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ABSTRACT

Hardware prefetching is a latency-hiding technique that hides the

costly off-chip DRAM accesses. However, state-of-the-art prefetch-
ers fail to deliver performance improvement in the case of many-
core systems with constrained DRAM bandwidth. For SPEC CPU2017
homogeneous workloads, the state-of-the-art Berti L1 prefetcher,

on a 64-core system with four and eight DRAM channels, incurs

performance slowdowns of 24% and 16%, respectively. However,

Berti improves performance by 35% if we use an unrealistic con-
figuration of 64 DRAM channels for a 64-core system (one DRAM

channel per core).

Prior approaches such as prefetch throttling and critical load
prefetching are not effective in the presence of state-of-the-art
prefetchers. Existing load criticality predictors fail to detect loads
that are critical in the presence of hardware prefetching and the
best predictor provides an average critical load prediction accu-
racy of 41%. Existing prefetch throttling techniques use prefetch
accuracy as one of the primary metrics. However, these techniques
offer limited benefits for state-of-the-art prefetchers that deliver
high prefetch accuracy and use prefetcher-specific throttling and
filtering.

We propose CLIP, a novel load criticality predictor for hardware
prefetching with constrained DRAM bandwidth. Our load critical-
ity predictor provides an average accuracy of more than 93% and
as high as 100%. CLIP also filters out the critical loads that lead
to accurate prefetching. For a 64-core system with eight DRAM
channels, CLIP improves the effectiveness of state-of-the-art Berti
prefetcher by 24% and 9% for 45 and 200 64-core homogeneous and
heterogeneous workload mixes, respectively. We show that CLIP is
equally effective in the presence of other state-of-the-art L1 and L2
prefetchers. Overall, CLIP incurs a storage overhead of 1.56KB/core.
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Figure 1: Performance of state-of-the-art prefetchers nor-
malized to no prefetching for 45 64-core SPEC CPU2017 [1]
homogeneous workload mixes with DDR4-3200 DRAM chan-
nels (peak bandwidth per channel: 25.6GB/sec).
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Figure 2: Performance of state-of-the-art Prefetchers nor-
malized to no prefetching for 200 64-core heterogeneous
workload mixes created from SPEC CPU2017 [1] and GAP
[2] traces with DDR4-3200 DRAM channels (peak bandwidth
per channel: 25.6GB/sec).
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1 INTRODUCTION

Hardware data prefetching techniques play an important role in
hiding the long latency DRAM accesses. Hardware prefetchers
learn memory access patterns and fetch data into the cache hier-
archy before time so that future memory accesses get cache hits.
State-of-the-art L1 and L2 data prefetchers like Berti [3], instruc-
tion pointer classifier-based prefetching (IPCP) [4], signature path
prefetching with perceptron filtering (SPP-PPF) [5, 6], and Bingo
[7] have pushed the performance of L1 and L2 prefetchers. IPCP
and Berti train on the demand memory access stream at the L1 data
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cache and orchestrate prefetch requests across the cache hierarchy.
Berti is the state-of-the-art L1 prefetcher that outperforms IPCP and
provides high prefetch accuracy (an average of more than 82.9%).
Similarly, SPP-PPF, the state-of-the-art L2 prefetcher provides more
than 73.4% of prefetch accuracy. However, all these prefetchers
fail to deliver performance improvement in the case of many-core
systems with limited DRAM bandwidth.

The problem. Commercial many-core systems like 60-core Intel
Xeon Platinum [8], 64-core AMD EPYC Rome 7702P [9], and a
64-core AMD Threadripper 3990X [10] support eight DDR4-3200
channels. Figures 1 and 2 show performance improvements for
homogeneous and heterogeneous workload mixes with the state-
of-the-art L1 and L2 prefetchers on a 64-core simulated system
with a different number of DRAM channels. The performance is
normalized to a system with no prefetching with respective DRAM
channels. All the prefetchers perform well with high DRAM band-
width (64 DDR4-3200 channels for 64 cores). However, the effective-
ness of these prefetchers goes down significantly with low DRAM
bandwidth. A highly accurate Berti prefetcher also degrades per-
formance significantly.

Figure 3 shows the normalized increase in average L1, L2, and L3
demand miss latencies with Berti for a different number of DRAM
channels. For four and eight DRAM channels, the average L2 and L3
miss latencies increase by more than 1.9X. Note that the prefetcher
can still predict future accesses with more than 82.9% accuracy in
all cases. However, in the case of four and eight DRAM channels,
prefetch lateness jumps to 19% and 13%, respectively, which used
to be 1% for 64 DRAM channels. Note that, we consider the late but
useful prefetch requests as accurate.

Overall, the low DRAM bandwidth problem manifests into a
latency problem causing a slow DRAM response. The problem be-
comes worse in the presence of prefetching as prefetching accuracy
is not 100% and prefetching introduces bursty traffic. As a side
effect, the additional delay at the DRAM causes additional delays at
the L3, L2, and L1 miss status holding registers (MSHRs), on-chip
interconnect, and various queues at the different levels of the cache
hierarchy, for both the prefetch and demand requests. As a result,
demand and prefetch requests see high miss latency even for L2
and LLC hits.

The question of interest. For many-core systems, with constrained
DRAM bandwidth, which load addresses should be prefetched so
that we can mitigate the problem of additional latency caused by
prefetching?

The ideal solution. Ideally, for many-core systems with con-
strained DRAM bandwidth, prefetchers should be 100% accurate
and should prefetch load addresses that are critical for overall per-
formance (loads that cause retiring stalls at the head of the reorder
buffer (ROB)). Note that, not all L3 misses are costly even in the case
of low DRAM bandwidth as an aggressive out-of-order processor
with more than 500 ROB entries can hide a good fraction of L3 miss
latency. Note that for parallel applications, thread criticality also
plays an important role along with the load criticality as shown in
prior works [11, 12].

Why prior techniques are not good enough? In the case of
low DRAM bandwidth, prefetching for loads that are on the critical
execution path [13] or loads that contribute to maximum ROB stalls,
is a possible solution as it leads to a reduction in prefetch traffic
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Figure 3: Increase in on-chip L1, L2, and L3 demand miss
latencies with Berti normalized to no prefetching averaged
across 245 64-core mixes (45 homogeneous and 200 heteroge-
neous workload mixes).

without hampering the performance, significantly. Techniques for
finding out critical loads [14-20] depend on the effectiveness of load
criticality predictors used that use instruction pointer (IP) as the
signature. Keeping an L1 prefetcher in mind, we define a load as a
critical load if it stalls the head of the ROB while getting a response
from L2, L3, or DRAM. We find the best among the state-of-the-
art load criticality predictors provide 41% accuracy in predicting
critical load IPs. One of the primary reasons for this low accuracy
is that not all the load addresses that are generated by an IP are
critical.

