
AndroOBFS: Time-tagged Obfuscated Android Malware Dataset
with Family Information

Saurabh Kumar
Indian Institute of Technology Kanpur, India

skmtr@cse.iitk.ac.in

Debadatta Mishra
Indian Institute of Technology Kanpur, India

deba@cse.iitk.ac.in

Biswabandan Panda
Indian Institute of Technology Bombay, India

biswa@cse.iitb.ac.in

Sandeep Kumar Shukla
Indian Institute of Technology Kanpur,India

sandeeps@cse.iitk.ac.in

ABSTRACT
With the large-scale adaptation of Android OS and ever-increasing
contributions in the Android application space, Android has become
the number one target of malware writers. In recent years, a large
number of automatic malware detection and classification systems
have evolved to tackle the dynamic nature of malware growth using
either static or dynamic analysis techniques. Performance of static
malware detection methods degrade due to the obfuscation attacks.
Although many benchmark datasets are available to measure the
performance of malware detection and classification systems, only a
single obfuscated malware dataset (PRAGuard) is available to show-
case the efficacy of the existing malware detection systems against
the obfuscation attacks. PRAGuard contains outdated samples till
March 2013 and does not represent the latest application categories.
Moreover, PRAGuard does not provide the family information for
malware because of which PRAGuard can not be used to evaluate
the efficacy of the malware family classification systems.

In this work, we create and release AndroOBFS, a time-tagged
(at month granularity) obfuscated malware dataset with familial
information spanning over three years from 2018 to 2020. We create
this dataset by obfuscating 16279 unique real-world malware from
six categories ofmalware. Out of 16279 obfuscatedmalware samples,
14579 samples are distributed across 158 families with at least two
unique malware samples in each family. We release this dataset
to facilitate Android malware study towards designing robust and
obfuscation resilient malware detection and classification systems.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Mobile
and wireless security.

KEYWORDS
Android, malware, obfuscation, detection, classification

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9303-4/22/05. . . $15.00
https://doi.org/10.1145/3524842.3528013

ACM Reference Format:
Saurabh Kumar, Debadatta Mishra, Biswabandan Panda, and Sandeep Ku-
mar Shukla. 2022. AndroOBFS: Time-tagged Obfuscated Android Malware
Dataset with Family Information. In 19th International Conference on Mining
Software Repositories (MSR ’22), May 23–24, 2022, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3524842.3528013

1 INTRODUCTION
With the open-source nature and the extensive support of open
application space, Android has become the largest shareholder in
the global market of the smartphones, with more than 83% unique
devices running worldwide [1]. Its open-source nature and simplic-
ity has gained the attention of manufacturers across the world to
produce low-cost smartphone devices compared to other platforms.
Apart from smartphones, Android is gaining popularity in the use
of other devices such as tablets, TVs, wearable, and recently, IoT
devices. Furthermore, the simplicity of the Android framework with
regards to the application development has resulted in substantial
growth of number of mobile applications developed world wide. A
study from Statista shows that every day more than 3.5K Android
applications were released in the year 2020 [2].

With the large-scale adaptation of AndroidOS and ever-increasing
contributions in the Android application space, security has become
a non-trivial challenge recently. A study published by the AV-TEST
shows that around 3.44 million new Android malware were counted
in the year 2021 [5]. This indicates that more than 9.4K new An-
droid malware were developed each day during the year 2021 [5].
With the rapid growth in malware in terms of number, variants,
and diversity, it is challenging to analyse applications to detect and
classify malware manually. Hence, automated malware detection
and family classification systems have evolved to scale the dynamic
nature of malware growth.

