–3753, 2016.

[24] Wim Heirman, Kristof Du Bois, Yves Vandriessche, Stijn
Eyerman, and Ibrahim Hur. Near-side prefetch throttling:
Adaptive prefetching for high-performance many-core
processors. In 27th Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), pages 28:1–28:11,
November 2018.

[25] Victor Jimenez, Alper Buyuktosunoglu, Pradip Bose,
Francis P. O’Connell, Francisco Cazorla, and Mateo Valero.
Increasing multicore system efficiency through intelligent
bandwidth shifting. In 2015 IEEE 21st International
Symposium on High Performance Computer Architecture
(HPCA), pages 39–50, 2015.

[26] John W. C. Fu, Janak H. Patel, and Bob L. Janssens. Stride
directed prefetching in scalar processors. In Wen-mei W.
Hwu, editor, Proceedings of the 25th Annual International
Symposium on Microarchitecture, Portland, Oregon, USA,
November 1992, pages 102–110. ACM / IEEE Computer
Society, 1992.

[27] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and
B. Sinharoy. Power4 system microarchitecture. IBM Journal
of Research and Development, 46(1):5–25, 2002.

12

https://dpc3.compas.cs.stonybrook.edu/champsim-traces/speccpu/
https://dpc3.compas.cs.stonybrook.edu/champsim-traces/speccpu/
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://utexas.app.box.com/s/2k54kp8zvrqdfaa8cdhfquvcxwh7yn85/folder/132804598561
https://www.amd.com/en/products/cpu/amd-epyc-7702p


[28] Chang Joo Lee, Onur Mutlu, Veynu Narasiman, and Yale N.
Patt. Prefetch-aware dram controllers. In 2008 41st
IEEE/ACM International Symposium on Microarchitecture,
pages 200–209, 2008.

[29] Chang Joo Lee, Veynu Narasiman, Onur Mutlu, and Yale N.
Patt. Improving memory bank-level parallelism in the
presence of prefetching. In Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitecture,
MICRO 42, page 327–336, New York, NY, USA, 2009.
Association for Computing Machinery.

[30] Nachiappan Chidambaram Nachiappan, Asit K. Mishra,
Mahmut T. Kandemir, Anand Sivasubramaniam, Onur
Mutlu, and Chita R. Das. Application-aware prefetch
prioritization in on-chip networks. In Pen-Chung Yew,
Sangyeun Cho, Luiz DeRose, and David J. Lilja, editors,
International Conference on Parallel Architectures and
Compilation Techniques, PACT ’12, Minneapolis, MN, USA
- September 19 - 23, 2012, pages 441–442. ACM, 2012.

[31] Vivek Seshadri, Samihan Yedkar, Hongyi Xin, Onur Mutlu,
Phillip B. Gibbons, Michael A. Kozuch, and Todd C. Mowry.
Mitigating prefetcher-caused pollution using informed
caching policies for prefetched blocks. ACM Trans. Archit.
Code Optim., 11(4):51:1–51:22, 2014.

[32] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N.
Patt. Prefetch-aware shared resource management for
multi-core systems. In Proceedings of the 38th Annual
International Symposium on Computer Architecture, ISCA
’11, page 141–152, New York, NY, USA, 2011. Association
for Computing Machinery.

[33] Rahul Bera, Konstantinos Kanellopoulos, Shankar
Balachandran, David Novo, Ataberk Olgun, Mohammad
Sadrosadati, and Onur Mutlu. Hermes: Accelerating
long-latency load requests via perceptron-based off-chip load
prediction. In 55th IEEE/ACM International Symposium on
Microarchitecture, MICRO 2022, Chicago, IL, USA,
October 1-5, 2022, pages 1–18. IEEE, 2022.

[34] Rahul Bera, Anant V. Nori, Onur Mutlu, and Sreenivas
Subramoney. Dspatch: Dual spatial pattern prefetcher. In
Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2019, Columbus,
OH, USA, October 12-16, 2019, pages 531–544. ACM, 2019.

[35] Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. Domino temporal data prefetcher. In
24th Int’l Symp. on High-Performance Computer
Architecture (HPCA), pages 131–142, February 2018.

