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ABSTRACT
Usage of the execution stack at run-time captures the dynamic
state of programs and can be used to derive useful insights into the
program behaviour. The stack usage information can be used to
identify and debug performance and security aspects of applica-
tions. Binary run-time instrumentation techniques are well known
to capture the memory access traces during program execution.
Tracing the program in entirety and filtering out stack specific
accesses is a commonly used technique for stack related analysis.
However, applying vanilla tracing techniques (using tools like Intel
Pin) for multi-threaded programs has challenges such as identifying
the stack areas to perform efficient run-time tracing.

In this paper, we introduce SniP, an open-source stack tracing
framework for multi-threaded programs built around Intel’s binary
instrumentation tool Pin. SniP provides a framework for efficient
run-time tracing of stack areas used by multi-threaded applications
by identifying the stack areas dynamically. The targeted tracing
capability of SniP is demonstrated using a range of multi-threaded
applications to show its efficacy in terms of trace size and time to
trace. Compared to full program tracing using Pin, SniP achieves up
to 75x reduction in terms of trace file size and up to 24x reduction
in time to trace. SniP complements existing trace based stack usage
analysis tools andwe demonstrate that SniP can be easily integrated
with the analysis framework through different use-cases.

CCS CONCEPTS
• Computer systems organization → High-level language
architectures.
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1 INTRODUCTION
Stack is an important entity in software programs as it helps to
efficiently implement language constructs such as subroutine call
and return, allocation and freeing of local variables. Stack also plays
a key role in program analysis as programs leave their footprint
in the stack throughout their execution. Programmers can gain in-
sights into the behaviour, security loopholes such as buffer overflow
by analysing the stack usage. However, programmers face some
unique challenges to perform analysis related to run-time stack
usage. Unlike other program memory areas where the program-
mer explicitly control the usage (and can profile), the stack areas
are hidden from the programmer. The usage of execution stack is
transparent to programmers as the compiler inserts instructions to
manage the stack for correct implementation of program logic (like
function calls etc.).

These unique properties of stack makes it a fascinating element
in the domain of program analysis. It is easy to observe that run-
time stack usage can not be foreseen which makes static analy-
sis techniques ineffective. Therefore, we depend on dynamic run-
time techniques for stack analysis. Usage of debugging tools (e.g.,
GDB [20]) can provide a lot of insight into the stack usage but
requires manual intervention and therefore, does not scale for long-
running applications. On the other hand, run time memory access
tracing techniques provide a lot of flexibility to perform automated
tracing and analysis. Dynamic binary instrumentation (DBI) tools
such as Intel Pin are widely used to trace the program at run time
and perform offline analysis using variety of techniques [1, 8, 23].

DBI tools are very convenient as they require no preparation
and can trace the entire program [12, 17]. One of the approaches
adapted for run-time stack analysis is to perform full program
tracing and filter stack specific accesses during the offline analysis
phases. However, stack analysis through a trace-driven approach
by tracing the program results in large trace files and higher tracing
time (Section 3.1). In addition, the offline analysis process requires
the stack virtual address ranges for filtering the trace and can
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Figure 1: Schematic diagram of SniP

use operating system provided memory layout information for
this purpose. However, capturing the stack range information for
different threads in multi-threaded applications is challenging. The
stack areas for threads can be allocated anywhere in the program
address space depending on the state of the address space and OS
support for dynamic allocation. For example, stack areas for the
threads created using POSIX thread library in the Linux OS are
allocated at run time in the non-contiguous areas in the address
space.

In this paper, we take a different approach where we propose
to filter the stack accesses at the time of tracing to avoid the ad-
ditional overheads (trace size and tracing time) and remove the
requirement of identifying the stack virtual address ranges during
offline analysis. We propose techniques to identify and manage an
information base for the stack address ranges of different threads
which is consumed by the DBI tool to apply filters at the time of
tracing. SniP, a Stack tracing framework for multi-threaded appli-
cations is built on top of Intel’s Pin [12] (niP). SniP captures and
manages the information regarding the stacks of different threads
using an OS-level extension where the operations relating to the
stack areas (starting from the creation) are monitored. Further, the
up-to-date information related to the stack areas is shared with the
user-space tracing process to enable target tracing.