In the past many state-of-the-art automated malware detection
and family classification systems ([8–13, 17, 18, 20, 22, 24, 26–29])
have been proposed based on the static and dynamic analysis tech-
niques [14]. One of the primary requirements in designing such
systems is the availability of labelled malware. Many such labelled
datasets (e.g., Drebin [8], AMD [25], RmvDroid [23], AndroZoo
[6]) are available which are used to evaluate the effectiveness of a
malware detection and classification system.
The Problem: The accuracy of malware detection and classifi-
cation systems built around static analysis techniques suffers in

https://doi.org/10.1145/3524842.3528013
https://doi.org/10.1145/3524842.3528013

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Saurabh et al.

Table 1: Data source and year-wise statistics of malware.

Source Year #Samples
Non-obfs Obfs Obfs (#Family≥2)

AndroZoo [6] & 2018 9565 6525 5794 (136)
VirusShare.com [3] 2019 9090 8313 7505 (94)

AndroZoo 2020 1724 1441 1280 (44)
Total 20379 16279 14579 (158)

the presence of obfuscated applications. Evaluation of the detec-
tion/classification systems against possible obfuscation attacks re-
quires up-to-date obfuscated datasets. The static analysis-based
systems either use the PRAGuard [16] dataset or create a new
dataset to evaluate the effectiveness against obfuscation attacks
that have the following implications.
(i) Most malware detectors like DroidSieve [20] use the PRAGuard
dataset to evaluate their efficiency against obfuscated malware.
PRAGuard dataset contains malware till March 2013. These samples
are outdated and do not represent the current state of applications.
Furthermore, the author has stopped the release of the PRAGuard
dataset from April 2021 due to maintenance reasons.
(ii)Malware family information is not present, or the representative
sample size is small in the available PRAGuard dataset. Due to this
limitation, existing malware family identification techniques [8, 10,
13, 20, 22] do not evaluate their solution against the obfuscated
attacks.
(iii) Most malware detectors [12, 21] create new obfuscated sam-
ples to demonstrate their sustainability against possible obfuscation
attacks. Generally, these self-created datasets are not publicly avail-
able, which hampers the reproducibility of results, a crucial aspect
of progress in any research domain. (iv) During the evaluation, a
detection system must be evaluated against samples born after the
training data samples. However, the existing datasets do not contain
date-time (birth) information about the malware sample on which
it appears in the Android application space. A time-tagged dataset
may help to choose testing samples appropriately to showcase the
efficiency of the detection system in the real scenarios.
Our goal: We believe a timestamped obfuscated Android malware
dataset representing current state of Android applications and fam-
ily information will benefit the malware research community. Our
dataset will help to develop efficient malware detection and classi-
fication tools, and evaluate the performance of different detection
techniques to scale the dynamic nature of malware growth.
Our approach:We create and release a time-tagged (at the gran-
ularity of month) obfuscated malware dataset with 16279 unique
real-world malware in six different categories along with family
names. The dataset spans over three years, from 2018 to 2020. 14579
obfuscated malware samples out of 16279 are distributed across 158
families. To create this dataset, we use the following strategy:
(i) We collect real-world malware samples and separate them by
year, quarter, and month. We exclude all malware whose detection
count on VirusTotal [4] is less than 10.
(ii)We label all malware with their family name with the help of
VirusTotal report and AVclass [19] tool.
(iii)We obfuscate all the malware with six different categories using
the Obfuscapk [7] tool.

We store all the information related to obfuscated malware with
family in two CSV files; one CSV file corresponds to 16279 samples
and the other for 14579 familial malware samples. The AndroOBFS

Table 2: Obfuscators implemented in Obfuscapk[7] tool.
Category Obfuscators
trivial Randomize manifest file, rebuild, new alignment, re-signing
renaming Renaming the class, fields and methods
encryption Encryption of library, resource strings, assets, and constant strings
reflection Invoke user defined and framework APIs using the reflection APIs

code
Junk code insertion, instruction re-ordering, calls redirection,
removing debug data, insertion of goto instruction, adding new
method by exploiting method overloading.

dataset along with both the CSV files are available at the web link
https://www.doi.org/10.21227/9ptx-5d17.

