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Nomenclature

APKI Accesses Per Kilo Instructions

BTB Branch Target Buffer

DDR Double Data Rate

DRAM Dynamic Random-Access Memory

GHR Global History Register

GM GhostMinion

ILP Instruction Level Parallelism

IP Instruction Pointer

ISA Instruction Set Architecture

L1D Level 1 Data (Cache)

L2C Level 2 Cache

LLC Last Level Cache

LQ Load Queue

LRU Least Recently Used

MLP Memory-Level Parallelism

MPKI Misses Per Kilo Instruction

MSHR Miss Status Holding Register

MT/s MegaTransfers per Second

PHT Pattern History Table

PQ Prefetch Queue

iii

https://ams.iitb.ac.in/d/154317-OQU2A7TDP2ACYB9O

__deuterium_page_d154317-4

https://ams.iitb.ac.in/d/154317-OQU2A7TDP2ACYB9O


ROB Reorder Buffer

RSA Rivest–Shamir–Adleman (encryption algorithm)

SDRAM Synchronous Dynamic Random-Access Memory

SGX Software Guard Extensions

STLB Second-Level Translation Lookaside Buffer

SUF Secure Update Filter

TAGE TAgged GEometric history length predictor

TLB Translation Lookaside Buffer

TSB Timely Secure Berti

VA Virtual Address

VM Virtual Memory

X-LQ eXtended Load Queue
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Abstract

Speculative execution attacks like Spectre and its variants can cause information leakage
through a cache hierarchy. Mitigation techniques have been proposed to ensure cache sys-
tem does not cause information leakage through speculative side channels. GhostMinion is
one of the state-of-the-art mitigation techniques that ensures strictness ordering mitigating
speculative attacks through a cache system. Similar to a cache system, hardware prefetch-
ers can also cause speculative information leakage. To mitigate it, GhostMinion advocates
on-commit prefetching on top of strictness ordering in the cache system. Our experiments
show that the GhostMinion cache system when coupled with hardware prefetching leads to
redundant traffic between different levels of cache causing contention leading to performance
loss. Next, we observe that prefetching on commit leads to performance loss as it affects the
prefetcher timeliness.

We perform a thorough analysis of state-of-the-art prefetching techniques on a secure
cache system. Then, we propose two microarchitectural solutions that ensure high perfor-
mance while designing secure prefetchers. The first solution detects and filters redundant
traffic when updating the cache hierarchy non-speculatively. The second solution adjusts
the timeliness of the prefetcher to compensate for the delayed triggering of prefetch requests
at commit, resulting in a secure yet high-performing prefetcher. Our experiments show that
our filter consistently improves the performance of secure cache systems like GhostMinion
in the presence of state-of-the-art prefetchers (by 1.9% for single-core and 19.0% for multi-
core for the top-performing prefetcher). We see a synergistic behavior of the filter with our
proposed secure prefetcher, which leads to a further increase in performance by 6.3% and
23.0%, for single-core and multi-core systems, respectively. Our enhancements are extremely
lightweight incurring a storage overhead of 0.59 KB per core.
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Chapter 1

Introduction

Speculative execution attacks, pioneered by Spectre [43] but followed rapidly by other at-

tacks [19, 22, 13, 55, 23] take advantage of the cache state affected by transient instructions.

Transient instructions are speculative instructions that do not commit. Speculative execu-

tion is a fundamental technique used by high-performance processors, and hence, it cannot

be disabled in pursuit of security. To mitigate the speculative execution attacks that exploit

the cache, various proposals [77, 15, 41, 14, 60, 61, 59, 75, 80] strive to provide security with

minimal performance loss. In general, there are two kinds of mitigation techniques proposed

in the literature: delay-based and invisible speculation. In delay-based approaches, the

transmission of secret-dependent values is stalled until it is considered safe to proceed. The

determination of safety can be complex and requires sophisticated mechanisms to accurately

identify when an instruction can be considered safe for execution. In invisible speculation,

secret-dependent loads are permitted to execute. However, the effects of these executions

are concealed from the cache hierarchy and other microarchitectural structures, instead of

postponing the instruction altogether.

Among all the proposals, GhostMinion [15], Speculative Taint Tracking (STT) [80], and

Non-speculative Data Access (NDA) [75] are the strictest as they mitigate backward-in-time

attacks such as speculative interference attacks [19]. Between STT, NDA, and GhostMinion,

Ghostminion is the lightweight and high-performing mitigation technique. GhostMinion is an

invisible speculation technique that enforces a strictness ordering that ensures the mitigation

of varieties of speculative execution attacks through the cache system: cache hierarchy, miss

status holding registers (MSHRs), and hardware prefetchers [14]. GhostMinion uses a small

speculative cache (GM) that stores the data corresponding to speculative loads, and when a

load commits, the data is communicated to L1D. When the same data is evicted from L1D,

1
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the data is communicated to the L2, and on eviction from L2, the data is communicated to

the LLC. On average, GhostMinion incurs a performance loss of around 5% compared to a

non-secure cache system.