To the best of our knowledge, SniP is the first framework for
tracing stack inmulti-threaded programs; showcasing reduced trace
sizes (75x less trace file size with key-value store TinyDBM [21])
and tracing time (24x less tracing time with Python3 http server)
compared to tracing the programs in entirety. Furthermore, with
targeted tracing capability of SniP, the offline analysis process
becomes simpler for multi-threaded applications which enables
seamless integration with existing trace based analysis tools. SniP
provides strength to the multi-threaded application stack analysis
spectrum as multiple tools and use-cases can be built around SniP.
We show two such sample use-cases using SniP (Section 3.2) to
demonstrate its capabilities.

We release the tool for the community. The link to download
the tool along with usage instructions is as follows,
https://doi.org/10.5281/zenodo.6366894

2 DESIGN AND IMPLEMENTATION
The high-level design of SniP is shown in Figure 1. The major com-
ponents of SniP are the user space program (Driver) and the OS
module (Monitor). The user space program is responsible for exe-
cuting the application and Intel’s dynamic binary instrumentation
tool Pin [12]. The monitor module captures application threads’

stack range at the point of thread creation and store this infor-
mation in the metadata region (Figure 1). This design enables the
monitor module to record stack ranges of newly created threads
throughout the application’s lifetime. When tracing starts, Pin con-
sumes the stack range information stored in the metadata region
and generates trace only for stack accesses.

We implement SniP in the Linux OS (with kernel version 4.19.83).
As we can see in Figure 1, the user space driver program creates two
child processes, one for executing the application (to be traced) and
the other for Pin. The driver program also passes its process ID (step
1 ) to monitor module (implemented as a kernel module) through a
character device. This enables themonitor module to identify the ap-
plication using the parent-child relationship between the driver and
application process. The monitor module intercepts thread creation
from the application process by hooking the wake_up_new_task
function in clone system call handler of the Linux kernel and saves
the stack range (step 3 ) of each application thread in the metadata
region. The metadata region is exposed from the kernel module
using the kernel sysfs API where the Pin process can access it us-
ing the file API. The driver passes the application process ID to Pin
(step 2 ) for tracing. Pin starts reading stack ranges from metadata
area (step 4 ) and generate output by tracing the application (step
5 ).
In the current implementation, we need to turn off Address Space

Layout Randomization (ASLR) to prevent the exec system call (in
create &manage) from changing the stack range of the application’s
main thread (after its forked from the driver process). We intend
to address this limitation by hooking the exec system call handler
in future. All the configurations for using the Pin tool remains
unchanged in the proposed system and therefore, SniP does not
hamper the vast feature set provided by Pin.

3 RESULTS
3.1 Stack tracing with SniP
To analyse the trace size and tracing time, we used the following
workloads: merge-sort (MS) with four threads each sorting 250
numbers, Python3 default http-server (HS) used to download 4 files
with each 200+ MB size, decision tree classifier (DT) from Python
scikit-learn library used with 77280 training and 19315 testing
samples, in-memory key-value stores BabyDBM (BD), CacheDBM
(CD), TinyDBM (TD) from Tkrzw [21] performing 50 set and 50
get operations, Graph500 (G500) benchmark [15] BFS kernel run
with scale parameter as 10. The benefits of using SniP for multi-
threaded program stack tracing can be observed from the results
presented in Figure 2 where we compare the trace file size and
the tracing time taken with full program tracing using Pin and
stack tracing using SniP. For long running applications such as
python http-server, machine learning algorithms and in-memory
key-value store applications, the difference between Pin and Snip
is significant. For example, 17x and 2.5x reduction in the trace file
size and the trace time is observed for http server workload. The
benefit of SniP is marginal for short running applications with
heavy stack usage, such as merge-sort which extensively use stack
for recursive calls. To confirm the robustness, we also used SniP to
trace long running applications such as MySQL with wikipedia [6]
and memcached with YCSB workloads[5] (not shown here).