2 DATA COLLECTION AND DATASET
CREATION

In this section, we describe the source of non-obfuscated malware,
tools used to create the dataset, and the process of creating the
obfuscated dataset.

2.1 Data Source
For this work, non-obfuscatedmalware samples were collected from
two sources—(i) AndroZoo [6] Project, and (ii) VirusShare.com [3],
spanning over three years from 2018 to 2020. Samples for the year
2020 were collected only from the AndroZoo project. All these
samples were examined through VirusTotal [4] to ensure that they
were malware. We eliminated all the samples flagged as malware
by less than 10 antivirus (AV) engines at VirusTotal. In total, we
obtained 20379 unique non-obfuscated real-world malware samples.
Column name “Non-obfs” of Table 1 shows year-wise statistics of
non-obfuscated malware.

2.2 Tools Used
We utilized two tools to produce an obfuscated malware dataset
annotated with their respective family names—(i) AVclass [19] and
(ii) Obfuscapk [7]. The following is a description of these tools:
AVclass [19] is a tool for labeling the malware with their family
name. It operates on the AV labels for a large number of malware
samples, e.g., VirusTotal JSON reports, and outputs the family name
of each sample from the AV labels. Please refer to the paper [19]
for more details about the AVclass.
Obfuscapk [7] is an open-source black-box obfuscation tool for
Android applications. In Obfuscapk, obfuscation techniques are
classified into five categories. The possible obfuscators implemented
in different obfuscation category of Obfuscapk are shown in Table 2.
Please refer to the paper [7] for more details about the Obfuscapk.

2.3 Dataset Creation Process
We use four steps to create obfuscated dataset with familial infor-
mation as explained below.
(i) Data Collection:We obtained non-obfuscated malware samples
through the AndroZoo project and VirusShare.com. After collecting
samples, we eliminated samples that were detected by less than
10 AV engines at VirusTotal, leaving 20379 unique non-obfuscated
samples.
(ii) Separating in Time-tagged Structure: We separated each
malware sample depending on the year, quarter, and month by
looking at the last modification date of Dex file. The malware’s time
of birth was determined by the Dex file modification date.

https://www.doi.org/10.21227/9ptx-5d17

AndroOBFS: Time-tagged Obfuscated Android Malware Dataset with Family Information MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

tri re
n

en
c re
f

co
de m
ix

Categories

0.00
0.15
0.30
0.45
0.60

Pe
rc

en
ta

ge
 o

f
ap

pl
ica

tio
n

Figure 1: Distribution of malware samples across obfuscation
categories [tri: trivial, ren: renaming, enc: encryption, ref:
reflection].

Q1
18

Q2
18

Q3
18

Q4
18

Q1
19

Q2
19

Q3
19

Q4
19

Q1
20

Q2
20

Q3
20

Q4
20

Quarters

0.00
0.05
0.10
0.15
0.20

Pe
rc

en
ta

ge
 o

f
ap

pl
ica

tio
n

Figure 2: Quarter-wise distribution of malware samples span-
ning over three years (2018 to 2020).

(iii) Labeling with Family Information: After separating mal-
ware into the time-tagged structure, we looked for the family name
of each malware sample. To determine the family name, we first
obtained the VirusTotal JSON reports by sending the SHA-256 hash
of each sample to VirusTotal. After getting the VirusTotal reports,
we passed these reports to the AVclass tool to assign family names
to each sample and store them in CSV files.
(iv) Obfuscating Malware Samples: Finally, using the Obfus-
capk tool, every non-obfuscated malware sample was obfuscated
month-by-month for each year (i.e., 2018, 2019, and 2020) in six
different categories. The first five categories are the same as offered
by Obfuscapk (see Table 2), while the sixth category includes a
combination of two or more obfuscation techniques (referred to as
mix). The Obfuscapk tool failed for several malware samples due
to the application complexity during the obfuscation process. As
a result, we correctly acquired 16279 unique obfuscated samples
from 20379 non-obfuscated samples. The column name “Obfs” of
Table 1 shows year-wise statistics of obfuscated malware, includ-
ing families with at least one sample. However, after removing all
malware families containing a single sample, we were left with
14579 unique obfuscated malware samples distributed across 158
families. The column name “Obfs (#Family≥2)” of Table 1 shows
year-wise statistics of obfuscated malware where each malware
family contains at least two unique samples.

