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Abstract
High-performance Last-level Cache (LLC) replacement policies mit-
igate off-chip memory access latency by intelligently determining
which cache lines to retain in the LLC. State-of-the-art replacement
policies significantly outperform policies like LRU. However, the
effectiveness of these policies is not evaluated on many-core sys-
tems with sliced LLCs, which is common in commercial many-core
systems. Recent state-of-the-art LLC replacement policies use two
seminal ideas: (i) a sampled cache and (ii) a reuse predictor. In a
monolithic LLC, there is a single sampled cache and a single reuse
predictor. However, these structures must be created per slice with
the sliced LLC. We study the interaction between sliced LLC and
state-of-the-art replacement policies, identifying a few unexplored
interactions. A per-slice reuse predictor makes myopic decisions
based on the accesses made to a particular slice, unaware of the
global reuse behavior. A trivial solution to this problem is to design
a centralized reuse predictor shared by all the LLC slices. However,
this will significantly increase interconnect traffic, requiring more
bandwidth to access the centralized reuse predictor. Next, we ob-
serve that with a sliced LLC, the LLC sets used for the sampled
cache do not receive sufficient LLC misses. As these LLC sets drive
the decisions of LLC replacement policies, some of the decisions
become suboptimal.

We propose Drishti, which is designed to improve the effective-
ness of LLC replacement policies further. We make a case for two
enhancements: (i) a per-core and yet global reuse predictor with a
local (per-slice) sampled cache, and argue that there is no need for
a global sampled cache, and (ii) a per-slice dynamic sampled cache
to improve the utility of LLC sets used for the sampled cache. We
evaluate two state-of-the-art LLC replacement policies, Hawkeye
and Mockingjay, on four, 16, and 32-core systems with eight, 32,
and 64MB sliced LLC. On a 32-core system, Drishti enhances the
effectiveness of two state-of-the-art replacement policies, Hawkeye
and Mockingjay, by improving performance by 5.6% and 13.2%,
respectively, compared to the baseline LRU policy. Without Drishti,
Hawkeye and Mockingjay improve performance by 3.3% and 6.7%,
respectively.

1 Introduction
Last-level cache (LLC) replacement policies are essential in improv-
ing overall system performance, as it is a resource shared among
multiple cores. High-performance LLC replacement policies pro-
posed in the last two decades [48], [28], [34], [60, 61], [18],

MICRO 2025, October 18–22, 2025, Seoul, Korea
2025. ACM ISBN 978-X-XXXX-XXXX-X/XX/XX
https://doi.org/XXXXXXX.XXXXXXX

[23], [32], [31], [29], [59], [58], [55], [39], [38], [27] and [52] have
pushed the performance limits significantly. However, these poli-
cies [18, 23, 27–29, 31, 32, 34, 48, 52, 55, 59, 60] are not evaluated
for multi-core systems with sliced LLC, which is common in com-
mercial processors [10, 13, 24]. For example, AMD Zen3 [10] has a
32MB L3 cache (eight 4MB slices) that is shared by eight cores. These
slices are distributed, leading to non-uniform cache access (NUCA).
In this paper, we do not consider machine learning (ML) [55] and
reinforcement learning (RL) [38]-based LLC replacement policies,
as our goal is not to propose new replacement policies; instead, we
focus on identifying unexplored interactions while revisiting some
of the fundamental ideas used in LLC replacement policies. We also
did not evaluate memory-level parallelism (MLP) and concurrency-
aware LLC replacement policies [39], as our goal is to assess the
effect of fundamental ideas without being overshadowed by MLP
and concurrency awareness.

Our observations. We evaluate state-of-the-art replacement
policies on a sliced LLC, and we present the following observations.

Observation I: Myopic predictions. State-of-the-art LLC re-
placement policies use seminal ideas like set dueling [35] in the
form of a sampled cache [18, 27, 52, 60, 61]. The set dueling tech-
nique monitors the behavior of a few randomly chosen LLC sets to
make predictions for the entire LLC. Most recent policies extend
the idea of set dueling into a sampled cache that tracks the reuse
behaviors of cache lines belonging to those sampled sets. Also, most
of these techniques use a program counter (PC) as the signature
to track and predict the reuse of cache lines. With a sliced LLC,
each slice uses its own local sampled cache and a local predictor,
and different load addresses brought by the same PC get scattered
across different slices. This scattering effect causes the predictor of
each slice to be trained only on themyopic accesses. These accesses
are monitored by the local sampled cache of each slice, leading to
suboptimal decisions, which exacerbates in many-core systems as
the likelihood of loads from the same PC being mapped to one slice
decreases with increasing core count.

Observation II: Underutilized sampled sets. On a sliced LLC,
the LLC sets used for the sampled cache are per slice, and proper
LLC hashing [33, 41] ensures uniform distribution of accesses across
LLC slices. However, the LLC misses observed at the LLC sets
that are part of the sampled cache are non-uniform. There are
a few LLC sets that get fewer misses, and few sets get a large
fraction of misses [47, 50, 62]. LLC slices with sampled cache having
LLC sets with fewer misses do not contribute significantly to the
replacement policy decisions. Based on the observations, we find a
few unanswered questions regarding LLC replacement policies on
many-core systems with sliced LLCs.
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The pertinent questions.We ask the following fundamental
questions: (i) On a sliced LLC, should the reuse predictors used by
LLC replacement policies be local to each slice, or should they be
global to the entire LLC so that it can mitigate themyopic effect? (ii)
What are the challenges in designing a global reuse predictor on a
many-core system? A global reuse predictor shared across all slices
will lead to a bandwidth bottleneck as multiple cores will contend
for a single global predictor. The bottleneck will become worse
with the increase in core count. (iii) With large sliced LLCs (e.g.,
32MB and 64MB with 32 and 64 slices) used in many-core systems,
and accesses becoming scattered, is the conventional method of
randomly selecting a few LLC sets (e.g., 32 or 64 per slice) for the
sampled cache effective? These questions highlight that existing
policies may not fully exploit all opportunities for optimization,
suggesting scope for further performance improvement.

Our goal is to improve the performance of state-of-the-art LLC
replacement policies for a many-core processor with a large LLC
that is sliced. To achieve this, we aim to capitalize on unexplored
interactions between sliced LLC and LLC replacement policies. We
propose Drishti1, which provides a few fundamental enhancements
on top of LLC replacement policies, ensuring the performance
delivered by these policies is enhanced in the sliced LLCs shared
by multiple cores.

Our approach. We argue for a per-slice sampled cache, local to
each LLC slice. However, we use a per-core and yet global reuse
predictor, used by all LLC slices. As LLC accesses from a particular
core get scattered across multiple LLC slices, we use one reuse pre-
dictor per core located closer to the core’s LLC slice, which reduces
the shared interconnect traffic compared to a centralized global pre-
dictor (one global predictor for all slices). Although using a per-core
global predictor reduces interconnect traffic compared to a central-
ized global predictor, there is still additional traffic because each
core’s predictor can be accessed by any slice. To reduce this traffic,
we use a dedicated low-latency interconnect (NOCSTAR) [19] that
links all slices to the predictors with a latency of just three cycles.
We make a case for a dynamic sampled cache that selects LLC sets
for the sampled cache based on LLC misses, rather than selecting
them randomly.