https://doi.org/10.5281/zenodo.6366894
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Figure 2: Comparison of size and time for SniP stack trac-
ing w.r.t Pin full tracing [ MS: Merge-Sort, HS: Python3
Http Server, DT: Decision Tree Classifier, BD: BabyDBM, CD:
CacheDBM, TD: TinyDBM, G500: Graph500 BFS ]

3.2 Use cases
In this subsection, we show different usage scenarios of SniP for
tracing the stack. We exhibit that SniP can be easily extended to
build use-cases around stack analysis.

3.2.1 Tracing ML Classification Algorithms: The popularity
of machine learning in a wide range of domains are driving soft-
ware and hardware changes in computer science. ASICs and accel-
erators are designed to meet specific performance demands [18].
Understanding the memory access patterns of machine learning
algorithms help designers to perform optimizations [14] at soft-
ware and hardware levels. Moreover, understanding the memory
access patterns is important for systems with non-volatile mem-
ory due to its internal micro-architecture difference with DRAM
and asymmetric read, write access time [24]. First commercially
available persistent memory, Intel’s Optane DC persistent memory
performance depends upon access size, access type (read vs write)
and pattern [13, 25].

Given the popularity of machine learning algorithms and avail-
ability of non-volatile memory, it will be of great benefit to pro-
grammers to know the expected performance of machine learning
algorithms executing on systems with non-volatile memory. In this
context, we show a use-case for SniP by collecting the stack read,
write access patterns of popular machine learning classification
algorithms such as decision tree, extra trees, gradient boosting and
gaussian naive bayes in Figure 3. These classification algorithms
used 75 features from DeepDetect [11] and used 77280 samples for
training and 19315 for testing. During this tracing, Decision Tree
Classifier created 22, Extra Trees Classifier 14, Gradient Boosting
Classifier 22 and Gaussian Naive Bayes 21 threads.

Figure 3 shows fraction of read and write operations to stack
area in 1 minute intervals. We observed that the stack accesses
in these algorithms are dominated by reads. Using SniP, we also
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Figure 3: % of read andwrite access to stack ofMachine Learn-
ing classification algorithms

performed a further study on the influence of feature set size on
stack usage for ML classification algorithms by taking extra trees
classifier as an example. Figure 4 shows that the feature set size
did not influence stack read/write usage in the initial stage of the
extra trees classifier algorithm, but impacted in the later stage of
algorithm. Figure 4 also shows that there is an increase in bytes read
from and decrease in bytes written to stack in the later stage of extra
trees classification. We suspected it to be due to data access pattern
difference in training and test phases of classification algorithm
but confirmed that the pattern is present even after separating out
training and test phases of extra trees classification which implies
the access pattern is a property of the algorithm in this case.

3.2.2 Detecting uninitialized memory usage in stack: Mem-
ory corruption bugs such as buffer overflow, Use-After-Free (UAF)
and uninitialized memory use happen due to incorrect program-
ming practices or mistakes [9]. Static code analysis tools are ef-
fective for catching bugs based on a set of predefined rules but
have a high false positive rate [2]. The uninitialized memory usage
can also expose kernel data to user programs thus breaking the
security guarantee [10]. The number of uninitialized memory bugs
reported at CVE over the years in Figure 5 indicates the importance
of detecting it.
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Figure 4: Read and write behaviour of Extra Trees Classifier
with varying feature set size [et35, et45, et55, et65 represents
35, 45, 55, 65 feature sizes]
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We show that SniP can be used to detect uninitialized memory
bugs such as shown in listing 1.

1 i n t main ( ) {
2 i n t da t a [ 2 0 ] ;
3 i n t i ;
4 f o r ( i = 0 ; i < 2 0 ; i ++)
5 da t a [ i ] += 1 ;
6 f o r ( i = 0 ; i < 2 0 ; i ++)
7 p r i n t f ( " Value a t da t a [%d ] = %d \ n " , i , d a t a [ i ] ) ;
8 r e t u r n 0 ;
9 }

Listing 1: Prototype of uninitialized memory bug.