3 OVERVIEW OF DATASET
In this section, we provide an overview of AndroOBFS dataset along
with the distribution of malware and malware families.

3.1 Overview
Table 1 shows the year-wise statistics of AndroOBFS dataset. We
have created this dataset by obfuscating 16279 unique real-word
malware in six different obfuscation categories that have been

jia
gu

sm
sr

eg

dn
ot

ua

wa
pr

on

sm
sp

ay

fa
ke

ap
p

wr
ob

a

hi
dd

ad

sy
rin

ge

sm
ss

py

re
vm

ob

ew
in

d

hy
pa

y

tri
ad

a

st
yr

ick
a

Top 15 families

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Pe
rc

en
ta

ge
 o

f
ap

pl
ica

tio
n

Figure 3: Distribution of top 15 families in familial An-
droOBFS.

flagged as malware by at least 10 antivirus engines of VirusTotal.
To obfuscate malware, we have used Obfuscapk Tool. Furthermore,
for the familial obfuscated malware dataset, we only consider those
families with at least two unique samples. After that, we were left
with 14579 unique obfuscated malware with family information
tagged with their time of birth. We release the entire dataset includ-
ing all time-tagged samples and samples with family information
at the web link https://www.doi.org/10.21227/9ptx-5d17.

3.2 Malware Distribution
We show the malware distribution in AndroOBFS dataset by con-
sidering the entire set of obfuscated samples, i.e., 16279 unique
real-word malware sample.

3.2.1 Distribution Across Obfuscation Categories. Figure 1 shows
the distribution of malware samples under six different obfuscation
categories—(i) trivial (tri), (ii) renaming (ren), (iii) encryption (enc),
(iv) reflection (ref), (v) code, and (vi) mix (a mix of two or more
obfuscation method from (i) to (v)). In our dataset, ∼50% of sam-
ples fall under code obfuscation as code obfuscation techniques are
widely used by malware authors to bypass the static analysis pro-
cess. We give second priority to encryption where ∼23% malware
are encrypted.

3.2.2 Time-tagged Distribution. A time-tagged dataset should con-
tain enough samples to perform a longitudinal study to understand
the attack scenarios and the effectiveness of counter measures used
by any security system. Figure 2 shows that AndroOBFS contain
enough samples for each quarter spanning over three years from
2018 to 2020. The portion of samples for 2020 however is small
but sufficient to perform a longitudinal study. In future, we will
add more samples for the year 2020 when we collect new malware
samples of that year.

3.3 Distribution of Malware Families
One of our aims is to create familial obfuscated malware samples.
Hence, we show the distribution of malware families by using 14579
unique samples distributed across 158 families.

3.3.1 Malware Families Distribution. Malware in AndroOBFS are
distributed among 158 different families having at least two or more
unique samples. Out of 158 families, we show the distribution of the
top 15 malware families in Figure 3. The jiagu family alone holds
more than 51% of the entire familial obfuscated dataset, while the
share of top 5 families (i.e., jiagu, smsreg:∼9.9%, dnotua:∼6.4%,

https://www.doi.org/10.21227/9ptx-5d17

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Saurabh et al.

tri re
n

en
c re
f

co
de m
ix

Categories

0
25
50
75

100
125
150

#F
am

ilie
s

Figure 4: Number of unique families across six different ob-
fuscation categories.