Data prefetchers are important in improving cache performance by converting cache

misses into hits. Recent advances in data prefetchers have pushed the limit of single-thread

performance with average performance boosts of 3% to 5% [20, 17, 53, 51]. In the last decade,

two ISCA championships on data prefetching [2, 6] have helped in this trend. Unfortunately,

hardware prefetchers, which are trained and triggered on speculative loads, can also be used

as a source of information leakage even on a secure cache system [14, 15]. A speculative attack

using prefetchers works as follows: (i) The attacker primes the cache; The corresponding

cache has a prefetcher; (ii) The victim loads secret data similar to the Spectre attack; (iii)

The speculative load generated by the victim trains and triggers the hardware prefetcher;

(iv) The prefetcher request data as per its address prediction that comes to the cache; (v)

Finally, the attacker probes the cache.

GhostMinion makes a case for secure hardware prefetching through on-commit prefetch-

ing: A secure prefetcher should be trained on commit and prefetching should only happen

on commit. This way the prefetcher will not affect the cache and MSHR state speculatively,

and transient instructions cannot exploit the prefetcher for information leakage. We show

that data prefetching can indeed alleviate the performance loss of a secure cache system.

Despite the importance of data prefetching, no detailed study has been carried out about

the impact of secure prefetching techniques.

We analyze for the first time the interaction between a wide range of state-of-the-art hard-

ware prefetchers and a high-performing secure cache system. We evaluate IP-stride [16], the

well-known prefetcher used in industry, Bingo [17], SPP+PPF [20], IPCP [53] (winner of the

3rd data prefetching championship [6]), and Berti [51], on a secure cache system like Ghost-

Minion. Berti is the state-of-the-art L1D prefetcher (with an accuracy of almost 90%) that

orchestrates its requests across the cache hierarchy. We discover that prefetchers interact

negatively with secure cache systems like GhostMinion. We find that two main factors pre-

vent them from reaching their optimal performance and propose microarchitectural solutions

to overcome them.

Our observations. First, we analyze the performance improvements of the evaluated

prefetchers both on a non-secure cache system and a secure cache system like GhostMinion

for both SPEC CPU 2017 and GAP workloads (see Section 6.1 for simulation details). We

observe that prefetching techniques improve performance both for secure and non-secure

2
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Figure 1.1: Speedup of state-of-the-art prefetchers normalized to a non-secure cache system
with no prefetching.

cache systems, but the gap between them is high. The performance gap is because of an

increase in memory access latency due to additional memory traffic introduced to update the

cache hierarchy with invisible loads. On average, GhostMinion introduces additional traffic

of more than 1.5× to L1D when compared to a non-secure cache system with hardware

prefetchers (Section 4).

Next, we analyze the impact of implementing a secure prefetcher on a secure cache system,

that is, the impact of training and prefetching on-commit, instead of on-access. Figure 1.1

shows the performance improvements obtained by our prefetchers in a secure cache system

when they are trained and triggered on-access (second bar) and on-commit (third bar). We

observe a consistent performance loss of 3%-4% for all prefetchers with training/prefetching

on-commit compared to prefetching on-access. We find that the key factor is timeliness, not

the inability to capture the applications’ access patterns (Section 4). A major part of the

performance loss for on-commit prefetching is due to a new class of late prefetch requests

which we coin as “commit-late”: misses whose prefetching had not been initiated when the

processor requested the data, but that would have been initiated if the prefetch request

had been triggered on access. In summary, on average, compared to on-access prefetching

on a non-secure cache system, we see a performance loss of around 10% with on-commit

prefetching on a secure cache system.

Our contributions. We shed some light on the reasons behind low-performance secure

prefetchers and propose a low-cost yet effective solution to recover the performance loss and

enable the full potential of secure prefetching, closing the gap to non-secure cache systems.

3
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We bring the following contributions:

• We show that prefetchers lose relative performance on a secure cache system due to (i)

the additional memory traffic introduced by the secure cache system and (ii) prefetch

timeliness issues (Chapter 4).

• We propose a mechanism to filter out the superfluous non-speculative updates per-

formed in a secure cache system. Our filter is lightweight and incurs a storage overhead

of 0.12KB (Chapter 5).

• We propose a mechanism to ensure the timeliness of a prefetcher that is trained and

issues prefetch requests at commit, making a case for a secure yet timely and high-

performing prefetcher. The end result is the first high-performance secure prefetcher

with a storage overhead of 0.47KB (Chapter 5).

• We show that our enhancements on top of the state-of-the-art prefetcher helps in bridg-

ing the performance gap between a non-secure cache system and a secure cache system.

For SPEC CPU2017 and GAP benchmarks, our enhancements improve performance

by 6.3% (our filter contributes to around 30% of the improvement and the rest comes

from the better-trained on-commit prefetcher). For a 4-core system, our mechanisms

improve performance by 23.0% over on-commit state-of-the art prefetcher in a secure

cache system (Chapter 6).

4
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Chapter 2

Background

This chapter discusses all the necessary background information required to understand the

rest of the document. We discuss the various performance optimization techniques used to

improve processor performance to date, as well as the security vulnerabilities they expose.

Modern processors employ many techniques to get high performance from the available

silicon. It is not just the increasing clock speed that has led to the high performance, but

the ability to pump out multiple instructions in a single clock cycle while maintaining the

program’s correctness has led to performance improvement by numerous folds. Techniques

like out-of-order execution, speculative execution, multi-threading, caching, and hardware

prefetching are some key contributors.