Another approach is to use prefetcher throttling techniques [21-
26] that control the prefetcher’s aggressiveness to minimize inaccu-
rate prefetch requests and improve performance. There are software
techniques [27] that facilitate bandwidth-conscious prefetching for
the hardware prefetchers on the real system. However, prefetch
throttling techniques are effective with prefetchers like IP-stride
[28] and stream [29] as the prefetch accuracy of these prefetchers
is relatively low (an average accuracy of less than 60%). However,
state-of-the-art prefetchers deliver high prefetch accuracy. In gen-
eral, existing throttling techniques are coarse-grained (throttling
decisions based on the overall performance of the prefetcher) in
nature and these techniques cannot identify specific loads that are
responsible for performance loss in the case of constrained DRAM
bandwidth.

Shared resource management techniques[30-34] are also possi-
ble solutions that try to minimize the effect of inaccurate prefetch
requests at the shared resources like a last-level cache (LLC), DRAM,
and network on chip (NOC). However, these techniques use prefetch
accuracy again at a coarse-grained level at shared resources like
DRAM, LLC, and NOC.

Hermes [35] and DSPatch [36] are two related techniques that
can solve this problem. Hermes predicts the off-chip loads and ex-
pedites off-chip load accesses by bypassing the cache hierarchy.
However, we find that Hermes is not an effective approach as we
find that not all DRAM responses cause ROB stalls and a majority
of the ROB stalls (60%) come even from L2 and LLC hits, thanks to
the constrained DRAM bandwidth. DSPatch [36] is a technique that
can be applied to any prefetcher for DRAM bandwidth-conscious
prefetching. DSPatch improves the effectiveness of prefetchers in
case of high DRAM bandwidth. It uses prefetch accuracy-based
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prefetching if bandwidth is utilized heavily and it goes to prefetch-
ing based on prefetch coverage if the bandwidth is underutilized.
Note that DSPatch considers per DRAM-controller bandwidth in-
dependently and not the overall DRAM bandwidth across all the
DRAM controllers, and hence provides a myopic picture of band-
width utilization. For bandwidth-constrained systems, DSPatch uses
prefetch coverage-based prefetching, exacerbating the problem.
Our approach. We propose CLIP, a lightweight yet highly accu-
rate critical load predictor that advocates for highly accurate and
critical load prefetching. CLIP enhances the effectiveness of state-
of-the-art L1 and L2 prefetchers and provides answers to questions
like “which load address to prefetch" while keeping constrained
DRAM bandwidth in mind. CLIP works in two stages: (i) Stage I: it
filters out critical loads (loads that stall the head of the ROB while
servicing an L1 load miss) and uses a criticality predictor using
a critical signature to predict the dynamic behavior of loads. (ii)
Stage II: It uses a fine-grained accuracy filter to find out whether
the underlying prefetcher will be able to prefetch accurately the
predicted critical load addresses.

Our contributions. We provide a detailed overview of existing
load criticality predictors, and prefetch throttlers, and show why
existing techniques are not effective in the presence of constrained
DRAM bandwidth(Section 3). We overcome the limitations of ex-
isting critical IP predictors and prefetch throttlers and propose
CLIP (Section 4). CLIP uses fine-grained features instead of an IP
to predict the criticality and usefulness of a given load IP. Experi-
mental results show that CLIP provides accuracy as high as 100%
(on average 93%) in predicting critical load addresses that leads
to accurate prefetching. For a 64-core system with eight DRAM
channels, CLIP improves the performance of state-of-the-art L1
prefetcher by 24% and 9% for 45 and 200 64-core homogeneous
and heterogeneous workload mixes, respectively (Section 5). CLIP
provides these performance improvements with additional storage
of 1.56KB per core.

2 RELATED WORK

2.1 Recent Data Prefetching Mechanisms

Signature path prefetching (SPP) [5] and Perceptron Prefetch
Filtering (PPF) [6] uses a lookahead mechanism to predict the
future address deltas for a given signature (e.g., a memory region).
For each region, SPP stores the history of the past deltas observed
in the form of a signature. SPP uses this signature to predict the
next delta in the path and generates a prefetch request accordingly.
PPF allows SPP to continue the prediction regardless of confidence.
It uses a perceptron-based prefetch filter to decide whether to issue
prefetch requests or not based on their usefulness.

Bingo [37] argues that correlating memory access patterns to a
single event is not enough to perform effective prefetching. A single
event stands for the occurrence of one incident e.g. execution of
the instruction with IP ‘A’. Thus, Bingo fine-tunes its learning with
longer event recurrences. Bingo uses the following two events for
the same: (i) IP + Offset - the short event when an IP requests the
same offset in any region, (ii) IP + Address - the long event when
an IP requests the same address. The short event gets its name from
the fact that it recurs more frequently than the long event.
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Instruction pointer classifier prefetching (IPCP) [4] uses a
lightweight multi-level prefetcher. IPCP classifies IPs into three
classes and prioritizes prefetch requests by classes. After the classi-
fication, IPCP uses a bouquet of prefetchers corresponding to each
class to generate the prefetch requests. IPCP is trained at the L1D
with the benefits of monitoring the L1D access stream.

Berti [3] is the state-of-the-art local-delta L1 data prefetcher that
trains at L1 and orchestrates prefetch requests across L1 to L3. Berti
emphasizes the detection of timely local (per IP) deltas along with
a precise mechanism to compute the local coverage of the detected
timely deltas. Berti uses watermarks based on local coverage of
deltas and decides the prefetch fill level. The high coverage timely
deltas lead to a highly accurate prefetcher that outperforms IPCP,
SPP-PPF, and Bingo.