Q1
'1

8

Q2
'1

8

Q3
'1

8

Q4
'1

8

Q1
'1

9

Q2
'1

9

Q3
'1

9

Q4
'1

9

Q1
'2

0

Q2
'2

0

Q3
'2

0

Q4
'2

0

Quarters

0
25
50
75

100

#F
am

ilie
s

Figure 5: Quarter-wise number of families spanning over
three years (2018 to 2020).

wapron:∼5%, and smspay:∼3%) in the AndroOBFS dataset is ∼75%.
Out of 158 families, 146 families individually holds less than 1%
samples of AndroOBFS.

3.3.2 Number of Families Across Obfuscation Categories. We have
shown the distribution ofmalware samples into families. Our dataset
contains obfuscated samples in six different categories. Figure 4
shows the number of unique malware families with different obfus-
cation techniques. Similar to malware distribution across categories
(see Section 3.2.1), the highest number of families are represented by
the code obfuscation method, followed by the encryption method.
The code obfuscated and encryptedmalware samples are distributed
across 146 and 118 families, respectively.

3.3.3 Number of Families in Time-tagged Familial Dataset. We fur-
ther categorize quarter-wise distribution of malware samples into
for years 2018, 2019, and 2020, as shown in Figure 5. Similar to the
time-tagged malware distribution, our familial dataset also contains
enough families for every quarter. A sufficient number of malware
families will help to evaluate the family classification system against
obfuscation attacks.

4 USAGE SCENARIO
In this section, first, we describe the prior work that utilizes the
part of this dataset, followed by the future usage scenario of the
entire dataset.

4.1 Prior Usage
To enable on-device Android malware detection, we have proposed
DeepDetect [12]. DeepDetect is a practical on-device malware de-
tector that employs a machine learning algorithm on static features,
which consumes significantly less processing time and device en-
ergy. To study the resiliency of DeepDetect against the possible

obfuscation attacks, we have used 4993 obfuscated malware sam-
ples from the AndroOBFS dataset for the year 2019. Other than this
work, we have not used this dataset in the past.

4.2 Future Usage
We believe our dataset can be utilized in the following scenarios:
(i) Robust Malware Detection and Classification: As described
earlier, most malware detectors use the PRAGuard dataset to study
the robustness of their technique against the obfuscated malware.
PRAGuard is outdated and does not represent the latest applications
in use. Also, the existing family classification models have never
been evaluated against the possible obfuscation attacks due to the
non-availability of obfuscated familial malware samples. Hence,
AndroOBFS will help in designing robust and obfuscation resilient
malware detection and classification systems.
(ii) Studying the Efficacy of Existing Analysis System: The ef-
ficacy of existing detection systems has been evaluated on outdated
obfuscated datasets. The impact of the current application design
approaches along with obfuscation is unknown on the existing
malware detection solutions. Hence, our dataset can be utilized to
study the efficacy of existing malware detection and family classifi-
cation system against the current state of Android applications and
obfuscation methods.
(iii) Temporal Study: This study is important to understand how
long a security system can work without requiring an update. Exist-
ing malware detection and classification systems have performed
a temporal study on the non-obfuscated datasets. However, none
of the existing solutions have opted for temporal study against the
obfuscation attacks due to the non-availability of time-tagged obfus-
cated samples. Therefore, AndroOBFS dataset will enable temporal
study against possible obfuscation attacks.

5 LIMITATIONS
The time-tagged obfuscation dataset released as part of this work
faces several limitations which can be improved further, as dis-
cussed below:
(i)Our dataset enables temporal study by providing a dataset tagged
with time till the granularity of months. We use Dex file modifi-
cation time to separate malware in timeline order. Release time
inconsistency may threaten our dataset where the malware au-
thor intentionally alters the Dex modification date. Our dataset can
be further improved by using the MoonlightBox [15] tool which
analyses API release history to overcome this limitation.
(ii) As mentioned in Section 3.2.2, the year 2020 contains fewer
samples, resulting in no obfuscated malware sample under a specific
obfuscation method. For example, in February 2020, we did not have
any obfuscated samples under the mix category and had only one
sample under the reflection category. However, this limitation is
easily addressable depending on the availability of new malware
samples.
(iii) Our familial dataset contains malware families with at least
two unique samples. Therefore, some malware families do not hold
obfuscated samples in all categories. However, it can be further
improved by increasing the family size threshold from two to some
value decided based on the requirement.