The traditional approach of increasing clock speeds has reached its limits. Hence, strate-

gies to enhance the processor’s overall throughput are now employed. Out-of-order and

speculative execution enable processors to execute instructions concurrently, reducing idle

time and enhancing efficiency. Multi-threading allows for the parallel execution of multiple

threads, further leveraging the processing power of modern CPUs. Caching, a fundamental

aspect of processor design, involves the use of high-speed memory to store frequently accessed

data and instructions closer to the execution units. This minimizes the need for repeated

access to slower main memory, accelerating processing speed. Hardware prefetching, another

optimization technique, involves predicting and preloading data into the cache before it is

explicitly requested, reducing latency and improving overall responsiveness.

However, this singular approach of improving performance over the past few decades

without critically analyzing their side effects has led to an insecure foundation. Before

delving into the security implications, a thorough exploration of these performance-boosting

techniques is imperative. By understanding the intricacies of how modern processors achieve

5
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their impressive speeds, we can better appreciate the trade-offs and challenges that arise in

security.

2.1 Instruction Level Parallelism

Running instructions one after the other does not fully utilize the available hardware.

Pipelining enables instructions to overlap, enabling them to execute1 simultaneously, im-

proving the throughput of processors. Such parallelism in executing instructions is called

instruction-level parallelism (ILP). However, different kinds of hazards restrict the level of

parallelism by causing stalls. Various software and hardware techniques are used to minimize

the stall caused by such hazards. Hardware techniques include data forwarding and bypass-

ing, out-of-order execution, hardware speculation, memory disambiguation, etc., whereas

software ideas include compiler optimizations like loop unrolling, dependence analysis, and

scheduling. We narrow our discussion to out-of-order execution and speculative execution,

which are relevant to this work.

2.1.1 Out-of-order Execution

Modern processors have multiple execution units. Multiple instructions get pushed into the

execution stage and executed in parallel utilizing the execution units, which leads to ILP.

However, in an in-order pipeline, instructions dependent on the previous instructions are

stalled, which stalls every instruction following it. On the other hand, in an out-of-order

pipeline, independent instructions that enter the pipeline in order are executed out-of-order

to maximize utilization of all the execution units, increasing ILP. The blocking instructions

get bypassed, and the non-blocking instructions execute proactively. Figure 2.1 shows that

I4 can start execution as its operands are available, even if I2 is stalled due to a data

dependency. I2 waits till its operands are ready. But this does not come for free.

First, it is necessary to respect data dependencies while keeping program order in mind.

It should not happen that an older instruction uses the data of a younger instruction. As

shown in Figure 2.1, I3 should get the value of R2 from the result of I2 and not I4, even if I4

completes execution first. Register renaming solves this by renaming all the architectural

registers to temporary registers to preserve data dependencies. I2 is renamed to store its

result in T2 instead of R4. I3’s operands are renamed from R4 to T2. I4 is renamed to store

1Note that this is not the execute stage, rather the execution of instruction as a whole
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BEZQ R4

R1       [R2]

R4      R1 + R3

R4      R5 + R6

I1:

I2:

I3:

I4:

BEZQ T2

T1       [R2]

T2      T1 + R3

T3      R5 + R6

I1:

I2:

I3:

I4:

Figure 2.1: Register renaming in action

its results in T3 instead of R4. This preserves the dependency of I3 to I2 for the value of

R4.

The second problem is that of imprecise exception, where, due to out-of-order comple-

tion of instructions, the processor cannot restore its state just before the exception occurs.

Such cases also happen in case of a branch mis-predictions (discussed in Section 2.1.2).

So, there is a need for a check-pointing mechanism to help roll back the effects of instruc-

tions following exception-generating instructions. Such a rollback is possible by storing the

state of the processor in every instruction. But as it sounds, it will be very inefficient, and

hence, there is a need for an efficient approach. This is where the Reorder buffer, in short

ROB, comes into play. The ROB, along with supporting microarchitecture units, stores

all instructions in program order and the associated values. On completion of execution,

updates are made to the ROB and not copied to the register file immediately. The results

are also broadcasted to instructions that are waiting for them.

With the reorder buffer, a new concept is introduced called instruction commit, where

instructions move their results from temporary registers into the architectural register. That

is, an instruction that has completed execution stores its values in the ROB till all the

instructions before it commits. Afterward, the results from ROB are copied to the register

file. This easily handles the problem of imprecise exceptions. In case of an exception or a

branch mis-prediction, the processor flushes the ROB. All instructions before the exception

point are committed and would have already reflected changes made to the register file.

Executed instructions at the head of the ROB commits and are removed from the ROB

as shown in Figure 2.2. However, instructions at the head of the ROB can halt the follow-

ing instructions from getting out of the pipeline till the time it commits. Even while the

pipeline is stopped due to a long latency instruction, the following instructions can complete

their execution and update the ROB entries as required. This allows bursts of completed

instructions to commit when they reach the head of the ROB, resulting in improved ILP.

We abstract out some of the things related to the ROB. It is not just the ROB that enables

7
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Figure 2.2: Out-of-order processor

out-of-order execution. Along with the ROB, we use structures like Issue Queue, reservation

stations, and register rename map tables to enable out-of-order execution. However, it is

out of the scope of this thesis.