[36] Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N.
Patt. Feedback directed prefetching: Improving the
performance and bandwidth-efficiency of hardware
prefetchers. In 2007 IEEE 13th International Symposium on
High Performance Computer Architecture, pages 63–74,
2007.

[37] Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N.
Patt. Coordinated control of multiple prefetchers in
multi-core systems. In 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO),
pages 316–326, 2009.

[38] Wim Heirman, Kristof Du Bois, Yves Vandriessche, Stijn
Eyerman, and Ibrahim Hur. Near-side prefetch throttling:
Adaptive prefetching for high-performance many-core
processors. In Proceedings of the 27th International
Conference on Parallel Architectures and Compilation
Techniques, PACT ’18, New York, NY, USA, 2018.
Association for Computing Machinery.

[39] Rahul Bera, Anant V. Nori, , Onur Mutlu, and Sreenivas
Subramoney. Dspatch: Dual spatial pattern prefetcher. In
52nd Int’l Symp. on Microarchitecture (MICRO), pages
531–544, October 2019.

[40] Ishan Shah, Akanksha Jain, and Calvin Lin. Effective
mimicry of belady’s min policy. In 2022 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), pages 558–572, 2022.

[41] Sudhanshu Shukla, Sumeet Bandishte, Jayesh Gaur, and
Sreenivas Subramoney. Register file prefetching. In Valentina
Salapura, Mohamed Zahran, Fred Chong, and Lingjia Tang,

editors, ISCA ’22: The 49th Annual International
Symposium on Computer Architecture, New York, New
York, USA, June 18 - 22, 2022, pages 410–423. ACM, 2022.

[42] An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-block
prediction & dead-block correlating prefetchers. In Per
Stenström, editor, Proceedings of the 28th Annual
International Symposium on Computer Architecture, ISCA
2001, Göteborg, Sweden, June 30-July 4, 2001, pages
144–154. ACM, 2001.

[43] Daniel A. Jiménez and Elvira Teran. Multiperspective reuse
prediction. In Hillery C. Hunter, Jaime Moreno, Joel S.
Emer, and Daniel Sánchez, editors, Proceedings of the 50th
Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2017, Cambridge, MA, USA,
October 14-18, 2017, pages 436–448. ACM, 2017.

[44] Dawei Wang and Xian-He Sun. Apc: A novel memory metric
and measurement methodology for modern memory systems.
IEEE Transactions on Computers, 63(7):1626–1639, 2014.

[45] Standard Performance Evaluation Corporation. SPEC
CPU2017, 2017.

[46] CVP-1 public traces. https:
//perscido.univ-grenoble-alpes.fr/datasets/DS382,
2018.

[47] CVP-1 private traces. https:
//perscido.univ-grenoble-alpes.fr/datasets/DS384,
2018.

[48] Cloudsuite traces for champsim. https://www.dropbox.com/
sh/pgmnzfr3hurlutq/AACciuebRwSAOzhJkmj5SEXBa/CRC2_
trace?dl=0&subfolder_nav_tracking=1, November 2017.

[49] The First Championship Value Prediction.
https://www.microarch.org/cvp1/cvp1/index.htm, June
2018.

[50] Daniel A. Jiménez and Calvin Lin. Dynamic branch
prediction with perceptrons. In 7th Int’l Symp. on
High-Performance Computer Architecture (HPCA), pages
197–206, January 2001.

[51] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr., and
Joel S. Emer. High performance cache replacement using
re-reference interval prediction (rrip). In 37th Int’l Symp. on
Computer Architecture (ISCA), pages 60–71, June 2010.

[52] ChampSim simulator.
http://github.com/ChampSim/ChampSim, May 2020.

[53] The 2nd data prefetching championship (dpc-2), June 2015.

[54] The 3rd data prefetching championship (dpc-3), June 2019.

[55] Mehran Shakerinava, Mohammad Bakhshalipour, Pejman
Lotfi-Kamran, and Hamid Sarbazi-Azad. Multi-lookahead
offset prefetching. In The 3rd Data Prefetching
Championship, June 2019.