AndroOBFS: Time-tagged Obfuscated Android Malware Dataset with Family Information MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

(iv) It is be possible that some of the obfuscated malware samples
may crash during the execution. Information regarding malware
samples that crashed during execution is not available with the
AndroOBFS dataset. In the future, we will annotate the dataset with
execution status to overcome this limitation.

6 CONCLUSION
This paper presents AndroOBFS, a time-tagged (at the granularity
of month) obfuscated malware dataset with familial information
based on real-world malware, to aid the research study on malware
detection and family classification systems. AndroOBFSwas created
by obfuscating 16279 unique malware samples in six different ob-
fuscation categories, spanning over three years from 2018 to 2020.
14579 out of 16279 obfuscated malware samples are distributed
among 158 families with at least two unique malware samples in
the entire dataset. We believe the Android malware research com-
munity will benefit from this dataset to design robust obfuscation
resilient malware detection and family classification systems.

ACKNOWLEDGMENTS
This work is partially supported by Visvesvaraya Ph.D. Fellowship
grant MEITY-PHD-999, SERB and DST through C3i center and C3i
hub projects at IIT Kanpur.

REFERENCES
[1] 2021. IDC: Smartphone Market Share-OS. https://www.idc.com/promo/

smartphone-market-share/os Accessed: 12 January 2022.
[2] 2021. Number of daily Android app releases worldwide | statista.com. https://

www.statista.com/statistics/276703/android-app-releases-worldwide/ Accessed:
15 January 2022.

[3] 2021. VirusShare.com. https://virusshare.com/ Accessed: 10 October 2021.
[4] 2021. VirusTotal. https://www.virustotal.com/ Accessed: 10 October 2021.
[5] 2022. Malware Statistics & Trends Report | AV-TEST. https://www.av-test.org/en/

statistics/malware/ Accessed: 1 January 2022.
[6] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.

AndroZoo: Collecting Millions of Android Apps for the Research Community. In
2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR).
468–471.

[7] Simone Aonzo, Gabriel Claudiu Georgiu, Luca Verderame, and Alessio Merlo.
2020. Obfuscapk: An open-source black-box obfuscation tool for Android apps.
SoftwareX 11 (2020), 100403.

[8] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad
Rieck. 2014. DREBIN: Effective and Explainable Detection of Android Malware
in Your Pocket. In Symposium on Network and Distributed System Security (NDSS).
NDSS. https://doi.org/10.14722/ndss.2014.23247

[9] Anam Fatima, Saurabh Kumar, andMalay Kishore Dutta. 2021. Host-Server-Based
Malware Detection System for Android Platforms Using Machine Learning. In
Advances in Computational Intelligence and Communication Technology, Xiao-Zhi
Gao, Shailesh Tiwari, Munesh C. Trivedi, and Krishn K. Mishra (Eds.). Springer
Singapore, Singapore, 195–205.

[10] Hye Min Kim, Hyun Min Song, Jae Woo Seo, and Huy Kang Kim. 2018. Andro-
Simnet: Android Malware Family Classification using Social Network Analysis.
In 2018 16th Annual Conference on Privacy, Security and Trust (PST). 1–8. https:
//doi.org/10.1109/PST.2018.8514216

[11] Saurabh Kumar, Debadatta Mishra, Biswabandan Panda, and Sandeep K. Shukla.
2020. STDNeut: Neutralizing Sensor, Telephony System and Device State Infor-
mation on Emulated Android Environments. In Cryptology and Network Security,
Stephan Krenn, Haya Shulman, and Serge Vaudenay (Eds.). Springer International
Publishing, Cham, 85–106.