2.2 Load Criticality Predictors

Focused Value Prediction based Criticality detector [16] uses
a confidence mechanism to mark instructions whose execution is
in-flight when they are present in the retire width window (distance
between the ROB head and the instruction is less than retire width).
Criticality Aware Tiered Cache Hierarchy (CATCH) [15] uses
an enumeration of the data dependency graph (DDG) to find out
critical IPs. The costliest path in the DDG is the critical path and
all the load IPs lying on this path are the critical load IPs. CATCH
captures the costliest path incrementally by checking the costliest
incoming edge during the insertion of each retiring instruction into
the graph. Using the DDG along with a confidence mechanism,
CATCH marks the critical IPs.
Focused Prefetching (FP) [17] Focused Prefetching showcases
that instructions that stall at the head of the ROB comprise of a few
loads; loads Incurring Majority of Commit Stalls (LIMCOS). It also
shows that LIMCOS does not entirely overlap with delinquent loads
i.e., a few loads that cause the most misses in the cache hierarchy
or loads that fall on the critical path of execution.
Commit Block Predictor (CBP)[20] predicts the loads that stall
the head of the ROB. It also uses maximum stall time or total stall
time to predict a critical load.
ROB occupancy based criticality predictor (ROBO) [18] uses
ROB occupancy for critical IP detection. On a ROB stall during
retirement, higher ROB occupancy is an indicator of a critical load.
It also uses thresholds based on ROB stalls.
Critical Slice Prefetching (CRISP) [19] is a technique that con-
siders loads that get LLC misses and with low memory level paral-
lelism (MLP) as the critical loads. CRISP sets pre-defined thresholds
on LLC miss count and MLP for a given set of workloads.

Note that some of the above proposals are proposed for predict-
ing the criticality of all kinds of instructions, and can be used for
predicting critical load instructions, only.

3 WHY NOT EXISTING SOLUTIONS?

Load criticality predictors. Existing techniques that predict load
criticality [15-20] when used along with hardware prefetching
suffer from low prediction accuracy in detecting critical IPs while
trying to achieve higher prediction coverage. Figure 4 shows the
load criticality prediction accuracy and coverage of some of the
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Figure 4: Load criticality prediction accuracy and coverage of
state-of-the-art critical load predictors averaged across 245
64-core workload mixes (45 homogeneous and 200 heteroge-
neous mixes).
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Figure 5: Performance of Berti with critical load predictors
normalized to no prefetching for (a) 45 homogeneous and (b)
200 heterogeneous 64-core workload mixes.

state-of-the-art load criticality predictors. We quantify load criti-
cality prediction accuracy as the ratio of correct predictions made
by the predictor and load IPs that stall the head of the ROB while
servicing an L1 miss. Predictors like CATCH and FVP provide 100%
load criticality prediction coverage. However, in terms of load criti-
cality prediction accuracy, these techniques over-predict leading to
poor criticality prediction accuracy. One of the primary reasons for
this low criticality prediction accuracy is that different instances
of the same load IP do not lead to a stall at the head of the ROB.
However, most of the existing predictors assume that if a load IP is
critical and stalls the head of the ROB, it will be critical all the time
(static-critical), which is not the case for all load IPs. For example,
conditional branches and branch histories affect the loads and their
criticality, resulting in dynamic-critical IPs.

Table 1 summarizes why existing load criticality predictors fail
to do a good job in the presence of hardware prefetching. Figure
5 shows the performance of Berti in the presence of critical load
predictors. On average, critical load predictors fail to improve the
performance of Berti in the presence of constrained DRAM band-
width.

Prefetch throttlers. Existing prefetch throttling techniques like
feedback-directed prefetching (FDP), hierarchical prefetcher aggres-
siveness controller (HPAC), synergistic prefetcher aggressiveness
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Figure 6: Performance of Berti with prefetch throttlers nor-
malized to no prefetching for (a) 45 homogeneous and (b) 200
heterogeneous 64-core workload mixes.

controller (SPAC), and near side prefetch throttling (NST) [25, 38—
40] use prefetch accuracy as one of the primary metrics for con-
trolling prefetch degree and distance. However, state-of-the-art
prefetchers are more accurate than IP-stride and stream prefetch-
ers (most of these throttlers are applied to IP-stride and stream
prefetchers), and there is a marginal utility in terms of performance
improvement when we apply prefetch throttlers on top of prefetch-
ers like Berti. Second, it is not essential to prefetch all the loads
even in the case of high prefetch accuracy because it may not lead
to any performance improvement, thanks to a large out-of-order
instruction window. Third, existing prefetch throttlers operate at a
coarse granularity and measure prefetch accuracy and other met-
rics of interest from a shared memory system point of view, for an
epoch of a few kilo instructions or cycles. However, even within
an epoch, there are loads that provide high accuracy even if the
overall prefetch accuracy for that epoch is low and vice versa.
Figure 6 shows the effectiveness of prefetch throttlers for the
Berti prefetcher with constrained DRAM bandwidth. Some of these
throttlers are effective in improving performance marginally. How-
ever, the performance slowdown is still huge for systems with low
DRAM bandwidth.
Prefetch aware shared resource management techniques.
With highly accurate prefetchers like Berti, cache pollution at the
LLC is not a problem. We corroborate the findings of a recent work
[41] that shows that the impact of inaccurate prefetching because of
LLC pollution is marginal. Nevertheless, we use the state-of-the-art
LLC replacement policy Mockingjay [42] that significantly min-
imizes the prefetcher-caused negative interference. Our baseline
system uses NOC and DRAM controllers that are prefetch aware
[32][30]. On average, the utility of these techniques is marginal
with an average performance improvement of less than 0.72% when
compared to NOC and DRAM controllers that are not prefetch-
aware, again thanks to the high prefetch accuracy of Berti. Overall,
these techniques are effective for prefetchers with a relatively lower
prefetch accuracy.
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Table 1: Limitations of existing load criticality predictors in the presence of hardware prefetchers.

CATCH [15] It uses the dependency graph [13] and tags loads that are in the vicinity of branch predictions as critical even if the loads do not cause stalls. Blind to MLP, low latency loads masked by
high latency loads are also flagged as critical.

FP [17] Relies on the number of stall cycles at the ROB as a metric. It does not try and predict IPs that do not stall significantly. Overall, it marks most of the L3 misses as critical loads.

FVP [16] Identifies the root of a data dependency chain. So, it ends up identifying all those loads that are likely to delay the execution of other loads/ instructions. The prediction accuracy is low
because it ends up tagging excessively (any load that is the producer of any other instruction in its vicinity).

ROBO [18] Once an IP is flagged critical, throughout the execution, the IP is considered critical. Thus, it is blind to the dynamic nature of an IP’s criticality throughout its many recurrences.

CBP [20] Same as ROBO.