Our contributions. To the best of our knowledge, this is the first
work that evaluates the state-of-the-art LLC replacement policies
on a many-core system with a large sliced LLC. We observe that
the effectiveness of these policies can be improved further on the
sliced LLC. We motivate the need for fundamental changes in how
replacement policies interact with the sliced LLC (Section 3). We
propose Drishti, which enhances the effectiveness of state-of-the-
art replacement policies through a (i) local per-slice sampled cache
and per-core predictor that is global to all the LLC slices and (ii)
a dynamic sampled cache. We address the design challenges to
make Drishti scalable (Section 4). On a 32-core system with 64MB
LLC, when Drishti enhancements are applied to Hawkeye and
Mockingjay, it provides performance improvements of 5.6% and
13.2% compared to a baseline with LRU replacement policy. On the
other hand, Hawkeye and Mockingjay without Drishti provide 3.3%
and 6.7% over LRU for 32-core systems. Drishti’s effectiveness comes

1Drishti is a Sanskrit word meaning focused gaze. We envision Drishti as a focused
enhancement of state-of-the-art replacement policies.

with storage savings (instead of overhead) of 7.25KB and 2.96KB
per core for Hawkeye and Mockingjay, respectively (Section 5).

2 A quick primer on Hawkeye and Mockingjay
In this Section, we provide an overview of the recent advances in
LLC replacement policies. Seminal works, such as the dynamic inser-
tion policy (DIP) [48] and the re-reference interval prediction-based
policy (RRIP) [28], pave the way for non-LRU-based policies. The
computer architecture community organized two championships
on cache replacement policies [1] [5]. Post RRIP, ideas like SHiP [60]
make a case for the reuse prediction of cache lines based on coarse-
grained signatures like program counter (PC) and memory region.
The next big leap in the field of cache replacement policy came in
the form of Hawkeye [27], which is also the winner of 2nd cache
replacement championship [5].

Hawkeye emulates Belady’s policy by looking at the past ac-
cesses to a large cache, which is eight times the LLC. To make this
approach practical, Hawkeye uses the concept of a sampled cache.
The role of the sampled cache is to track the reuse behavior of cache
lines based on the program counter (PC). Instead of monitoring
all the accesses, the sampled cache only records the accesses seen
by the sampled sets (a few LLC sets chosen randomly), and these
accesses take part in mimicking Belady’s optimal policy.

Hawkeye’s reuse predictor is trained based on whether a load
results in a cache hit or miss under Belady’s optimal policy. When a
load is a cache hit, according to Belady’s policy, the predictor learns
that the PC triggered the load as "cache-friendly." Conversely, if
the load is a miss under Belady’s policy, the predictor is trained as
"cache-averse" for that particular PC. In the future, when a cache
fill occurs, the predictor assigns an RRIP (Re-reference Interval
Prediction) value based on whether the associated PC is cache-
friendly or cache-averse.

Mockingjay extends Hawkeye from a binary classification of
cache lines into a multi-class classification problem. It uses Bela-
day’s emulation, as done in Hawkeye, for multi-reuse prediction.
Mockingjay predicts a cache line’s Estimated Time of Arrival (ETA).
However, to make it practical, Mockingjay argues that the relative
ordering of Estimated Time Remaining (ETR) is the same as that of
ETA. So, Mockingjay maintains an ETA based on the ETR and the
current timestamp. These ETRs are used to mimic Belady’s optimal
policy.

Similar to Hawkeye, Mockingjay also employs a sampled cache
and PC-based reuse predictors. The sampled cache monitors the
reuse of loads observed by the sampled set and maintains a times-
tamp for each block. When a sampled cache hit occurs, the block’s
last timestamp trains the reuse predictor with the observed reuse
distance. In contrast, on a sampled cache miss, the PC of the evicted
line is trained to indicate that it was not reused, and it is assigned
an INFINITE reuse distance. In summary, both replacement policies
use the sampled cache, and both policies use predictors that predict
the reuse behavior of cache lines using PCs.

Mockingjay with a sliced LLC. In a many-core system with
a sliced LLC, each slice has its local sampled cache and predictor.
Figure 1 shows the structure of Mockingjay in a 32-core system
with 32 slices. Each slice has its per-core predictor and sampled
cache. Figure 1 also explains the end-to-end tracking of the load
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Figure 1: Mockingjay with per-slice per-core reuse predictor
on a sliced LLC-based 32-core system. Each slice has a pre-
dictor, indexed with a hash of PC and core ID.
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Figure 2: Fraction of PCs per core(excluding those that bring
only a single load) mapping demand loads to one LLC slice
throughout their execution for 16-core mixes (35 homoge-
nous and 35 heterogenous created from SPEC CPU2017 and
GAP). The higher, the better.

by the local sampled cache, learning, and prediction of the local
predictors as different steps. As per step 1 , a 𝑃𝐶𝑌 of core 30 brings
load sequences like A, B, C,..., H. It can be seen in step 2 that these
loads get scattered into different slices and get recorded by the
respective local sampled cache. In step 3 , it can be observed that
the local sampled cache of each slice then trains the local predictor
of the respective slice based on the loads seen by the slice.

3 Motivation
In this Section, we highlight some key concerns related to the
interaction of state-of-the-art LLC replacement policies with a sliced
LLC where slices are distributed over an interconnect.

3.1 The myopic behavior
In this section, we provide a comparative view of the reuse predic-
tions from global and myopic views. The global view is the case
when the predictor of all slices can see access to every sampled set
in LLC. Figure 2 shows the fraction of PCs whose corresponding
memory accesses are mapped to only one LLC slice. On average
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Figure 3: ETR values corresponding to the loads of PC
0x59cdbf with Mockingjay when the predictor sees global
view, myopic view, and the oracle view of access pattern on a
16-core system running a homogeneous mix of xalan.

across 35 homogeneous and 35 heterogeneous mixes, load requests
brought by 66.2% of PCs (per core) are mapped to one LLC slice.
The trend is worrisome for workloads like xalan, as around 40%
of PCs are mapped to only one LLC slice (workload mix 20 in Fig-
ure 2), making the reuse predictor a myopic reuse predictor. Please
note that the trend illustrated in Figure 2 is unaffected by LLC
replacement policies and hardware prefetching techniques.