[12] Saurabh Kumar, Debadatta Mishra, Biswabandan Panda, and Sandeep Kumar
Shukla. 2021. DeepDetect: A Practical On-device Android Malware Detector.

In 2021 IEEE 21st International Conference on Software Quality, Reliability and
Security (QRS). 40–51. https://doi.org/10.1109/QRS54544.2021.00015

[13] Saurabh Kumar, Debadatta Mishra, and Sandeep Kumar Shukla. 2021. Android
Malware Family Classification: What Works – API Calls, Permissions or API
Packages?. In 2021 14th International Conference on Security of Information and
Networks (SIN), Vol. 1. 1–8. https://doi.org/10.1109/SIN54109.2021.9699322

[14] Saurabh Kumar and Sandeep Kumar Shukla. 2020. The State of Android Security.
Springer Singapore, Singapore, 17–22. https://doi.org/10.1007/978-981-15-1675-
7_2

[15] Li Li, Tegawendé Bissyandé, and Jacques Klein. 2018. MoonlightBox: Mining
Android API Histories for Uncovering Release-Time Inconsistencies. In 2018 IEEE
29th International Symposium on Software Reliability Engineering (ISSRE). 212–223.
https://doi.org/10.1109/ISSRE.2018.00031

[16] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto.
2015. Stealth Attacks: An Extended Insight into the Obfuscation Effects on
Android Malware. Comput. Secur. 51, C (jun 2015), 16–31. https://doi.org/10.
1016/j.cose.2015.02.007

[17] Luca Massarelli, Leonardo Aniello, Claudio Ciccotelli, Leonardo Querzoni,
Daniele Ucci, and Roberto Baldoni. 2017. Android malware family classifi-
cation based on resource consumption over time. In 2017 12th International
Conference on Malicious and Unwanted Software (MALWARE). 31–38. https:
//doi.org/10.1109/MALWARE.2017.8323954

[18] Andrea Saracino, Daniele Sgandurra, Gianluca Dini, and Fabio Martinelli. 2018.
MADAM: Effective and Efficient Behavior-based Android Malware Detection
and Prevention. IEEE Transactions on Dependable and Secure Computing 15, 1
(Jan 2018), 83–97. https://doi.org/10.1109/TDSC.2016.2536605

[19] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. AV-
class: A Tool for Massive Malware Labeling. In Research in Attacks, Intrusions, and
Defenses, FabianMonrose, Marc Dacier, Gregory Blanc, and Joaquin Garcia-Alfaro
(Eds.). Springer International Publishing, Cham, 230–253.

[20] Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour Ahmadi, Johannes
Kinder, Giorgio Giacinto, and Lorenzo Cavallaro. 2017. DroidSieve: Fast and
Accurate Classification of Obfuscated Android Malware. In Proceedings of the
Seventh ACM on Conference on Data and Application Security and Privacy (Scotts-
dale, Arizona, USA) (CODASPY ’17). Association for Computing Machinery, New
York, NY, USA, 309–320. https://doi.org/10.1145/3029806.3029825

[21] Caijun Sun, Hua Zhang, Sujuan Qin, Jiawei Qin, Yijie Shi, and Qiaoyan Wen.
2020. DroidPDF: The Obfuscation Resilient Packer Detection Framework for
Android Apps. IEEE Access 8 (2020), 167460–167474. https://doi.org/10.1109/
ACCESS.2020.3010588

[22] Sercan Türker and Ahmet Burak Can. 2019. AndMFC: Android Malware Family
Classification Framework. In 2019 IEEE 30th International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC Workshops). 1–6. https://doi.
org/10.1109/PIMRCW.2019.8880840

[23] Haoyu Wang, Junjun Si, Hao Li, and Yao Guo. 2019. RmvDroid: Towards A
Reliable Android Malware Dataset with App Metadata. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). 404–408. https:
//doi.org/10.1109/MSR.2019.00067