[56] Glenn Reinman, Brad Calder, and Todd Austin. Fetch
directed instruction prefetching. In 32nd Int’l Symp. on
Microarchitecture (MICRO), pages 16–27, December 1999.

[57] Shang Li, Zhiyuan Yang, Dhiraj Reddy, Ankur Srivastava,
and Bruce L. Jacob. Dramsim3: A cycle-accurate,
thermal-capable DRAM simulator. IEEE Comput. Archit.
Lett., 19(2):110–113, 2020.

[58] Agner Fog. The microarchitecture of Intel, AMD and VIA
CPUs: An optimization guide for assembly programmers
and compiler makers, 2020. Available at https:
//www.agner.org/optimize/microarchitecture.pdf.

[59] SunnyCove microarhcitecture. https://en.wikichip.org/
wiki/intel/microarchitectures/sunny_cove, May 2018.

[60] SunnyCove microarhcitecture latency.
https://www.7-cpu.com/cpu/Ice_Lake.html, May 2018.

[61] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic
block distribution analysis to find periodic behavior and
simulation points in applications. In 10th Int’l Conf. on
Parallel Architectures and Compilation Techniques (PACT),
pages 3–14, September 2001.

[62] Scott Beamer, Krste Asanović, and David A. Patterson. The

13

https://perscido.univ-grenoble-alpes.fr/datasets/DS382
https://perscido.univ-grenoble-alpes.fr/datasets/DS382
https://perscido.univ-grenoble-alpes.fr/datasets/DS384
https://perscido.univ-grenoble-alpes.fr/datasets/DS384
https://www.dropbox.com/sh/pgmnzfr3hurlutq/AACciuebRwSAOzhJkmj5SEXBa/CRC2_trace?dl=0&subfolder_nav_tracking=1
https://www.dropbox.com/sh/pgmnzfr3hurlutq/AACciuebRwSAOzhJkmj5SEXBa/CRC2_trace?dl=0&subfolder_nav_tracking=1
https://www.dropbox.com/sh/pgmnzfr3hurlutq/AACciuebRwSAOzhJkmj5SEXBa/CRC2_trace?dl=0&subfolder_nav_tracking=1
https://www.microarch.org/cvp1/cvp1/index.htm
http://github.com/ChampSim/ChampSim
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/microarchitecture.pdf
https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove
https://en.wikichip.org/wiki/intel/microarchitectures/sunny_cove
https://www.7-cpu.com/cpu/Ice_Lake.html


GAP benchmark suite. CoRR, abs/1508.03619, August 2015.

[63] Allan Snavely and Dean M. Tullsen. Symbiotic jobscheduling
for a simultaneous multithreading processor. In Larry
Rudolph and Anoop Gupta, editors, ASPLOS-IX
Proceedings of the 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems, Cambridge, MA, USA, November 12-15,
2000, pages 234–244. ACM Press, 2000.

[64] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and
Norman P. Jouppi. Cacti-p: Architecture-level modeling for
sram-based structures with advanced leakage reduction
techniques. In 2011 Int’l Conf. on Computer-Aided Design
(ICCAD), pages 694–701, November 2011.

[65] Micron dram power calculator.
https://www.micron.com/-/media/client/global/
documents/products/technical-note/dram/tn4007_ddr4_
power_calculation.pdf, December 2015.

[66] Michael Ferdman, Almutaz Adileh, Yusuf Onur Koçberber,
Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic, Cansu
Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and
Babak Falsafi. Clearing the clouds: A study of emerging
scale-out workloads on modern hardware. In 17th Int’l Conf.
on Architectural Support for Programming Language and
Operating Systems (ASPLOS), pages 37–48, March 2012.

14

https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf

	Introduction
	Related work
	Recent Data Prefetching Mechanisms
	Load Criticality Predictors

	Why not existing solutions?
	CLIP: Design and Implementation
	CLIP: Training
	CLIP: Prediction-based Prefetching
	Storage Overhead

	Evaluation
	Performance analysis
	Sensitivity Studies
	CLIP vs. Hermes and DSPatch

	Conclusion
	Acknowledgement