2.1.2 Speculative Execution

The processor may not always anticipate the future instruction stream. This occurs when

a conditional branch instruction is encountered in the pipeline. In such cases, processors

guess the most probable path the branch might take using a structure called the branch

predictor and start fetching and executing instructions along the predicted path. These

instructions are called speculative instructions. When the branch eventually resolves, the

processor either accepts the changes made by the speculative instruction stream or rejects

and rolls them back.

In the best case, if the predicted path is correct, the results of the speculatively executed

instructions are committed, and execution continues as usual. If the prediction is wrong, the

processor restores its state to the one just before executing the conditional branch using the

help of the in-order commit mechanism discussed in section 2.1.1. This way, in the best-case

scenario, the processor can execute instructions ahead of time, resulting in high performance.

In the worst case, it flushes out the entire pipeline of wrongly predicted instructions without

affecting the correctness of the program. Such wrong path instructions are termed as tran-

sient instructions.
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Figure 2.3: Percentage of speculative load instructions in the SPECCPU 2017 benchmarks.
We use the hashed-perceptron branch predictor and collect statistics for 200M sim-point
instructions after a 50M-instruction warm-up.

Branch predictor: As discussed above in Section 2.1.2, processors speculatively execute

instructions rather than waiting for branches to resolve, using a structure called the branch

predictor. It uses a structure called the direction predictor to predict the direction of a

branch instruction. Modern branch predictors are very sophisticated and use the history of

previous branch outcomes to learn and predict the outcome of a newly encountered branch.

These predictors can predict both indirect and direct branch outcomes. The branch pre-

dictor uses another structure called the branch target buffer (BTB), which buffers all

the target addresses referred to by previous branch instructions. It uses the BTB to predict

target addresses for branches where the target address is unknown until branch resolution.

Most branch predictors in modern processors use neural [36, 39, 37] or TAGE-based[64, 63]

techniques, yielding high prediction accuracy. Most branch predictors in modern systems

have a prediction accuracy of more than 95%.

Interestingly, almost all instructions are executed speculatively, as shown in the [60]. Any

instruction that causes an exception can lead to speculative execution. Apart from control

instructions, loads/stores cause exceptions, too. A load or store accessing an unmapped

memory region leads to a page fault; access to an unauthorized memory region leads to

an exception. In addition to this, coherency protocols can cause exceptions in the form of

invalidation requests. Apart from these, floating point operations and integer divisions can

also cause exceptions. All such instructions are termed as shadow casting instructions and

cast a speculative shadow to the following in-order instructions. All instructions under

the speculative shadow are speculative. Figure 2.3 shows that, on average, 88% loads are

speculative in the SPEC CPU2017 benchmark suite.
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DRAM

LLC

Latency

1 ns

<10 ns

10s of ns

100s of ns

Size

10s of KB
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few MBs

few GBs

L2C

L1D

Figure 2.4: Memory hierarchy. As we move higher in the memory hierarchy, size increases;
however, speed decreases.

2.2 Memory Hierarchy

Computing in the current age is massively data-driven, which increases the need for fast

and large memory units. Most of this data the processor actively uses resides in a DRAM

(dynamic random access memory). The ideal scenario for programmers is access to a fast

memory unit with unlimited storage. However, DRAM technology has not been able to

cope with the rapid increase in processing speed. The latest DRAM chips can provide a

bandwidth of around 8800 MT/s (70.4 GB/s) [9, 12]. However, processors can generate

memory references with a peak bandwidth of more than 500 GB/s2. This massive gap

between CPU and memory speeds leads to stalls in the instruction pipeline. This is termed

the memory wall problem.

Programs tend to access data (or instruction) that are close together in space or are

frequently accessed. For example, an array element is re-referenced multiple times during

the execution of a program. This is known as temporal locality. Spatial locality, on

the other hand, means addresses that are closer together spatially are more likely to be used

in the near future. These two locality properties have been used extensively to tackle the

memory wall problem.

2Lastest Intel i7 processor can generate two 64-bit memory references per core; with eight cores operating
at 3.4 GHz clock rate, it can generate 54.4 billion data memory references per second along with 27.2 billion
instruction references, resulting in a peak bandwidth of 870.4 GB/s.
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2.2.1 Cache Hierarchy

Architects proposed to use faster and smaller memory units called caches to store data

corresponding to frequently accessed memory addresses that can be accessed faster, matching

the speed of CPUs. The cache organizes data into units of blocks. A cache block contains

a fixed number of bytes/words. When data is found in the cache, known as a cache hit, it

quickly serves it to the processor in a very short span of time; this is called the hit time.

However, the faster the cache is, the smaller it is; thus, it can only store a subset of the

working set. The working set is the memory used actively by a process in its lifetime.