CRISP [19] Considers only LLC misses and MLP. It does not consider L1 and L2 misses that stall the head of the ROB.

4 CLIP: DESIGN AND IMPLEMENTATION

CLIP advocates for prefetching critical load addresses that have
a high chance of getting cache hits (if the prefetcher prefetches
the critical load addresses). CLIP considers both load criticality
and fine-grained (per IP) prefetch accuracy. CLIP drops a prefetch
request to an address X if (i) X is not predicted to be critical or (ii)
X is predicted to be critical but the prefetcher cannot provide high
prefetch accuracy for the trigger IP corresponding to X.

CLIP identifies the IPs that are critical for overall system per-
formance and triggers data prefetching only for those selected IPs
provided the prefetch requests generated by these IPs will be ac-
curate. Note that, all the memory requests generated by a given IP
are not critical in the presence of high-performing data prefetch-
ers. So, a simple binary classification is not useful for our purpose.
Similarly, triggering prefetching only for critical IPs will not help
unless the underlying prefetcher is accurate in predicting the future
load addresses for all the critical IPs. To mitigate this problem, we
propose a two-stage critical and accurate IP predictor that can lead
to accurate prefetching for critical loads, only.

Stage I: CLIP shortlists IPs that stall the head of the ROB frequently
while waiting for a response from L2, L3, or DRAM. CLIP also uses
a signature called critical signature to predict the dynamic nature
of the criticality of loads.

Stage II: Next, CLIP selects the load addresses corresponding to
critical IPs that can be prefetched accurately by the underlying
prefetcher.

Note that a hit at the L1 can also stall the head of the ROB and in
fact, it is the case for a majority of the memory accesses as rightly
mentioned in one of the recent works [43]. However, an L1 data
prefetcher cannot hide the ROB stalls for loads that get L1 hits.

4.1 CLIP: Training

ROB stall and miss-level flags. To find out whether an IP has
stalled the retiring process at the head of the ROB, we use a ROB
stall flag that is set the moment ROB stops retiring instructions. We
also use a miss level flag that is appended along with the memory
request that goes to the memory hierarchy. The miss level flag is
set to one if the load request is serviced by L2, LLC, or DRAM but
not by L1. On a load response back to the processor, we check if
the ROB stall flag is set and the miss-level flag is non-zero. If it is
the case, then we shortlist the corresponding IP by sending it to a
structure called the criticality filter. Note that a miss level flag of
zero indicates that the load gets a hit either at the L1 or at the LSQ.
Criticality filter and prefetch accuracy tracker. Next, we popu-
late the criticality filter that stores all the IPs that stall the head of
the ROB while servicing an L1 miss. We also use a criticality counter

to count the number of times an IP stalls the ROB while getting a re-
sponse from L2, L3, or DRAM. Once an IP crosses a criticality count
threshold, we start triggering the underlying prefetching technique
and monitor prefetch accuracy at a finer granularity (per IP level) so
that we will be able to quantify its utility in terms of both, prefetch
accuracy and criticality. To find out accuracy at a finer granularity,
we use two counters: prefetch issue count and prefetch hit count for
a given IP. We use a utility buffer that can help us in providing per
IP hit count. The utility buffer stores the following information for
each prefetch address issued by the prefetcher: the prefetch address
X, and the triggering load IP that triggers the prefetch address. In
the future, if a demand request gets a match for the prefetch ad-
dress in the utility buffer that was issued by the prefetcher then we
increment the hit count for the corresponding IP in the criticality
filter. We measure per IP accuracy at the end of one exploration
interval. We define one exploration interval based on the number
of L1D misses. At the end of each exploration interval, we check for
IPs that deliver a 90% hit rate per IP to initiate prefetching, for the
next window. We maintain a bit in the criticality filter that shows
whether an IP is critical as per the criticality count and generates
highly accurate prefetching. We change this bit after every explo-
ration interval based on the prefetch hit rate and critical count
achieved by the IP in that same interval. Note that we use a highly
tuned Berti prefetcher that uses the best watermarks (coverage of
local deltas) for a 64-core system to achieve the best coverage and
accuracy.

4.2 CLIP: Prediction-based Prefetching

Criticality predictor. Once we filter out the IPs that stall the head
of the ROB for at least criticality-count-threshold! number
of times and the corresponding IP hit rate is high (90%), then we
continue prefetching for the respective IP and use the criticality
predictor to predict the criticality of future prefetch addresses that
will be generated by the same IP. We need a predictor as the behavior
of an IP is dynamic in nature. For example, in mcf_1554B, not all
prefetch addresses triggered by one IP are critical. We use a new
signature called critical signature that is created based on a hashed
bitwise XOR of an IP, virtual address, global conditional branch
history of the last 32 branches, and global criticality history of the
last 32 loads. This new signature makes sure that we are predicting
the criticality of a given IP for a given load address along with the
information about recent control flow and recent criticality history.
The critical-signature is inspired by some of the prior works on
caching and prefetching [6, 35, 44, 45]. Each entry in the criticality

'We use four as the count threshold as it provides the sweet spot in terms of the
number of IPs selected, storage, and performance improvement achieved.



MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Acc. and

IP Tag| crit. count| Hit count | Issue count erit?

Criticality tag. | Saturating counter

(a) Criticality filter and accuracy tracker (b) Criticality predictor

Figure 7: Criticality filter and criticality predictor.

EI: ROB head
ri/l»lfﬁ;level flag — o
1 Il
D:D:;D%D‘”’””””"”""‘i L1D Prefetcher
LOAD;Queue e
}952',",,9, Prefetch addreess, Trigger IP| |
I

Criticality

Horoe 1
|[Criticality] | cRIT. SIG -
{[Filter and| __——=—~=— _ _ | Predictor |Critical? Criticality flag=1
oty g@ta_nqec_c

! Prefetch if critical and accurate
|tracker N (4] i
| Accurate? else drop it

Figure 8: CLIP in action for an L1 prefetcher. The dotted lines
show the training phase.

predictor maintains a criticality tag. The predictor is indexed by the
critical signature.