In this use-case, we developed a prototype to identify uninitial-
ized memory bugs by parsing the stack trace generated by SniP.
The parser tagged instances where read to any stack location hap-
pened before write, thus indicating uninitialized memory usage
bug in the code. SniP’s trace contained details such as access type
(read/write), instruction address, memory access virtual address.
The parser generated a JSON file containing uninitialized memory
bug virtual address and instruction address as shown in Figure 6.
Even though we parsed the SniP trace offline to detect bugs, this
can be used to detect uninitialized memory bugs at run-time by
running the parser alongside the traced program.

4 RELATEDWORK
Static and dynamic analysis are two well known techniques for
program analysis. Static analysis parses the code or uses abstract

 
 

{ 
    "0x7fffffffe2d8": [
        "0x7ffff7ac8a0c"
    ],
    "0x7fffffffe2f8": [
        "0x7ffff7ac8913"
    ],
    "0x7fffffffe308": [
        "0x7ffff7ac8927"
    ],
    "0x7fffffffe310": [
        "0x7ffff7ac8928"
    ],
    "0x7fffffffe318": [
        "0x7ffff7ac8929"
    ],

Figure 6: JSON file format, Python parser output of uninitial-
ized memory bug

models whereas dynamic analysis executes the program and ob-
serves the run time behaviour, hence no abstractions or approxi-
mations are required [7]. Dynamic analysis requires inclusion of
analysis routines within the program, which is called binary instru-
mentation. Binary instrumentation can be done statically (binary
is modified before the program runs) or dynamically (modification
occurs at run-time) [16].

Dynamic binary instrumentation (DBI) is very convenient for the
users to trace and analyse programs as it requires no preparation
and can be applied in a flexible manner. Valgrind [17] is a DBI
framework that uses shadow values, which maintains a copy of the
program state containing register values and user-mode address
space. Dynamo performs run-time performance optimization. It
generates an optimised version of the hot code sequence in the
program to a code cache by interpreting the instructions [3]. Intel’s
Pin [12] uses dynamic compilation to instrument programs while
they are executing. Users place analysis routines at point of interest
in binary using instrumentation routines. Pin also allows attaching
and detaching to a running process and we use this feature of Pin
for tracing in SniP. Chabbi et. al. integrated call path collection
library with Pin that collected call path context for each executed
instruction using a shadow stack [4].

SniP generates trace for program stack accesses; stack trace
holds important piece of information in debugging and program
analysis as shown by Schroter et. al. [19] in their empirical study
on the usefulness of stack trace. Experienced users can write their
own tools for analysing trace generated by SniP or use existing
tools such as STAT [1], which is used in debugging thousands of
processes by sampling stack trace to form process equivalence class,
then performing root cause analysis on the representative processes
from equivalence class. Stack trace can also be used to compute
similarities between bugs while reporting [22] or to identify depen-
dency conflicts in projects using an automated approach [23]. Stack
trace plays important role in system security as well, as highlighted
by Feng et. al by using stack trace for anomaly detection, they
extracted return address information from the stack for anomaly
detection [8].
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5 CONCLUSION
Stack holds important pieces of information to gain insights into the
program behaviour which can help with debugging, security and
performance analysis. In this paper, we discussed the challenges
of tracing the stack accesses in multi-threaded applications using
existing tools like Intel Pin. We introduced SniP, an efficient stack
tracing framework for run-time tracing of application stack using
techniques that combine tools like Pin and intelligent extensions to
the OS. We implemented SniP in the Linux OS and demonstrated
its efficacy in terms of its light tracing foot-print and flexibility in
terms of applicability. Our experiments with a set of multi-threaded
applications show that SniP not only outperforms Intel Pin in
terms of resource usage but also makes the offline analysis of stack
access traces comparatively simpler. Furthermore, we demonstrated
the utility of SniP to perform stack analysis with contemporary
application use cases by performing offline analysis of the stack
access traces collected using SniP.
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