The small cache incurs misses, in which case, the processor probes the DRAM to fetch the

block into the cache, incurring a high miss penalty. Architects use the metric called average

memory access time to get an overall performance metric of the memory subsystem, which

includes the cache hierarchy. The average memory access time is defined as follows:

Average memory access time = Hit time+Miss rate×Miss penalty

Increasing the cache size decreases the miss rate at the expense of higher hit latency and

power consumption. So, the primary dilemma is whether to have larger caches to reduce the

miss rate at the expense of higher hit latency or to have a smaller, faster cache that matches

the speed of processors. To mitigate this problem, architects add a few levels of cache, which

can bridge the gap between the fast and small cache and the large and slow DRAM. The

first level cache, or the L1 cache, can match the processor’s fast clock cycle, enabling a

higher data transfer bandwidth. The second level cache (L2C) can cover most of the misses

at the L1 cache with slightly higher latency, thus decreasing the number of accesses going

to the DRAM by many folds. Typically, systems use three levels of caches with sizes that

increase incrementally, namely L1, L2, and the Last Level Cache (LLC). The cache closest to

the processor is typically called the “lowest” cache level, the subsequent levels are “higher”

levels, and the one closest to the DRAM is the “highest” cache level. Figure 2.4 shows the

typical memory hierarchy employed in a modern system and the typical size-latency of the

memory units.

2.2.2 Memory Level Parallelism

A cache miss stalls the processor. As the processor waits for the missing data, it fetches in-

structions from the instruction cache. A non-blocking cache, sometimes called a lockup-free
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cache, permits the data cache to keep delivering cache hits even in the event of a miss. Known

as “hit under miss”, this optimization actively assists during a miss, lowering the effective

miss penalty. Another complex option is for the cache to “miss under miss”, reducing the

effective miss penalty by overlapping several misses. An out-of-order processor (discussed

in section 2.1.1) can issue multiple loads/stores that can be in-flight simultaneously, which

may lead to multiple misses. Caches use a special array of registers called the miss status

holding register (MSHR), which enables the cache to manage multiple misses concur-

rently, facilitating memory-level parallelism (MLP). MLP enables the processor to overlap

latencies from multiple memory accesses and execute independent instructions, advancing

computation within the core.

2.2.3 Data Access Flow

1. The processor indexes the L1 cache in parallel with accessing the Translation look-aside

buffer (TLB) to obtain the address translation, which masks the indexing latency if

found.

2. When there is a miss in the TLB, the page table walker traverses the page tables to

locate the required address translation.

3. A page fault occurs if the page is not found in physical memory, triggering the operating

system (OS) trap and retrieve the page from disk to memory and store the translation

in the page table and TLB.

4. Upon re-execution of the instruction, if there is a hit in the TLB but a miss in the

L1D cache, the processor stores information about the instruction corresponding to

the miss in one of the MSHRs (Miss Status Handling Registers) of the L1D cache.

5. Subsequently, if there is a miss in the L2 cache, the processor stores information in one

of the MSHRs of the L2 cache. Similarly, in the case of LLC as well.

6. The DRAM controller is requested for the required data. The DRAM controller reads

the block from the DRAM and sends it back to the LLC.

7. The cache controller of the LLC receives the block, searches its address in the MSHR,

determines the victim block to evict, evicts the block, and fills the incoming block in

the LLC.
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8. The cache controller writes it back to a higher level cache or memory if the victim

block is dirty

9. The cache controller then removes the entry in the MSHR corresponding to the miss

and returns the block to the L2 cache.

10. Steps 7-9 are repeated for the L2 cache and then for the L1D cache.

11. Finally, the data requested by the load operation is returned to the processor.

2.2.4 Inclusion Policies

The cache hierarchy can be classified depending on whether a particular cache level contains

all, none, or some blocks in its immediate higher-level cache. In an inclusive cache, all blocks

are present in its higher-level cache. In an exclusive cache, none of the blocks are present in

its higher level. A non-inclusive cache can contain some of the blocks present at the higher

level but not necessarily all or none of the blocks. All three inclusion policies have their

benefits and problems.

Inclusive Cache Hierarchy. On a cache miss at a particular level, the block is filled

into all the higher-level caches as it returns to the lowest cache level. For example, if a re-

quest misses all the cache levels, the block is filled into LLC, L2, and L1. In case of eviction

at the cache level, the corresponding block is invalidated from all the lower levels. Invalidat-

ing blocks in multiple levels of the cache consumes time and power and is one of the major

drawbacks of an inclusive cache hierarchy. There is no need for invalidation when evicting a

block from the L1 cache. Only a dirty block must be written back to the higher-level cache

or memory on eviction. Writeback of clean blocks is unnecessary as the blocks will be in

the higher-level cache. Another drawback of the inclusive hierarchy is the amount of data

replication across the cache hierarchy. The effective size of the cache hierarchy is the size of

the LLC.

Exclusive Cache Hierarchy. Data replication is nullified in an exclusive cache hierar-

chy. This increases the effective size of the cache hierarchy to the sum of the size of all the

caches. On a cache miss, blocks do not fill into the higher levels of cache. For example, on

a miss at L1, L2, and LLC, the cache block is bypassed (not filled) from L2, LLC and filled

only into L1. Also, in case of a hit in one of the higher-level caches, the block is passed on
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to the lower-level cache, and the block is invalidated in the higher-level cache. This avoids

data replication. The higher levels of cache acts as a victim cache. On eviction, all blocks

are copied to the immediate higher-level cache. Victim caches preserve the evicted blocks of

the lower level, reducing conflict misses.