We maintain a k-bit saturating counter that is initialized to %,
for each entry of the criticality predictor where we increment the
counter on an L1 miss that stalls the head of the ROB and decrement
the counter if it leads to an L1 hit or an L1 miss that does not stall
the head of the ROB. Note that on average, with Berti prefetcher,
L1 hit rate is more than 90% for SPEC CPU2017 benchmarks. We
drop a prefetch request in two cases: (i) the most significant bit
(msb) of a saturating counter is zero or (ii) the msb is one but
the per IP accuracy is low. We continue prefetching if the msb is
one and the per-IP accuracy is high. With the prefetch request,
we append a criticality flag of that goes through the entire
memory hierarchy. Note that in contrast to existing literature [3, 4,
6] that decides which level in the cache the prefetch address will get
filled into, we prefetch all the requests to L1 for Berti because we
ensure that we are fetching only for critical IPs that miss at L1 and
show high utility in terms of per IP prefetch accuracy. Figure 7(a)

shows the structure of a criticality filter with the accuracy tracker.

Figure 7 (b) shows the structure of the criticality table. Note that the
underlying prefetcher continues to learn memory access patterns
irrespective of our prediction.

Which IP for the signature? A prefetch request generated by
a prefetcher does not have any IP information. So, we use the IP
of a load request that triggers a prefetch request as our IP for the
prefetch requests. So, when an address is generated by a prefetcher
for a given trigger IP, we probe the criticality predictor with the
prefetch address and the triggered IP that will create a critical
signature. Note that a prefetch request triggered by one IP can get
a hit at the utility buffer for a future request generated by another
IP. However, we use the trigger IP as the IP of interest for our
prediction as our goal is to decide whether to prefetch or not in the
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future for a given trigger IP and a given prefetch address.
Phase change and count reset. We reset the hit count and issue
count to half of the current value (to maintain hysteresis) after
one exploration window (k number of misses to L1D, where k is
empirically determined to be just greater than the number of cache
lines at the L1D. We also reset all the entries of the criticality filter,
accuracy tracker, and criticality predictor, and stop prefetching, on
an application phase change. We use accesses per cycle (APC) [46]
at L1D as a metric to detect phase change. We monitor the APC
of the last 16 windows and take the average APC. If the current
APC is different from the average APC by more than 15% then we
term it an application phase change. We empirically select the 15%
threshold based on APCs of SPEC CPU2017 and GAP traces. This
method of phase change detection is used in one of the prior works
[18].
CLIP for L2 prefetchers. So far, we show the design of CLIP for
an IP-based L1 Berti prefetcher. CLIP can be easily extended for
non-IP-based L2 prefetchers like SPP-PPF. The criticality detection
and prediction happen at the L2 considering L2 misses that stall
the head of the ROB as the critical loads. In case the IP information
is not available, then the IP hit rate is replaced by the page hit rate.
Load Criticality conscious NOC and DRAM. With CLIP, we pass
the criticality flag along with the prefetch request that is selected
by CLIP. We use the same flag to prioritize packets at the NOC and
DRAM controller so that demand-loads and critical and accurate
prefetch requests get the same priority at the NOC and DRAM
controller.
The crux. Compared to prior works like CRISP [19] and FP [17]
that also use ROB stalls, the primary difference with CLIP is its
critical signature driven by branch history and criticality history,
and the dynamic prediction using the critical-signature.
CLIP design choices. CLIP uses the global branch history and
criticality history of the last 32 branches. We find that short histories
of branch and criticality do not help in improving the prediction
accuracy and in fact, the accuracy drops compared to a simple
IP-based prediction. Branch history beyond 16 and load criticality
history beyond eight start showing improvement in prediction
accuracy as it helps the critical signature in distinguishing loads
based on control flow and criticality history. We find zero utility in
maintaining longer histories: more than 32 for branch and criticality
outcomes. We use an exploration window, which is a window with
an L1D miss count just greater than the size of the L1D (768 cache
lines). Our window is defined as a window of 1024 L1D misses.
We observe for SPEC CPU2017 benchmarks, 768 misses occur on
average every 87,000 cycles. Smaller exploration windows make the
training noisy leading to noisy per IP hit rates. The threshold for
per-IP hit rate should be high else CLIP loses its effectiveness. We
find that even an IP hit rate of more than 90% is the best threshold.
However, it should not be 100% because most of the IPs do not
reach 100% per IP hit rate. Similarly, it should not be below 80%
because after that CLIP loses its effectiveness. Note that, one can
argue about the usage of existing per IP local delta coverage of Berti
as a proxy for per IP prefetch accuracy. However, the correlation
does not hold true for all the benchmarks.

Figure 8 illustrates the events of interest. In step @, a load re-
quest passes through the LOAD queue with a miss-level flag that is
initialized to zero for all the ROB entries. In step @, the load request
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Table 2: Storage overhead of CLIP.

Structure [ Storage ]

Criticality Filter 32-set, 4-way (128-entry). Each entry: 6-bit IP tag, | 336 Bytes
2-bit criticality count, 6-bit hit count, 6-bit prefetch
count, and Is-critical-and-accurate bit

Criticality predic- | 128 sets, 4-way (512-entry) cache. Each entry: 6-bit | 640 Bytes

tor criticality tag and 3-bit saturating counter, NRU bit

ROB extension Miss level flag, 1 bit per entry (512 entries) 64 Bytes

ROB flag 1 bit 1 bit

Utility buffer 64 entries, each entry 6-bit IP tag, 58-bit cache-line | 512 Bytes
aligned prefetch address

Branch and criti- | 32-bit array for each 8 Bytes

cality history

APC Two 11 bit registers 22 bits

exploration 10 bits for reset count 10 bits

widow

Total 1.56 KB

goes to the memory hierarchy, and miss-level flag gets updated,
and a response comes back from the memory hierarchy. At the
same time, the criticality filter and the prefetch accuracy tracker
are updated with the IP if the response comes from L2, L3, or DRAM.
In step @, the prefetch addresses (X) generated by the prefetcher
along with the trigger IP go through the criticality filter and the
predictor. A hit in the criticality predictor can have two outcomes.
A hit with high confidence (as per the saturating counter) results
in prefetching if the per-IP accuracy is high, with a criticality flag
appended to the prefetch packet. In case of a miss or low confidence,
the prefetch request is dropped and not allocated to the MSHR of
L1 (step @).

4.3 Storage Overhead

CLIP incurs additional storage in the form of criticality filter, crit-
icality predictor, accuracy tracker, and additional bits (miss-level
flag) for each entry at the ROB. We use a per-core criticality filter
of 128 entries with an IP tag of six bits and a criticality count (crit.
count) of two bits. Our replacement policy uses crit. count bits to
find a victim IP (least frequently used policy). The filter uses two
counters issue count and hit count to keep track of the number of
prefetch requests that are triggered by a given IP and the number
of cache hits for that corresponding triggered IP. It also uses an
is-critical-and-accurate bit per entry.