Figure 3 compares the predicted ETR values when the predic-
tor is trained on global accesses versus when trained on myopic
accesses, and the oracle ETR (actual reuse distance). To showcase
this, we select a PC, 0x59cdbf, which we refer to as 𝑃𝐶𝑋 , for a
16-core workload running 623.xalancbmk_s-202B. We track the
loads issued by 𝑃𝐶𝑋 , and as expected, these loads are scattered
across different slices. Additionally, we record the prediction values
(ETR values of Mockingjay) corresponding to 𝑃𝐶𝑋 from the predic-
tor for each core and slice when the predictor observes both myopic
and global access patterns. For the myopic predictions, ETR values
are shown for each of the 16 slices per core, resulting in 16 dots per
core (though overlapping may make it appear fewer than 16). It is
clear that myopic prediction values deviate from the corresponding
global prediction values and the oracle ETR values, which leads to
a drop in prediction accuracy. It is also clear that the global view
provides better ETR values as it is closer to the oracle view.

Figure 4 shows how the frequency of predicted reuse values
differs between myopic and global views. We use two workloads,
xalan, with the fewest PCs mapped to the same slice, and pr, with
the most PCs mapped to the same slice, as case studies to under-
stand reuse predictions based on the scattering effect. The differ-
ence in ETR values for Mockingjay in Figure 4a is more significant
than in Figure 4b due to the higher number of PCs with loads
scattered across different slices. For Hawkeye, the number of LLC
lines with predicted RRIP values of zero (cache-friendly) and seven
(cache-averse) differs between global and myopic views. Hawkeye’s
difference in Figure 4c is more significant than in Figure 4d.

3.2 Under-utilized sampled cache
Apart from the myopic behavior and PCs getting scattered across
slices, there is a subtle issue with the effectiveness of the sampled
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Figure 4: Frequency distribution of ETRs and RRIPs in Mockingjay and Hawkeye for xalan and pr running on a 16-core system.
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Figure 5: Miss per kilo accesses (MPKA) per LLC set with three different 16-core homogeneous workloads.

cache that worsens in the sliced LLC as the core count increases. We
find that the problem of lower reuse prediction accuracy also arises
due to the sampled cache, in which a few LLC sets that are part of
the sampled cache do not see enough LLC misses. State-of-the-art
replacement policies randomly select a few LLC sets and train their
reuse predictor based on accesses in the sampled sets. Some of the
sampled LLC sets see few LLC misses, whereas some have high LLC
misses. Figure 5 shows miss per kilo access (MPKA) for each LLC
set of 16 slices on 16 cores for three homogeneous mixes. For mcf,
Figure 5(a) shows that there are many LLC sets that get low MPKA
(lower than 100). This trend continues in sampled sets, too. For gcc,
Figure 5(b) shows that the trend is better than mcf, and there are a
few LLC sets that get MPKA lower than the average MPKA of all
sets. Finally, for lbm ( Figure 5(c)), which is a streaming workload,
all sets get an equal number of accesses with a uniform distribution
of MPKAs across all LLC sets.

To investigate the impact of high and low MPKA sets on the
reuse predictor, we perform experiments to create three cases. First,
we select the top 32 LLC sets with the highest MPKA values and use
them for the sampled cache. In the second case, we choose 32 sets
with the lowestMPKA values. Third, we sample 16 LLC sets with the
highest MPKA values and 16 with the lowest MPKA values. Table 1
presents the results for all cases using a homogeneous mix of mcf.

Table 1: Performance improvements on top of Mockingjay
(randomly selected sampled sets) with three cases for select-
ing the sampled sets based on the MPKAs. We run 16-core
homogeneous mix of mcf .

Case I II III
Speedup(%) 16.4 8.3 9.5

In the first case, we observe a performance improvement of 16%.
In the second case, the performance improvement is 8.3%, while in
the third case, the performance improvement is 9.5%. We see the
maximum performance improvement in the first case because the
prediction accuracy for high MPKA sets increases due to less noise
from low MPKA sets during training. Compared to the second case,
in the third case, performance increases further when only half
of the sampled sets belong to low MPKA sets. We conclude that
the LLC sets with the highest MPKA significantly contribute to
the training of the predictor. Based on the observations discussed
in this Section, we propose enhancements to state-of-the-art LLC
replacement policies, improving their interactions with LLC slices.

3.3 Effect of hardware prefetching
Hardware prefetchers at the L1 and L2 interact with the LLC re-
placement policies as the prefetched blocks get inserted into the

4



Drishti: Do Not Forget Slicing While Designing Last-Level Cache Replacement Policies for Many-Core Systems MICRO 2025, October 18–22, 2025, Seoul, Korea

Centralized Sampled
Cache

LLC slice 0 LLC slice 31LLC slice 1

PC, Address,
Hit/Miss

Predictor

221

2

PredictorPredictor

PC, Reuse Behavior

PC, Reuse Distance

PC, Reuse Behavior

Figure 6: Tracking reuse behavior and training the local pre-
dictors with a global (centralized) sampled cache.

LLC slice 0 LLC slice 31

Predictor
Sampled
Cache

LLC slice 1

Sampled
Cache

Sampled
CachePredictor Predictor

1

2 2 2

PC, Address, Hit/Miss

PC, Reuse Behavior

Figure 7: Tracking reuse behavior and training the local pre-
dictors with a global (distributed) sampled cache.

LLC. In our baseline, we use next-line prefetcher at L1D and IP-
stride prefetcher at L2. As prefetch requests do not have a PC
associated with it, policies like Mockingjay use the PC of the load
that triggered the prefetch as the PC of a prefetch request. The
predictors use a prefetch bit to differentiate a demand load from
the same PC. Note that even in the presence of prefetching, the
myopic behavior persists both for the demand load PCs and PCs
used for prefetch requests. Additionally, the effectiveness of the
reuse predictors improves with the accuracy of prefetchers. We
find that our observations persist even in the presence of recent
prefetchers like SPP+PPF [20],Bingo [16], IPCP [44], Berti [43], and
Gaze [21].

4 Drishti Enhancements
In this section, we outline two enhancements that mitigate the effect
of the myopic view on reuse predictions and the under-utilization
of sampled sets used in the sampled cache.

4.1 Enhancement I: Mitigating myopic
predictions

In general, we have four possible design choices: (i) local (per slice)
sampled cache and local (per slice) reuse predictor, (ii) global sam-
pled cache and local (per slice) reuse predictor, (iii) local (per slice)
sampled cache and global reuse predictor, and (iv) global sampled
cache and global reuse predictor. The global sampled cache and the
reuse predictor can be designed as a centralized structure, or it can
be distributed across LLC slices. Out of these four choices, the first
choice leads to myopic decisions affecting the effectiveness of LLC
replacement policies. The fourth choice is unnecessary as making
one of the structures global will mitigate the myopic predictions.
We outline the rest potential design choices that can mitigate the
myopic predictions with their pros and cons.