Non-inclusive Cache Hierarchy. A non-inclusive cache is almost similar to an inclu-

sive cache except that there are no invalidations in the lower-level caches on evictions. This

simplifies the eviction process and increases the effective size of the cache hierarchy by re-

laxing the property of inclusion.

2.3 Timing Channel Attacks

Information leakage in computing systems can happen through storage or timing channels.

Storage channels try to exploit the functional correctness of software/hardware behavior,

i.e., faults that are directly visible to programs through registers or memory addresses. Ar-

chitects and hardware manufacturers ensure the internal architectural changes are hidden

from any external agents, guaranteeing functional correctness and eliminating storage chan-

nels. This functional correctness is proven formally in literature [50]. On the other hand,

timing channels exploit variability in timing behavior. This variability can depend on a

hidden state, which can, in turn, lead to the leakage of sensitive information. Even though

hardware designers have successfully hidden the CPU’s internal state in terms of functional

behavior, the timing behavior is often exposed. Consistency of timing behavior can not be

proven formally, making it impossible to guarantee security.

1 function exponent(b, e, m):

2 x = 1

3 for i in (|e|-1) to 0:

4 x = x * x // Square

5 x = x % m // Reduce

6 if (e[i] = 1):

7 x = x * b // Multiply

8 x = x % m // Reduce

9 ret x

Listing 2.1: Exponentiation by Square-and-Multiply

In the past decade, researchers proposed attacks that exploit such timing channels [47,

52, 79, 43, 46, 19]. Depending on the threat model, such timing channel exploits are mainly
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Figure 2.5: Cache access time (probe time) for square, multiply, and modulo functions
(adapted from [79])

categorized into covert and side-channel attacks.

A covert channel is an intentional communication channel that uses a medium not

originally intended for that purpose. For example, the sender can send bit information

encoded in the form of memory accesses that lead to controlled eviction of receiver data

present in the cache. The receiver can decode the information by timing its memory accesses,

wherein a hit or miss in the cache indicates either of the two bits. Although it is essential

to mitigate such channels, they do not compromise confidentiality, i.e., they do not leak

sensitive information from the computer system.

On the other hand, side channels compromise the confidentiality of computing systems

where an attacker leaks sensitive information from a victim. Similar to covert channels, the

transmission medium is an unintended communication channel; however, in a side channel

attack, the sender does not intend to share any information.

To understand how a side-channel attack works, let us take a simple example based on the

Flush+Reload attack [79], discussed in detail in Section 2.3.1. The victim and attacker share

the same crypto library (say, using mmap). Listing 2.1 shows the GnuPG [1] implementation

of RSA [57]. e is the secret key the attacker wants to leak. GnuPG uses the square and

multiply technique to encrypt the data using the cipher e. Depending on the cipher bits, it

does a square-reduce operation if the bit is clear. Otherwise, it does a sequence of square-

reduce-multiply-reduce for a set bit. One can easily deduce the secret key by observing the

access pattern of code lines, i.e., the sequence of instructions fetched and executed. Like the

covert channel, the attacker flushes the code lines of the shared library, waits for the victim

to perform the encryption, reloads the code lines, and times its access. Figure 2.5 shows

the probe times of the attacker. The code lines having probe time less than the threshold
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Figure 2.6: Sources of timing channels in a processor (adapted from [72])

indicate access by the victim. The attacker can recover the sequence of operations using the

probe times, hence leaking the secret key. For this thesis, we focus on side channels where

the victim is unaware of any confidentiality breach. Next, we look into different sources in

microarchitecture that can lead to a timing channel, as shown in Figure 2.6.

• Instruction with Different Execution Timing. Programs use a lot of different

kinds of instructions having different execution times. The type of instructions exe-

cuted is often secret-dependent, which changes the program execution time on different

runs, making it vulnerable to secret leaks.

• Contention for Functional Units. Attackers can create contention at shared func-

tional units, which changes the timing of the victim using the shared functional unit,

leading to a timing channel.

• Stateful Functional Units. Many functional units in the processor store some his-

tory for making predictions to boost performance. Such functional units are often

shared and can be used to leak the history stored in them by observing their predic-

tions.
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• Memory Hierarchy. Timing differences of accesses to the memory hierarchy are

prevalent and are the most common source of timing channels. Various parts of the

memory hierarchy can lead to information leakage. They are as follows:

✦ Instruction as well as data cache.

✦ Cache replacement policies

✦ Hardware prefetchers

✦ Translation look-aside buffer

✦ Cache coherence directory

✦ Read, write queues and other intermediate buffers

✦ Memory controller and interconnect

Among these, the data cache hierarchy is the most commonly exploited microarchitecture

structure as a timing channel to leak sensitive information. Consequently, researchers have

proposed numerous attacks that leverage caches to establish a timing channel.

2.3.1 Cache Timing Attacks

Cache timing attacks have attracted much attention in the microarchitecture community

as it is difficult to write software with constant time behavior. In addition, timing attacks

based on caches can achieve a high bandwidth of more than 1 Mbps. Interest in cache at-

tacks prevails to date due to speculative execution attacks, which is the main focus of this

thesis, which we discuss in Section 2.4. This Section discusses some of the traditional side

and covert channel attacks based on caches.