We use a utility buffer of 64 entries, which is a circular buffer that
stores the recent 64 pairs of prefetch addresses and the correspond-
ing triggering IPs in a temporal order. It is implemented as a content
addressable memory (CAM) with input as the prefetch address (X)
that was prefetched within a window of the last 64 prefetch requests
and the output is the IP that triggered the prefetch address X. On a
hit at the CAM, the hit count is incremented for the corresponding
IP tag at the criticality filter. This helps in tracking the accuracy of
prefetch requests per IP. Our criticality predictor has three ports
(LOAD width of two for the request path and a port for LOAD
response path), 512 entries (128 sets, 4 ways) with a 6-bit criticality
tag that uses a 3-bit saturating counter to predict the load criticality.
Table 2 shows the storage overhead of 1.56KB per core. Existing
criticality predictors take three to five KB per core whereas existing
throttlers need four to 10s of KBs per core.

Is 512 entries enough? Our criticality predictor is of just 512 en-
tries that are indexed by the critical signature, thanks to our filter
that makes sure we do not predict the criticality of loads for all
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Table 3: Simulation parameters of the baseline system.

Core 64 cores, Out-of-order, hashed perceptron branch predictor [52],
4 GHz with 6-issue width, 4-retire width, 512-entry ROB

TLBs L1ITLB/DTLB: 64 entries, 4-way, 1 cycle, STLB: 2048 entries, 16-way,
8 cycles

LiI 32 KB, 8-way, 4 cycles

L1D 48 KB, 12-way, 5 cycles, Berti [3]

L2 512 KB 8-way associative, 10 cycles, SRRIP [53], non-inclusive

LLC 2 MB/core, 16-way, 20 cycles, Mockingjay [42], non-inclusive

MSHRs 8/16/32 at L11/L1D/L2, 64/core at the LLC

Network Router 2-stage wormhole, six virtual channels per Port, five flit buffer depth,
eight flits per data packet, and one flit per address packet.

8x8 mesh, each node has a router, processor, private L1 cache, L2
cache, and an LLC slice

DDR4-3200, Eight channels/64-cores, PADC [30], 64-entry RQ and
WQ, reads prioritized over writes, write watermark: 7/8th

4 KB row-buffer per bank, open page, burst length 16, trp, RCD, CAS*
12.5 ns

Network Topology

DRAM controller

DRAM chip

the IPs. As our criticality filter and prefetch accuracy tracker filter
out most of the IPs, it helps in reducing the storage budget of our
criticality predictor by 4.75 times on average.

With 512 entries, it is possible that there will be negative interfer-
ence because of aliasing. However, we find that our hash function
used as part of the critical signature scatters the concurrent load
requests (signatures) to different entries. For load addresses that
get mapped to the same entry of the criticality predictor but re-
cur after a long gap, we find that the saturating counter used per
entry takes care of the recent behavior of one load, only. We also
see a positive correlation, especially for load addresses triggered
by one IP within a loop. Note that this observation holds true for
SPEC CPU2017 benchmarks [47] only. For client/server [48, 49] and
CloudSuite [50] workloads, we need around 2048 entries to mitigate
the aliasing and other interference problem. However, for most of
the client/server workloads, 512 entries are enough. For example,
server_013 trace [51] has 32 thousand IPs within a window of
30M instructions. However, only nine IPs are critical.

5 EVALUATION

Simulation methodology. We use a modified version of Champ-
Sim [54], a trace-driven simulator used for the 2nd and 3rd Data
Prefetching Championships (DPC-2 [55] and DPC-3 [56]). Recent
prefetching proposals [3, 4, 6, 7, 57] are also coded and evaluated
on ChampSim. The recently modified ChampSim extends the one
provided with the DPC-3 with a decoupled front-end [58] and a
detailed memory hierarchy support for address translation that
further improves the baseline performance. We extend it further
by adding a detailed network-on-chip (NOC) with sliced LLCs. We
also integrate DRAMSim [59] with ChampSim as it does not model
a detailed DRAM with all the DRAM timing constraints. ChampSim
provides a knob called low-bandwidth to simulate a single-core
with low DRAM bandwidth to understand the constrained band-
width effects. However, we find that the knob is not realistic and
we simulate a detailed 64-core system to see the impact of low
DRAM bandwidth on a many-core system. Table 3 summarizes our
system configuration, mimicking an Intel Sunny Cove microarchi-
tecture [60-62].

Workloads. We use the simpoint [63] traces from SPEC CPU2017 [47],
GAP [2, 64], CloudSuite [50], and client and server traces provided
as part of Value Prediction Championship (CVP) [48, 49, 51]. We
limit our study to memory-intensive SPEC, GAP, and CloudSuite
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Figure 9: CLIP with state-of-the-art prefetchers for (a) 45
homogeneous and (b) 200 heterogeneous mixes on a 64-core
system with eight DRAM channels.

traces, those that showed at least one miss per kilo-instruction
(MPKI) with a 2MB LLC/core in our modeled baseline system. All
GAP traces and 45 SPEC CPU2017 traces are memory-intensive.
We use all the CloudSuite and CVP traces that include client/server
traces. We provide a detailed analysis of 64-core homogeneous
mixes with eight DRAM channels where all the cores of a many-
core system run the same benchmark in the SPEC RATE mode. We
also show results for heterogeneous mixes.

We evaluate CLIP with 64-core multi-core simulations. We warm
up the caches for 100M instructions per core (6400M instructions
for a 64-core system) and collect statistics for the next 200M per-
core instructions/core. For CloudSuite and client/server traces, we
simulate 30M instructions per core. For our simulations, we use
45 64-core homogeneous mixes and 200 randomly generated het-
erogeneous mixes based on SPEC CPU2017 and GAP benchmarks.
For each mix, when a core finishes its 200M instructions, it gets
replayed until all the cores finish their respective 200M instructions.
We report performance in terms of weighted speedup [65] with
respect to no prefetching as no-prefetching performs better than
state-of-the-art prefetchers in the presence of constrained DRAM
bandwidth. Weighted speedup is equivalent to system throughput
which accounts for the number of programs completed per unit of
time. We provide detailed analysis for homogeneous mixes as it is
relatively easier to reason about with all the 64 cores running the
same trace.