4.1.1 Global sampled cache and local reuse predictor.
Centralized sampled cache. In a centralized sampled cache de-
sign, a sampled cache is shared by all LLC slices, tracking load
accesses across all LLC slices. Figure 6 shows the reuse tracking
and training of local predictors by the centralized sampled cache

Centralized
Predictor

LLC slice 0 LLC slice 31LLC slice 1

Sampled
Cache

2

Sampled
Cache
1

Sampled
Cache

PC, Address, Hit/Miss

PC, Reuse BehaviorPC, Reuse Behavior

Figure 8: Tracking reuse behavior by a local sampled cache
and using it to train the global (centralized) predictor.
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Figure 9: Drishti’s enhancement: Tracking reuse behavior
and training the per-core and yet global reuse predictor with
local (per-slice) sampled caches.

in a 32-core system with 32 slices. In step 1 , the centralized sam-
pled cache receives the program counter (PC), block address, and
hit/miss status from the LLC slice (slice 0). In step 2 , in response,
the centralized sampled cache updates all the local predictors spread
across all LLC slices as a broadcast message with the reuse behavior
(e.g., reuse distance in the case of Mockingjay) observed for the
given PC. A broadcast is required because the loads associated with
a single PC are distributed across multiple slices. As a result, multi-
ple local reuse predictors may hold an entry for the same PC. This
holds true even for replacement policies (e.g., Mockingjay) that
use a per-slice-per-core reuse predictor (predictor indexed with the
hash of PC and core-id), as multiple slices can have the entry for
the same hash. Therefore, when the predictor needs to be updated,
all corresponding local predictors must be updated simultaneously,
necessitating a broadcast.

This centralized structure leads to a bandwidth bottleneck, as
an LLC access to a sampled set at any LLC slice will send the PC,
block address, and hit/miss information to the global sampled cache.
The problem becomes more pronounced as the number of cores
increases, further intensifying the bandwidth demand. Additionally,
broadcasting from the sampled cache to all the predictors is an
additional concern regarding interconnect bandwidth.

Distributed sampled cache. To address the problem with a
centralized sampled cache, a distributed sampled cache can be used,
which distributes the sampled cache structure across all LLC slices.
Figure 7 shows the steps involved in reuse tracking and the training
of local predictors by a distributed sampled cache in a 32-core
system with 32 slices. In step 1 , the sampled cache tracks reuse
for its respective slice. However, we call it is global sampled cache
because now it can communicate with the local predictors of all
the slices. As a result, during the training process, the sampled
cache updates all the local predictors based on the tracked reuse
information, as shown in step 2 . This mitigates the bandwidth
issue as it allows concurrent accesses to the distributed sampled
cache. However, the broadcast message is still a concern, because
of which making a sampled cache global, is a costly design choice.
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4.1.2 Local sampled cache and global reuse predictor.
The issue of myopic training and prediction can be effectively
addressed by training a single global predictor using the local sam-
pled cache from all slices. This will ensure that, although each local
sampled cache tracks reuse behavior specific to its slice, the single
predictor is trained on every sampled set access across all LLC
slices, resulting in a global training of the predictor.

(a) Centralized reuse predictor. In the case of a centralized
reuse predictor, the local sampled caches from all slices compete for
the same predictor during updates. Additionally, since the predictor
is accessed during every LLC fill, a single predictor must handle
all the requests or responses coming from different slices, which
can lead to bandwidth and traffic issues that grow with the core
count in many-core systems. Figure 8 illustrates the training in the
centralized reuse predictor. In step 1 , a sampled set is accessed
in LLC slice zero by core 31’s request, which updates the sampled
cache of slice 0, and in step 2 , the sampled cache updates the
centralized reuse predictor.

(b) Distributed (per-core yet global) reuse predictor. In a
distributed design, we use a reuse predictor, which is distributed
across all slices, with each slice containing a predictor dedicated
to a specific core. The predictor for each core is placed closer to
the core’s nearest LLC slice. To ensure the correct predictor for a
given core is accessed, we use a hash of the PC combined with the
core ID to retrieve the corresponding entry in the reuse predictor.
Figure 9 illustrates the training in per-core yet global predictor,
In step 1 , where a sampled set is accessed in LLC slice zero by
core 31’s request, which updates the sampled cache of slice 0, and
in step 2 , sampled cache only updates core 31’s predictor. We
call this design Drishti’s first enhancement to mitigate the myopic
reuse predictions. Table 2 shows the possible design choices for the
predictor and sampled cache, along with the associated concerns.

4.1.3 Reducing traffic with a dedicated interconnect.
Compared to the baseline design, Drishti’s enhancement incurs
additional interconnect traffic because of per-core and yet global
predictors. Note that without Drishti’s enhancements, there is no
interconnect traffic between slices and predictors. Figure 10 shows
that a centralized reuse predictor, for 32 cores, experiences an aver-
age of more than 65 accesses per kilo instruction, with a maximum
of 257.76 accesses per kilo instruction (mcf). In contrast, the per-
core yet global reuse predictor sees only an average of 2.46 accesses
per kilo instruction, with a maximum of 8.05 accesses per kilo in-
structions per core. The accesses include predictor accesses for both
training and prediction during an LLC fill.

Table 2: Potential design choices to address myopic predic-
tions, along with their advantages and disadvantages.
Sampled cache Predictor Type Global View? Bandwidth Broadcast?

Global Local Centralized Yes High Yes
Distributed Yes Low Yes

Local Global Centralized Yes High No
Distributed Yes Low No

Even with a per-core and yet global predictor (each slice contains
the predictor for its respective core), the local sampled cache of any
slice can access the predictor located in any other slice. However,
this introduces additional interconnect latency. This latency grows
in many-core systems as the number of slices increases. For a 32-
core system, we observe an average interconnect latency of 20
cycles. To overcome this challenge, we use a dedicated and low-
latency interconnect (NOCSTAR) [19] that connects all the slices
with the predictors, with a three-cycle latency.

4.1.4 NOCSTAR interconnect. NOCSTAR is a side-band, latchless
circuit-switched interconnect. With this interconnect, we add latch-
less switches next to each predictor and slice. A switch is a col-
lection of muxes, where each mux acts like a repeater. Compared
to a conventional multi-hop Mesh interconnect, the NOCSTAR in-
terconnect uses fewer hops (as few as one if no contention) and
provides lower bandwidth as it does not use routers. However, as
updates to predictors is not frequent (it is limited to accesses to
sampled sets), this low bandwidth and low latency interconnect is
sufficient for our need. To ensure concurrent accesses from both
request and response (fill) paths, we use two dedicated links.