Flush + Reload [79]. It is the first cache-based timing attack that provides high res-

olution, bandwidth, and low noise. This attack requires memory deduplication, allowing

programs to share identical read-only pages. Firstly, the attacker flushes the cache line con-

taining shared data/code line. Then, it allows the victim to access critical data. Depending

on the secret data, the flushed line is either accessed or not accessed by the victim—the

attacker then reloads the data/code line and times its access. A lower access time indicates

that the victim indeed accessed the line. As the initially flushed line access depends on

the victim’s secret information, the attacker can easily leak the secret by timing its reloads.

This results in a high resolution and low noise cache timing channel. But the catch here is
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that the sharing of address space as a communication channel is necessary for the attack to

be successful. Another requirement is the availability of flush instruction by the underlying

instruction set architecture (ISA). These requirements are not met in most practical systems,

reducing the scope of this attack.

Evict + Time [52]. This attack relaxes the use of the flush instruction, expanding the

range of systems it can affect. Attackers use huge pages to easily determine which addresses

are mapped to specific cache sets. The attacker fills the cache set where the shared ad-

dresses are mapped to with random data, evicting any shared memory blocks. The victim

accesses/does not access the shared address depending on the secret data. The attacker then

reloads the shared address, where a fast access reveals the victim accessed the data, and a

slow access shows the victim did not access the data. Similar to flush + reload, it requires

memory deduplication. In addition, such attacks cannot deal with LLC slicing [27], where

the address mapping to slices is selected using some undocumented function. It also needs

the cache to be inclusive, as it does not use flush instruction, and the data can be present

in an upper-level cache.

Prime + Probe [47]. This is an agile attack that negates the requirement of shared

memory between the victim and the attacker, increasing the scope of the attack to cloud

platforms and across VMs. The attacker first identifies the target set the victim utilizes to

perform critical operations. This step, called the eviction set creation, is the most important

and complex. Once the eviction set is created, it primes (or fills) the eviction set. Depend-

ing on the secret data, the victim accesses or does not access a cache line mapped to the

eviction set. The attacker then probes (or re-accesses) the eviction set. If any of the lines

are evicted previously, then the access will be slower, deducing that the victim accessed some

line that was brought in the eviction set, hence leaking the secret. The eviction set creation

and the probe step are prone to noise compared to the simpler flush+reload and evict+time

attack. Prime + probe attack can even bypass LLC slicing to identify cache sets used by

the victim to perform critical operations.

2.4 Speculative Execution Attacks

Speculative execution attacks can cause critical data leakage across many security bound-

aries. Starting from the Spectre [43] and Meltdown [46] attacks discovered in 2018, a wave
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of speculative execution attacks came encompassing various threat models. As discussed in

Sections 2.1, 2.2, modern processors use numerous performance-boosting techniques, and for

the past few decades, performance has been the sole focus of the microarchitecture commu-

nity. Many such performance-boosting methods are based on aggressive speculation, leading

to speculative execution. With all such techniques in place, it is well-proven that programs

behave correctly at the ISA level. However, speculative execution modifies the underlying

microarchitecture, and data leaks through micro-architectural states. Speculative execution

attacks use this loophole. Secret data is accessed by the victim during the transient ex-

ecution phase and encoded into a covert channel. Then, the attacker extracts the secret

data using the covert channel. Although they use a covert channel to decode the secret,

speculative execution attacks are inherently different from traditional side channel or covert

channel attacks. In conventional attacks, the data is accessible by the victim, whereas, in

speculative execution attacks, the data accessed by the victim during speculative execution

is inaccessible, which makes such attacks more dangerous. In Sections 2.4.1, 2.5.1, we discuss

how such an attack is possible with relevant examples. As described in the paper [76], we

can divide speculative execution attacks into three phases:

Setup phase. In this phase, the attacker modifies some microarchitectural state, which

forces the target code (also termed the disclosure gadget) to execute in the wrong path

(transient execution). For example, in Spectre v1, the attacker executes the victim code

multiple times, mistraining the branch prediction unit such that it makes a wrong predic-

tion, leading to transient execution.

Transient Execution Phase. The disclosure gadget executes in this phase. The dis-

closure gadget is the target code that accesses the secret data and transmits it to a covert

channel. The disclosure gadget can be both a piece of the victim and an attacker code.

Even if the architectural effects by the transient execution of the target code are rollbacked

by the processor eventually on misprediction detection, the microarchitectural state changes

persist. Such information can be decoded by the attacker later using one of the traditional

covert channels discussed in Section 2.3.1.

Decoding Phase. In this phase, the attacker retrieves the secret data using a traditional

covert channel.
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The scope of such attacks is immense, ranging from (i) one user program leaking data of

another program, (ii) a user-level program dumping the entire kernel memory, (iii) attacks

across VMs co-located on the same machine, (iv) attackers residing in the VM attacking the

hypervisor and many more.