Energy model. We also report the dynamic energy consumption of
the memory hierarchy. We obtain the energy consumption of reads
and writes to tag and data arrays at each cache level and DRAM
with CACTI-P [66] and Micron DRAM power calculator [67]. Then,
we compute the total energy expenditure by accounting for the
number of accesses of each type across the memory hierarchy. We
use the 7 nm process technology.

Evaluated Techniques. We compare the effectiveness of CLIP with
high-performing L1D and L2 prefetchers like Berti, IPCP, Bingo
and SPP-PPF. However, we focus mostly on Berti as Berti is the
high-performing prefetcher among the evaluated prefetchers. As a
related comparison, We compare CLIP with Hermes and DSPatch
too. For all prefetchers, we use a highly tuned implementation
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as provided by the authors and tune it again for the parameters
mentioned in Table 3.

Key results. Figures 9 shows the normalized performance improve-
ment (weighted speedup) of CLIP with state-of-the-art L1 and L2
prefetchers. CLIP is equally effective across all the prefetchers. For
the most accurate prefetcher Berti, CLIP provides an improvement
of 24% and 9% for 45 homogeneous and 200 heterogeneous work-
load mixes, respectively. Note that 200 64-core heterogeneous mixes
were created from SPEC CPU2017 and GAP benchmarks, randomly
with no bias towards any specific benchmark. Compared to homo-
geneous mixes, heterogeneous mixes have mixes where there is no
significant performance drop even in the case of low DRAM band-
width. This happens for the mixes where half of the benchmarks
are almost cache friendly and their respective LLC MPKI is closer
to one. With large LLCs of 128MB, these mixes get most of their
demand hits at the LLC.Next, to understand the subtleties better,
we show a detailed performance analysis of CLIP with Berti for 45
homogeneous workload mixes.

5.1 Performance analysis

Figure 10 shows the normalized performance improvement of Berti
with CLIP, for 45 64-core homogeneous mixes. On average, CLIP
enhances Berti’s performance by 24% (16% slowdown becomes 8%
improvement). With CLIP, out of 45 64-core homogeneous mixes,
only three mixes show performance slowdowns whereas, without
CLIP, more than 26 mixes show performance slowdowns. Note
that the contribution of criticality-conscious NOC and DRAM is
just 2.8% out of 24% of enhanced performance. Also, on average,
77.5% of the performance benefit comes from criticality filtering
and prediction, and the rest comes from accuracy filtering.
Latency improvement. To understand the primary contributors of
performance benefits, Figure 11 shows improvement in average L1
miss latencies with CLIP when compared with Berti without CLIP.
On average across 45 64-core mixes, the average L1 miss latency
drops from 168 cycles to 132 cycles, with maximum improvements
of more than 900 cycles for one of the mixes that contain 64 copies of
1bm. The improvement in latency also helps in improving prefetch
lateness (on average, it improves from 13% to 5.8%). Note that CLIP
improves the average miss latency. However, this comes at the cost
of the prefetch coverage as CLIP drops prefetch requests that are
not critical and accurate.

Miss coverage. Figure 12 shows the average drop in prefetch cov-
erage at L1, L2, and LLC. There is a significant drop at the L1 (7%)
whereas, at L2 and LLC, the coverage drops by 2% and 3%, respec-
tively. This trend provides an interesting trade-off in terms of miss
rate and miss. latency as CLIP improves performance even if there
is a drop in coverage thanks to the average improvement in L1 miss
latency (36 cycles).

Load criticality prediction accuracy and coverage. The im-
provement in average miss latency is caused by high critical load
prediction accuracy as compared to the best of critical load pre-
dictors(Figure 13). However, a high prediction accuracy does not
necessarily result in high load criticality prediction coverage (Figure
14). On average, CLIP provides a load criticality prediction accuracy
of 93% that helps in covering 76% of the critical loads that stall the
head of ROB while getting responses from L2, LLC, and DRAM.
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Figure 10: Performance normalized to no prefetching for 45 64-core homogeneous mixes with eight DRAM channels.
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Figure 11: Average L1 miss latency for 45 64-core homogeneous mixes with eight DRAM channels.
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This high load criticality prediction accuracy and coverage led to a
significant drop in the prefetch requests generated by Berti.
Number of critical IPs. Figure 15 shows the absolute number of
critical IPs (divided into static-critical and dynamic-critical ones)
as detected by CLIP over a window of 200M simulated instructions.
The dynamic IPs are the IPs that sometimes behave like critical
IPs and sometimes not. For 20 mixes, the number of critical and
accurate IPs selected by CLIP is just 20, whereas the actual number
of IPs is in the hundreds. On average, around 50% of the IPs are
dynamic-critical IPs. Overall, there are a few IPs that stall the head
of the ROB while getting a response from L2, LLC, or DRAM, which
helps in reducing the prefetch traffic.

Figure 16 shows the drop in prefetch requests generated by
Berti in the presence of CLIP. On average, there is a 50% drop
in prefetch requests and as high as 90% (for cactubssn). Note
that the improvement in the accuracy of critical and accurate IP
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Number of critical and accurate IPs (static-critical
and dynamic-critical) per core selected by CLIP for 45 64-core

SPEC CPU2017 homogeneous mixes over a window of 200M

instructions.

Figure 15

Performance normalized to no prefetching aver-

aged across CloudSuite and CVP 64-core homogeneous work-

Figure 17
loads.

Dynamic energy. CLIP improves run-time that directly leads to

with

predictor results in an increase in overall prefetch accuracy,
the average prefetch accuracy of Berti improving from 82.9% to

improvement in static energy. For homogeneous mixes, CLIP im-
proves the dynamic energy of the memory hierarchy by 18.21%

94.2%. The benchmarks that see the maximum improvements are

reduction in prefetch traffic.

thanks to an average 50%
For heterogeneous mixes, the improvement in dynamic energy is

just less than 7%. Note that, in our energy calculations, we include

over Berti,

prefetch accu-
with Berti+CLIP. For

_2421B,
mcf_1536B, CLIP improves Berti’s accuracy from 51.1% to 93%.

mcf, omnetpp, cactubssn. For cactubssn
racy improved from 12% with Berti to 89.65%
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heterogeneous mixes: Size of the hardware tables.
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Figure 19: CLIP with state-of-the-art prefetchers with differ-
ent numbers of DRAM channels for 45 homogeneous mixes.

the dynamic energy consumed by the additional structures used by
CLIP.