To ensure communication between a slice and a predictor within
a few cycles, NOCSTAR uses separate control wires to acquire all
the links in the path between a slice and a predictor. Each LLC slice
is connected to an arbiter associated with a link through which an
LLC slice communicates with the predictor. We use an XY-based
routing policy with NOCSTAR.
Static power, area, and dynamic energy. For a 28nm node, with
NOCSTAR, the static power consumed by the switch and arbiters is
0.4 mW and two mW, respectively, which is negligible compared to
a 2MB LLC slice that consumes static power of 60 mW. In terms of
area, the combined area occupied by the switch and the arbiter is
0.005 mm2, which is negligible to the area occupied by one 2MB LLC
slice (1.85 mm2). The dynamic energy consumed by a slice to predic-
tor communication with the NOCSTAR is negligible, an average of
50pJ (20pJ for link, 10pJ for switch, and 20pJ for control wires) per
communication). Figure 11a shows the performance degradation
when the reuse predictors use the existing on-chip interconnect
compared to a low-latency interconnect[19]. It is interesting to note
that the improvement in reuse predictions with Drishti is nullified
by the additional interconnect latency. It is visible that if we do
not use a low-latency interconnect for slice-to-predictor commu-
nication, there will be a performance slowdown compared to the
baseline Mockingjay LLC replacement policy. On average, there is
a 2.8% performance drop compared to Mockingjay on four cores,
which becomes 5.5% for 16 cores and 9% for 32 cores (as high as 40%
for mcf homogeneous mix) as the interconnect latency increases
with the increase in core counts. Figure 11b shows the NOC la-
tency sensitivity on the performance of a 32-core system. Based
on Figures 11a and 11b, it is clear that the latency of around 20
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Figure 11: (a) Slowdown in Mockingjay with Drishti without
a low-latency interconnect between slices and the predictors.
(b) Interconnect latency sensitivity on a 32-core system across
35 homogeneous and 35 heterogeneous mixes.

cycles is the contributor to performance slowdown in the 32-core
system. Also, the latency of less than five cycles does not lead to a
significant performance slowdown.

Note that with a low-latency, lightweight, and dedicated inter-
connect like NOCSTAR, we ensure no interference to the existing
on-chip interconnect.

4.2 Enhancement-II: Dynamic Sampled Cache
Drishti uses a dynamic sampled cache per slice by sampling the
sets with high capacity demands to mitigate the underutilization
of sampled cache arising from randomly selected sets. One of the
challenges in designing a dynamic sampled cache is identifying
and preventing the selection of lower MPKA LLC sets as sampled
sets. To overcome this challenge, Drishti identifies the sets with
high-capacity demands from each LLC slice.

Identifying LLC sets with high capacity needs. To identify
the LLC sets with high capacity demands (higher MPKA), we main-
tain a k-bit saturating counter that is initially initialized to 2𝑘

2 for
each set in an LLC slice. To monitor the behavior of LLC sets in
terms of MPKA, the counter of each LLC set is incremented on an
LLC miss and decremented on an LLC hit. This monitoring is car-
ried out over an interval of L (number of cache lines in an LLC slice)
load accesses to an LLC slice. Once the monitoring interval is over,
the N sets with the highest saturating counter values are selected as
sampled sets in the sampled cache. Here, N represents the number
of LLC sets to be sampled per slice. To achieve a balanced trade-off
between performance and storage, we empirically determine the
optimal number of sampled sets for different replacement policies.
Our findings show that Hawkeye and Mockingjay with Drishti re-
quire only eight and 16 sampled sets per slice, respectively, whereas
previously, they required 64 and 32 sampled sets per slice. This re-
duction is because Drishti no longer selects sampled sets randomly
but does so intelligently. Therefore, by selecting a smaller number
of sampled sets, we can still efficiently track the reuse behavior of
cache lines. We use k as eight and L as 32K to accurately determine
sets with high capacity demands, ensuring each cache line has an
equal probability of being accessed.

Phase Change and count reset. To adapt to application phase
changes, we identify high-MPKA sets after every 128K load access
to an LLC slice (equivalent to four times the number of cache lines
in a slice) as it achieves the sweet spot in performance for our
workloads. We achieve this by resetting the saturating counter to
its initial value and selecting new sampled sets with high MPKA.
As some workloads exhibit uniform capacity demand across all LLC

sets, such as lbm, as shown in Figure 5c, we detect such workloads
and compare the highest and lowest MPKA values recorded by
the saturating counters. If the difference between these values is
less than 100 (average difference across all outlier workloads), we
classify the workload as having uniform capacity demand across all
sets in an LLC slice. When Drishti encounters a workload with this
uniform MPKA behavior, it turns off the dynamic sampled cache
and switches to randomly selecting sampled sets (similar to prior
approaches) across the LLC slice. Note that predictors are accessed
by the sampled cache only when there is an access to a sampled
set in the LLC. In our dynamic sampled cache enhancement, we
specifically choose sampled sets that experience high capacity de-
mands. This further makes the global sampled cache( Section 4.1.1)
an unfavorable design.

4.3 Drishti in action
Figure 12 illustrates the events of interest, keeping Drishti’s en-
hancement in mind. In step 1 , a 𝑃𝐶𝑌 of core 30 generates load
requests (A, B, C,..., H) to LLC, due to L2 misses. In step 2 , the load
request gets scattered to different slices according to its address,
where load addresses: A and D map to slice 0; G and H map to slice
3; E and F map to slice 30; and B and C map to slice 1. In step 3 , all
slices update their sampled cache if the access maps to any of their
sampled sets, including details such as the PC, whether it was a hit
or miss in the LLC set, and the block address of the access request.
In step 4 , the sampled cache of different slices (0, 1, 3, 30) trains
the core 30’s predictor for 𝑃𝐶𝑌 based on accesses in their slices. In
step 5 , the predictor returns a predicted value for the PC to install
a block in the cache with an ETA counter per cache line. Step 3.1
is triggered for the dynamic sampled cache, where hits/misses per
set are monitored for the next 32K accesses. Then, we choose the
sets with the highest Misses per Kilo Access (MPKA) (step 3.2 ).
The sampled cache monitors these sets for the next 128K accesses
and trains the predictor based on hits or misses for the core’s PC.
We repeat step 3.1 to step 3.2 for 32K accesses after every 128K
load accesses to the LLC slice.

Table 3 illustrates Drishti’s per-core hardware budget for Hawk-
eye and Mockingjay. With Drishti, the number of sampled sets is
reduced, leading to a smaller sampled cache size. Specifically, the
sampled cache decreases from 12KB to 3KB per core for Hawkeye
and from 9.41KB to 4.7KB per core for Mockingjay. Drishti uses sat-
urating counters, which incur a storage overhead of 1.7KB per core.
However, the storage savings from the sampled cache outweigh
this additional overhead, resulting in a net reduction in per-core
storage. As a result, Drishti uses 20.75KB per core with Hawkeye
and 28.95KB per core with Mockingjay, which are lower than the
previous storage requirements.

5 Evaluation
5.1 Methodology
We use ChampSim [11], a trace-driven simulator used for the 2nd
and 3rd Data Prefetching Championships (DPC-2 [2] and DPC-
3 [8]). Recent prefetching and cache management proposals are
also coded and evaluated on ChampSim [16, 20, 43, 44, 53]. The
version employed in DPC-3 has been extended with a decoupled
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Figure 12: Mockingjay with per-core yet global reuse predictor on a sliced LLC-based 32-core system.

Table 3: Per-core hardware budget with and without Drishti
for a 16-way 2MB LLC slice.