[24] Xiaolei Wang, Yuexiang Yang, and Yingzhi Zeng. 2015. Accurate mobile malware
detection and classification in the cloud. SpringerPlus 4 (12 2015). https://doi.
org/10.1186/s40064-015-1356-1

[25] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. 2017. Deep
Ground Truth Analysis of Current Android Malware. In Detection of Intrusions
and Malware, and Vulnerability Assessment, Michalis Polychronakis and Michael
Meier (Eds.). Springer International Publishing, Cham, 252–276.

[26] Ke Xu, Yingjiu Li, Robert H. Deng, and Kai Chen. 2018. DeepRefiner: Multi-layer
Android Malware Detection System Applying Deep Neural Networks. In 2018
IEEE European Symposium on Security and Privacy (EuroS&P). 473–487.

[27] Lok Kwong Yan and Heng Yin. 2012. DroidScope: Seamlessly Reconstructing the
OS and Dalvik Semantic Views for Dynamic Android Malware Analysis. In 21st
USENIX Security Symposium (USENIX Security 12). USENIX Association, Bellevue,
WA, 569–584.

[28] Suleiman Y. Yerima, Sakir Sezer, and Igor Muttik. 2014. Android Malware De-
tection Using Parallel Machine Learning Classifiers. In 2014 Eighth International
Conference on Next Generation Mobile Apps, Services and Technologies. 37–42.
https://doi.org/10.1109/NGMAST.2014.23

[29] Zhenlong Yuan, Yongqiang Lu, and Yibo Xue. 2016. DroidDetector: Android
malware characterization and detection using deep learning. Tsinghua Science
and Technology 21, 1 (2016), 114–123. https://doi.org/10.1109/TST.2016.7399288

https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.statista.com/statistics/276703/android-app-releases-worldwide/
https://www.statista.com/statistics/276703/android-app-releases-worldwide/
https://virusshare.com/
https://www.virustotal.com/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://doi.org/10.14722/ndss.2014.23247
https://doi.org/10.1109/PST.2018.8514216
https://doi.org/10.1109/PST.2018.8514216
https://doi.org/10.1109/QRS54544.2021.00015
https://doi.org/10.1109/SIN54109.2021.9699322
https://doi.org/10.1007/978-981-15-1675-7_2
https://doi.org/10.1007/978-981-15-1675-7_2
https://doi.org/10.1109/ISSRE.2018.00031
https://doi.org/10.1016/j.cose.2015.02.007
https://doi.org/10.1016/j.cose.2015.02.007
https://doi.org/10.1109/MALWARE.2017.8323954
https://doi.org/10.1109/MALWARE.2017.8323954
https://doi.org/10.1109/TDSC.2016.2536605
https://doi.org/10.1145/3029806.3029825
https://doi.org/10.1109/ACCESS.2020.3010588
https://doi.org/10.1109/ACCESS.2020.3010588
https://doi.org/10.1109/PIMRCW.2019.8880840
https://doi.org/10.1109/PIMRCW.2019.8880840
https://doi.org/10.1109/MSR.2019.00067
https://doi.org/10.1109/MSR.2019.00067
https://doi.org/10.1186/s40064-015-1356-1
https://doi.org/10.1186/s40064-015-1356-1
https://doi.org/10.1109/NGMAST.2014.23
https://doi.org/10.1109/TST.2016.7399288

	Abstract
	1 Introduction
	2 Data Collection and Dataset Creation
	2.1 Data Source
	2.2 Tools Used
	2.3 Dataset Creation Process

	3 Overview of Dataset
	3.1 Overview
	3.2 Malware Distribution
	3.3 Distribution of Malware Families

	4 Usage Scenario
	4.1 Prior Usage
	4.2 Future Usage

	5 Limitations
	6 Conclusion
	Acknowledgments
	References