CLIP with CloudSuite and CVP workloads. We evaluate CLIP
with CloudSuite [50, 68] and CVP traces [48, 49] in the form of
64-core homogeneous mixes. Note that the evaluated prefetchers
improve performance by less than 10% even in the case of 64 DRAM
channels for a 64-core system. So, compared to SPEC CPU2017 ho-
mogeneous mixes, the problem of constrained DRAM bandwidth
is not significant as the prefetchers find it hard to predict the fu-
ture addresses for most of the CloudSuite and CVP benchmarks.
Figure 17 shows the effectiveness of CLIP for CloudSuite and CVP
benchmarks with different numbers of DRAM channels.

5.2 Sensitivity Studies

CLIP table size. To understand the sensitivity of hardware ta-
bles used by CLIP, we sweep both tables with the following table
sizes: 0.25X, 0.5X, 2X, and 4X of the proposed table size. Note that
we sweep through these sizes keeping the other table fixed to the
baseline size. Increasing the table sizes to 2X and 4X provides mar-
ginal performance improvement with few outliers like 621 . wrf and
628. pop2 that show an additional 3.23% performance improvement.
However, when we reduce the table size to 0.5X and 0.25X, we see
a performance drop of more than 7% compared to the proposed
Berti+CLIP. Figure 18 shows the trend.

CLIP and the number of DRAM channels. Figures 19 and 20
show the performance of CLIP for L1 and L2 prefetchers with four,
eight, and 16 DRAM channels for 45 and 200 64-core homogeneous
and heterogeneous mixes, respectively. For four and eight DRAM
channels, CLIP is highly effective and as expected for 16 DRAM
channels the effectiveness is marginal in terms of performance
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Figure 20: CLIP with state-of-the-art prefetchers with dif-
ferent numbers of DRAM channels for 200 heterogeneous
mixes.

improvement. This shows that CLIP is extremely effective for many-
core systems with constrained DRAM bandwidth.

CLIP and the number of cores. As a sensitivity study, we evaluate
CLIP with 8, 16, 32, 64, and 128 cores with four, eight, 16, 32, and
64 DRAM channels. The effectiveness of CLIP remains similar for
all these configurations. Based on our experiments, we find that
the effectiveness of CLIP is not significant if we have at least one
DRAM channel for two to four cores.

CLIP with different LLC sizes. We perform a sensitivity study
based on the LLC capacity as the LLC capacity plays a big role in
terms of requests that go to the DRAM. In our baseline, we use 2MB
LLC/core. Next, we sweep the size of the LLC from 512KB/core
to 4MB/core keeping the number of DRAM channels at eight. For
homogeneous workloads, as expected, the performance of Berti
for a 4MB LLC/core improves with an average slowdown of 9% as
compared to a 16% slowdown with 2MB LLC/core. Similarly, Berti
shows a performance slowdown of 29% with 512KB LLC/core. The
effectiveness of CLIP improves with smaller LLC/core and in all
cases, CLIP makes sure, we get performance improvement with
hardware prefetching.

5.3 CLIP vs. Hermes and DSPatch

Hermes[35] with Berti does a relatively better job than Berti alone,
thanks to its high prediction accuracy that accurately predicts the
loads that will go to DRAM. However, Berti+CLIP outperforms
Berti+Hermes for four and eight DRAM channels. There are two
primary reasons for this improvement: (i) Not all the loads that go
to DRAM are critical for overall system performance. Hermes does
not pay attention to L2 and LLC hit that stall the head of the ROB
for a significant amount of time. (ii) Hermes does not reduce the
number of requests that go to the DRAM, significantly (less than
1%) whereas CLIP reduces the DRAM traffic significantly thanks
to high prediction accuracy in identifying critical loads that can
lead to accurate prefetching. Figure 21 shows the effectiveness of
Hermes and CLIP with Berti. For low DRAM bandwidth (four and
eight DRAM channels), CLIP outperforms Hermes. However, for
a system with 16 DRAM channels Hermes beats CLIP, which was
expected and we corroborate the findings of Hermes for many-core
systems with ample DRAM bandwidth. DSPatch [36] as expected
performs poorly as compared to CLIP because, for most of the



MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

MW Berti O Berti+Hermes § Berti+DSPatch M Berti+CLIP

Normalized
performance

8 16

O Berti+Hermes Berti+DSPatch M Berti+CLIP

Normalized

4
(b) Heterogeneous mixes

Figure 21: Hermes, DSPatch, and CLIP with Berti for 45 ho-
mogeneous and 200 heterogeneous 64-core mixes.

benchmarks, the DRAM bandwidth utilization is low in the con-
strained DRAM bandwidth scenarios. The low DRAM bandwidth
utilization forces DSPatch to optimize for prefetch coverage com-
promising prefetch accuracy, which increases the average L1 miss
latency with a marginal improvement in the prefetch coverage.
Overall, the tradeoff between miss latency and miss coverage does
not help and Berti+DSPatch performs poorly as compared to CLIP
for a 64-core system with four and eight DRAM channels (Figure
21).

Dynamic CLIP. CLIP is a technique that improves the performance
of hardware prefetchers when the available DRAM bandwidth is
low. However, it is not a useful technique for systems with high
per-core DRAM bandwidth (e.g., only a few cores out of 64 cores are
active and utilizing the eight DRAM channels). As a future work,
similar to DSPatch, a dynamic version of CLIP can be explored that
can turn off CLIP in the case of systems with high per-core DRAM
bandwidth.

6 CONCLUSION

Hardware prefetchers lose their effectiveness in the case of many-
core systems with constrained DRAM bandwidth. We showed that
prior works on prefetcher throttling, prefetch-aware resource man-
agement techniques, and load criticality-based prefetching are not
effective in mitigating this problem. We proposed CLIP, a highly
accurate fine-grained critical load predictor that can detect criti-
cal loads that stall the head of the ROB while getting a response
from L2, LLC, or DRAM. CLIP detects the critical loads and filters
out the loads that will lead to accurate prefetching, making sure
that the prefetch requests generated by a prefetcher are actually
for loads that contribute to the overall performance improvement.
CLIP enhances the effectiveness of prefetchers like Berti by 24%
and 9% for homogeneous and heterogeneous mixes on a 64-core
system with eight DRAM channels, respectively. CLIP provides this
performance improvement with a storage overhead of 1.56KB per
core.
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