Replacement Policy Components Without Drishti With Drishti

Hawkeye

Sampled Cache 12 KB 3 KB
Occupancy Vector 1 KB 1 KB

Predictor 3 KB 3 KB
RRIP counters 12 KB 12 KB

Saturating counters NA 1.75 KB
(2048 entries × 1B)

Total 28 KB 20.75 KB

Mockingjay

Sampled Cache 9.41 KB 4.7 KB
Predictor 1.75 KB 1.75 KB

ETR counters 20.75 KB 20.75 KB
Saturating counters NA 1.75 KB
(2048 entries × 1B)

Total 31.91 KB 28.95 KB

front-end [49], a detailed memory hierarchy support for address
translation, and a faithful DRAM model. We calculate the dynamic
energy consumption of the memory hierarchy (caches and DRAM)
with CACTI-P [37] and the Micron DRAM [3] power calculator on
7 nm process technology. For interconnect power calculation, we
use McPAT [36]. Table 4 details our baseline system configuration,
which is similar to an Intel Sunny Cove microarchitecture [6, 7, 26].

We employ publicly available traces [9, 12] from the SPEC CPU
2017 [57] and single-threaded GAP [17] benchmark suites. We use
23 SPEC CPU2017 and 12 GAP benchmarks. SPEC CPU2017 traces
were generated with the reference inputs. Both real (Twitter, Web,
Road) and synthetic (Kron, Urand) graphs were used as input for
the GAP benchmarks.

We limit our study to the memory-intensive traces from SPEC
CPU 2017 and all from GAP that exhibit at least one miss per kilo-
instruction (MPKI) at the LLC in our baseline system.We run 4-core,

Table 4: Simulation parameters of the baseline system.

Core Out-of-order, hashed-perceptron branch predictor [30],
4 GHz with 6-issue width, 4-retire width, 352-entry ROB

TLBs L1 iTLB/dTLB: 64 entries, 4-way, 1 cycle
STLB: 1536 entries, 12-way, 8 cycles

L1I 32 KB, 8-way, 4 cycles, 8 MSHRs, LRU
L1D 48 KB, 12-way, 5 cycles, 16 MSHRs, LRU, next-line

prefetcher
L2 512 KB, 8-way, 15 cycles, 32 MSHRs, SRRIP, non-

inclusive, IP-stride prefetcher
LLC 1 slice per core, address to slice mapping as per [33]:

2 MB, 16-way, 20 cycles, 64 MSHRs, LRU, non-inclusive
Network
Router

2-stage wormhole, six virtual channels per port, five flit
buffer depth, eight flits per data packet, and one flit per
address packet

Network
Topology

Mesh, each node has a router, processor, private L1
cache, L2 cache, and an LLC slice

DRAM Controller: One channel/4-cores, 6400 MTPS [22], FR-
FCFS, write watermark: 7/8th, Chip: 4 KB row-buffer,
open page, tRP: 12.5 ns, tRCD: 12.5 ns, tCAS: 12.5 ns

16-core, and 32-core simulations. We collect statistics for 200M sim-
point instructions after a 50M-instruction warm-up [54] per core.
We simulate 70 mixes (35 homogeneous and 35 heterogeneous),
created from SPEC CPU2017 and GAP traces, and report normal-
ized weighted speedup. We use the LRU policy as the baseline LLC
replacement policy. For, multi-programmed homogeneous work-
loads, we run different sim-points of the same benchmark across
cores. However, as the number of sim-points [9] is less than the
number of cores, especially for 16 and 32 cores, some of the cores
run the same trace. For heterogeneous mixes, we create random
mixes, similar to Mockingjay [52]. A workload terminates when
the slowest core completes simulation of 200M instructions.
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Figure 14: Miss reduction over LRU on 4, 16, and 32 cores
averaged across 70 (35 homo. and 35 hetero) mixes.

5.2 Performance analysis
We conduct a thorough performance evaluation of Drishti to assess
its effectiveness, focusing on key metrics such as weighted speedup
(WS) [56], harmonic mean of speedups(HS) [40], maximum individ-
ual slowdown(MIS), and unfairness [42]. These metrics are crucial
in many-core systems. The equations below define these metrics.

𝐼𝑆𝑖 =
IPCtogether

𝑖

IPCalone
𝑖

, 𝑊 𝑆 =

𝑁−1∑︁
𝑖=0

IPCtogether
𝑖

IPCalone
𝑖

,

𝐻𝑆 =
𝑁∑𝑁−1

𝑖=0
IPCalone

𝑖

IPCtogether
𝑖

, 𝑈𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 =
max{𝐼𝑆0, 𝐼𝑆1, . . . , 𝐼𝑆𝑁−1}
min{𝐼𝑆0, 𝐼𝑆1, . . . , 𝐼𝑆𝑁−1}

MIS = MAX {IS0, IS1, . . . , IS𝑁−1},

Here, 𝐼𝑃𝐶together
𝑖

is the IPC of core 𝑖 when it runs along with other
𝑁 −1 applications on a multi-core system of 𝑁 cores. 𝐼𝑃𝐶alone

𝑖
is the

IPC of core 𝑖 when it runs alone on a multi-core system of 𝑁 cores.
The rest of the 𝑁 − 1 cores are idle. 𝐼𝑆𝑖 corresponds to individual
slowdown of core 𝑖 .

We refer to Drishti’s enhancement by adding the prefix ‘D-’ to the
name of the original replacement policy. For example, Mockingjay
enhanced with Drishti is referred to as D-Mockingjay, and Hawkeye
enhanced with Drishti is referred to as D-Hawkeye.
Performance. Figure 13 shows the performance improvement of
D-Hawkeye and D-Mockingjay on 4,16 and 32 cores. On a 4-core

Table 5: Average LLC WPKI across 35 homogeneous mixes
and 35 heterogeneous mixes.

Cores LRU Hawkeye D-Hawkeye Mockingjay D-Mockingjay
4 0.18 1.48 2.63 7.64 6.20
16 0.18 1.15 2.63 7.16 7.02
32 0.17 1.23 2.60 7.26 6.98

system, Hawkeye and Mockingjay achieve performance improve-
ments of 3.1% and 6.4%, respectively. With Drishti’s enhancement,
D-Hawkeye and D-Mockingjay further deliver performance im-
provements of 4.2% and 6.9%, demonstrating the marginal utility
of Drishti. However, as the number of cores increases, the utility
of Drishti becomes more pronounced. On a 32-core system, Hawk-
eye and Mockingjay achieve performance improvements of 3.3%
and 6.7%, respectively, while D-Hawkeye and D-Mockingjay de-
liver significantly higher gains of 5.6% and 13.2%. Notably, for the
mcf_1554Bworkload on a 32-core system, D-Mockingjay achieves a
maximum improvement of 77%, compared to 59% with Mockingjay.
Reduction in LLC MPKI. Drishti’s performance improvements
come because of a reduction in LLC MPKIs. Figure 14 shows the
reduction in average LLC Misses across all slices for Hawkeye, D-
Hawkeye, Mockingjay, and D-Mockingjay as compared to LRU. On
four cores, Hawkeye reduces the averageMPKI by 12.9%, whereas D-
Hawkeye reduces the average MPKI by 14.5%. Mockingjay reduces
the average MPKI by 23.8%, whereas D-Mockingjay reduces the
average MPKI by 24%. On 32 cores, Hawkeye reduces the average
MPKI by 10.6%, whereas D-Hawkeye reduces the average MPKI
by 14.1%, and Mockingjay reduces the average MPKI by 21.2%. In
contrast, D-Mockingjay reduces the average MPKI by 24.1%. The
effectiveness of enhancements improves with an increase in core
count, as evident in the reduction in MPKI and slight increase in
LLC miss latency.
Reduction in LLC writebacks. Table 5 shows LLC WPKI (Write-
backs per kilo instruction) values for LRU, Hawkeye, D-Hawkeye,
Mockingjay, and D-Mockingjay. The number of writebacks from
LLC increases in Hawkeye and Mockingjay because all these poli-
cies assign the lowest priority to dirty lines, thereby increasing the
rate at which writebacks occur between LLC and DRAM.
Energy Consumption. Figure 15 shows a reduction of dynamic
energy consumption in LLC, NOC, and DRAM across 16-core and
32-core systems. On 32 cores, Hawkeye and Mockingjay reduce
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Table 6: Drishti on a 32-core system with 64MB LLC across
35 homogeneous and 35 heterogeneous mixes.

Metrics Hawkeye D-Hawkeye Mockingjay D-Mockingjay
WS(%) 3.3 5.6 6.7 13.3
HS(%) 3.4 5 4.5 12.8

Unfairness 1.2 1.2 1.30 1.28
MIS(%) 41.4 40 37 34.2

uncore energy consumption by 2% and 5%, respectively, whereas
D-Hawkeye and D-Mockingjay reduce uncore energy consump-
tion by 3% and 9%, respectively. Note that for D-Hawkeye and
D-Mockingjay, NOC includes the energy of NOCSTAR, too. The
uncore energy savings in D-Mockingjay come from reduced DRAM
reads and LLC writebacks.
Other metrics of interest. Table 6 shows the effectiveness of
Drishti enhancements for various performance and fairness met-
rics. In terms of weighted speedup, Hawkeye achieves a 3.3% per-
formance improvement, which becomes 5.6% with D-Hawkeye.
Similarly, Mockingjay achieves 6.7% performance improvement,
which becomes 13.3% with D-Mockingjay. In terms of the harmonic
mean of speedups, Hawkeye achieves 3.4% performance improve-
ment, which becomes 5% with D-Hawkeye. Similarly, Mockingjay
achieves 4.5% performance improvement, which becomes 12.8%
with D-Mockingjay, a significant improvement. In the case of un-
fairness and maximum individual slowdown, Drishti enhancements
do not contribute much and are similar to Hawkeye and Mocking-
jay.

5.3 Drishti with Mockingjay: A detailed analysis
In this section, we provide a detailed analysis of D-Mockingjay, high-
lighting the benefits of our two main contributions: the per-core yet
global reuse predictor and the dynamic sampled cache. Figure 16
compares the performance of Mockingjay and D-Mockingjay across
70 32-core workload mixes using the normalized weighted speedup
metric. D-Mockingjay consistently outperforms Mockingjay across
all workload mixes. For a 32-core homogeneous mix of mcf with
a large fraction of 605.mcf_s-1554B, D-Mockingjay achieves 77%
performance improvement over LRU, which was only 59% with
mockingjay. This boost is primarily driven by Drishti’s dynamic
sampling approach and a marginal effect from the per-core global
predictor, as 605.mcf_s-1554B shows non-uniformity in sampled
set access, with some sets having lower MPKA and others with
higher MPKA, and only 60% of PCs are mapped to one slice. For the
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running on a 16-core system.

homogeneous mix dominated by xalancbmk-202B, D-Mockingjay
enhances the performance by 26%, which is 20% with Mockingjay.
For xalancbmk, the primary contributor to the performance is the
conversion frommyopic to global view, as it is one of the mixes that
is significantly affected by the myopic view, as shown in Figure 2.
Utility of each enhancement. Figure 17 shows the utility of
each enhancement. Mockingjay delivers an average performance
improvement of 3.8% and 9.7% over LRU across SPEC and GAP
homogeneous and heterogeneous respectively. When the per-core
global predictor (D-Mockingjay with a global view) is introduced,
the average speedup across SPEC and GAP increases to 6% and
15%, with a 7.4% improvement for SPEC and a 6.9% improvement
for GAP. On top of this, performance improvement occurs when
the dynamic sampled cache (DSC) is integrated with the global
predictor (D-Mockingjay with a global view and DSC), resulting
in an average speedup of 9.7% and 16.9% across both SPEC and
GAP homogeneous and heterogeneous, respectively, with a 10.2%
improvement for SPEC and an 8.5% improvement for GAP.

Figure 18 shows the utility of Drishti’s enhancement as it pro-
vides a view closer to the global view. In the case of Drishti’s view,
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jay, D-Mockingjay on 50 16-core and 50 32-coremixes created
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the ETR predictions are closer to the global view, leading to high
accuracy in ETR prediction. In the case of a homogeneous mix dom-
inated by 619.lbm_s-2676B, Mockingjay incurs a performance
slowdown of about 7%, with Drishti this degradation becomes 4%.
In general, Mockingjay does not perform well for streaming work-
loads, and Drishti’s enhancement improves it slightly as it takes
care of the myopic view.
Scalability. So far, we have evaluated Drishti with 4, 16, and 32
cores. We also evaluate D-Mockingjay for 64 and 128 cores with
128MB and 256MB L3 cachewith 64 and 128 2MB slices, respectively.
We observe similar average performance improvements with D-
Mockingjay as compared to Mockingjay for 64 and 128 cores. In
general, we see a positive trend as we increase the core count, and
D-Mockingjay remains effective with 64 and 128 cores (additional
performance improvement of 1% as compared to 32 cores).
Drishti with other workloads. Figure 19 shows the effect of
Drishti enhancements on CVP1 [46], CloudSuite [4], Google data-
center [15], and XSBench [14] traces. For CVP1, we use the updated
traces that appeared in IISWC 2023 [25], and for Google datacenter
traces, we use the artifact of the MICRO’24 paper [51]. We cre-
ate 50 random mixes for 16 and 32-core systems. Compared to
SPEC-CPU2017 and GAP workloads, the effectiveness of replace-
ment policies like Hawkeye and Mockingjay is in the range of 2
to 3%, with a maximum improvement of 13%. Drishti’s enhance-
ment improves the effectiveness of Hawkeye and MockingJay by
an additional 2%, on average, when compared to a baseline LRU.

5.4 Sensitivity Studies
In this Section, we perform a sensitivity study running homoge-
neous mixes on a 16-core simulated system.
Drishti with different LLC sizes. Figure 20 shows the perfor-
mance of Drishti on varying the size of the LLC slice on 16 cores.
We observe that the effectiveness of Drishti on Hawkeye and Mock-
ingjay remains the same regardless of changes in LLC slice size. In
our baseline, we use 2MB LLC/core. Next, we increase the LLC size
from 1MB/core to 4MB/core, keeping the number of sampled sets
fixed as per 2MB LLC. We observe that Drishti performs best on an
LLC slice of 2MB because 1MB/core demands a smaller number of
sampled sets in the sampled cache, whereas 4MB/core demands a
larger number of sets in the sampled cache for training.
Drishti with different L2 sizes. Figure 21 shows the performance
of Drishti on varying the size of the L2 cache on 16 cores. Drishti
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Figure 20: Performance normalized to LRU on a 16-core sys-
tem with different sizes of sliced LLC.
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Figure 21: Performance normalized to LRU on a 16-core sys-
tem with different sizes of L2.
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Figure 22: Performance normalized to LRU on a 16-core sys-
tem with different DRAM channels.

enhances the effectiveness of Hawkeye and Mockingjay across dif-
ferent L2 sizes. However, with a larger L2, such as 2MB, the rate of
performance improvement with Hawkeye and Mockingjay drops
as more applications’ working sets start fitting in L2, resulting in
LLC MPKI < 1 in the baseline itself.
Drishti with different DRAM channels. Figure 22 shows the
performance of Drishti as we increase the number of DRAM chan-
nels. In our baseline, we use four channels for 16 cores. When we
move to two channels for 16 cores, Hawkeye provides only 2.3%
performance improvement, and Drishti enhances this performance
improvement to 5.5% with D-Hawkeye. Mockingjay provides 4.7%
performance improvement, and Drishti enhances this performance
improvement to 10.4% with D-Mockingjay. In the case of eight
channels for 16 cores, the effectiveness of replacement policies goes
down as LLC miss latency improves.
Drishti with hardware prefetchers. So far, we use next-line at
L1 and IP-stride at L2. Now, we evaluate Drishti with five state-of-
the-art L1 and L2 prefetchers: SPP+PPF [20], Bingo [16], IPCP [44],
Berti [43], and Gaze [21]. Figure 23 shows the performance im-
provements with Drishti normalized to five different baselines with
five different prefetchers. In general, we see synergy between DR-
SIHTI’s enhancements and hardware prefetching techniques. We
observe that highly accurate prefetchers, such as SPP+PPF and
Berti, improve the baseline itself, and the scope for improvement
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Figure 23: Performance normalized to LRU with different hardware prefetchers averaged across 16 and 32-core mixes.

Table 7: Applicability across LLC replacement policies.

Type Replacement Policies Per-core yet
Global Predictor

Dynamic
Sampled Cache

Memoryless
Policies DIP, RRIP, IPVs × ✓

Prediction-based
Policies

SDBP, SHiP,
SHiP++,Leeway, Glider,
MPPPB, Percepton

learning, MDPP, CARE,
CHROME

✓ ✓

EVA × ×

is marginally lower. In DRAM bandwidth-constrained scenarios,
CLIP [45] can be used alongside Drishti.

6 Applicability
Memoryless policies. Rereference Interval Prediction (RRIP), Dy-
namic Insertion Policy (DIP), and Insertion and Promotion Vector
(IPV) [28, 32, 48] employ set-dueling to choose between heuristics.
Still, the random selection of sampled sets can lead to suboptimal
outcomes. Drishti’s dynamic sampled set selection can enhance the
effectiveness of the selection.
Prediction based policies. Replacement policies in this category
use a prediction-based approach to making eviction decisions. They
use common structures like sampled cache and reuse predictors.
Sampling Dead Block Prediction (SDBP) [34] determines whether
the loads brought by a particular PC are dead lines. To do this, it
tracks the reuse patterns of loads associated with that PC. Signature-
based Hit Predictor (SHiP++) [60, 61] learns reuse patterns using
sampled sets that store the most recent signature per line and up-
date the Signature-based Hit Table (SHCT). Economic Value Added
(EVA) [18] prioritizes cache lines based on cache hit distribution.
Leeway [23] improves dead block prediction by using reuse distance
and decides eviction based on access patterns. Leeway is one of the
prior works that tries to optimize the latency and energy require-
ments for accessing the prediction tables. Instead of accessing the
prediction table on every LLC hit and miss, Leeway designs a pre-
dictor that is accessed only on LLC misses. However, it still suffers
from myopic behavior and underutilized sample sets. Perceptron
learning [59] and Multiperspective Placement, Promotion, and By-
pass (MPPPB) [31] uses different features along with PC to predict
the reuse behavior of the cache block using sampled sets from LLC.
Minimal Disturbance Placement and Promotion (MDPP) [58] fo-
cuses on advancing reused blocks that have lower protection levels,
ensuring minimal disruption to the remaining blocks in the set
using a PC trained on sampled sets. Glider [55] is a deep learning-
based policy that uses a PC History Register (PCHR) as a sampled

Table 8: Drishti with SHiP++, CHROME, and Glider policies
for 16-core systems.

SHiP++ D-SHiP++ CHROME D-CHROME Glider D-Glider
1.03 1.08 1.06 1.13 1.03 1.06

cache and an Integer SVM (ISVM) as a predictor to estimate cache
line reuse behavior. CARE [39] is a concurrency-aware replacement
policy that considers both cache locality and concurrency using the
metric of pure miss cycles to decide the caching behavior of the PC.
It also uses a sampled cache and predictor indexed by PC per slice.
CHROME [38] is an RL-based replacement policy that utilizes the
SARSA algorithm to determine caching actions at the levels of PC
and DRAM page.

Table 7 summarizes Drishti’s applicability across various policies
based on its two enhancements. Table 8 shows the effectiveness of
Drishti with three more replacement policies for a 16-core system.
We select SHiP++ as SHiP is one of the early RRIP-based policies
that uses a predictor. Next, we choose CHROME, an RL-based re-
placement policy, and Glider, a deep learning based replacement
policy. Drishti’s enhancements are effective across all these poli-
cies. SHiP++’s 3% gain over LRU increases to 8% with D-SHiP++.
CHROME improves performance by 6% over LRU, which increases
to 13% with D-CHROME and Glider’s 3% gain became 6% with
D-Glider.

7 Conclusion
We proposed a few fundamental enhancements (Drishti enhance-
ments) to improve the effectiveness of last-level cache replacement
policies for a sliced LLCwith NUCA, which is shared by many cores.
We observed that the reuse predictions made by state-of-the-art re-
placement policies are myopic. To mitigate the myopic predictions,
we made a case for a local per-slice sampled cache and per-core yet
global reuse predictor, which is connected to an LLC slice through a
dedicated interconnect. We also proposed a dynamic sampled cache
to mitigate the issue of underutilized sampled sets across LLC slices.
Our enhancements improve the effectiveness of the state-of-the-art
LLC replacement policies, especially for many-core systems.
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