2.4.1 Spectre attack

The attacker searches for victim code or the operating system’s shared libraries for instruction

sequences that can violate memory isolation boundaries between the victim and attacker’s

address space. The attacker tricks the CPU into executing the instruction sequence tran-

siently. Upon transient execution of such instruction sequence, secret data is transmitted to

the victim’s memory via a covert channel transmitter. As discussed in Section 2.4, Spectre

follows the three-step process to complete an attack successfully. Many variants of the Spec-

tre attack use various disclosure gadgets and covert channels. Next, we will discuss the first

variant, which uses instruction sequences with conditional branches as a disclosure gadget

and Flush + Reload or Prime + Probe as a covert channel, depending on the threat model.

Spectre variant I

1 if(x < array1_size)

2 y = array2[array1[x] * 4096];

Listing 2.2: Spectre variant I

Listing 2.2 shows the victim code (disclosure gadget) the attacker uses. This can be part of

a system call or shared library. Here, x is attacker-controlled, i.e., the piece of code can be

called by the attacker with different values of x. The array1 is of size array1 size and array2

can be shared with the victim or not, depending on the threat model. The threat model can

be such that (i) the attacker and the victim use a shared library by memory deduplication,

with array2 being a part of it, or (ii) there is no use for shared memory. A bounds check

is performed first on x, preventing any out-of-bounds access of array1. The motive of the

attacker is to access an out-of-bounds value of array1 (array1[x]), which resolves to a secret

byte in the victim’s memory k. It is assumed that array1 size and array2 are not in the

cache, but k is. The attack assumes this cache configuration is for demonstration purposes,

which attackers can easily achieve in real systems. Below are the three phases of the attack:

20

https://ams.iitb.ac.in/d/154317-OQU2A7TDP2ACYB9O

__deuterium_page_d154317-28

https://ams.iitb.ac.in/d/154317-OQU2A7TDP2ACYB9O


...
...

secret (k)

k*2048

Secret 
dependent

array2}
cached

Figure 2.7: Secret dependent access of shared data structure leading to leakage of secret in
Spectre variant 1

Setup phase: The attacker invokes the disclosure gadget (we are using the terms tar-

get/victim code and disclosure gadget interchangeably) with inbound values of x, executing

line no. 1 and hence (mis-)training the branch predictor to predict TRUE on future invo-

cations. In addition, the attacker also prepares the covert channel, which will be used to

transmit the secret. Depending on the threat model, the attacker (i) either flushes (from

flush + reload attack) all the cache lines comprising array2 in case a shared memory is used,

(ii) or finds the eviction set, which will map array2 ’s access from the victim’s address space

to the attacker’s address space. Then, the attacker primes (from Prime + Probe attack) the

eviction set.

Transient execution phase: The attacker invokes the disclosure gadget with the malicious

value of x. The branch instruction is started, but the branch does not resolve immediately as

array1 size is uncached. The mistrained branch predictor wrongly predicts that the branch

will be taken, starting speculative execution of following instructions. The secret k residing

in the address base (array1) + x is retrieved quickly due to a cache hit. Load at array2[k *

2048] is started, which is dependent on the secret k, and in the meantime branch resolves

while the load is still in-flight. On branch resolution, the processor realizes the misprediction

and reverts the processor to a state just before the branch is executed. However, the access

to array2 using the secret k populated the cache and persisted even after the rollback of the

pipeline. Here, the cache acts as the covert channel.
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Decoding phase: The attacker finally retrieves the secret key from the covert chan-

nel. Depending on the threat model, the attacker, in case of (i) shared memory, reloads

(Flush+Reload) each element of array2 at a distance of 4096 (array2[ x ′ * 4096]) and times

each of the accesses. The secret key is decoded from the location where a cache hit is expe-

rienced. (ii) With no shared memory; the attacker probes (Prime + Probe) each element of

the eviction set created in the setup phase. Unlike Flush + Reload, the location experiencing

a cache miss indicates the secret key.

The Spectre attack can achieve a high bandwidth of around 10 KB/s with an error

rate lower than 0.01%. Although this is a proof of concept attack, it is tested on multiple

processors ranging from x86-based Intel and AMD to ARM-based Qualcomm’s Snapdragon

and Samsung’s Exynos processors and is able to compromise security successfully. However,

a practical rendition of such an attack is hard and involves a lot of challenges. To list a few,

(i) it is hard to search for a disclosure gadget that accesses some sensitive information, (ii) the

covert channel itself can be noisy, (iii) tricking the victim into executing speculatively and

accessing the secret can be tricky, because of noise affecting the cache state. Nevertheless,

it is just a matter of time before some black hat hacker finds all the right ingredients, cooks

up a speculative execution attack, and starts leaking your passwords.

2.5 Backwards-in-Time Attacks

Attacks like Speculative Interference [19] and SpectreRewind [34] change the timing behavior

of committed instructions. Younger transient instructions can change the timing of bound-

to-retire3 older instructions. This can change the relative order of bound-to-retire memory

operations, change the cache state (for example, replacement bits), and create a covert

channel.

2.5.1 Speculative Interference Attack

Transient load accesses the secret and then forwards the secret to following transient instruc-

tions, which contend for various microarchitecture resources depending on the secret. Such

a sequence of instructions is termed an interference gadget. The contention created by the

transient instruction changes the timing behavior of older bound-to-retire instructions, hence

3Correctly predicted speculative instructions that will eventually commit or non-speculative instructions
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encoding the secret. The change in timing behavior of bound-to-retire memory operations

ultimately changes the cache state, creating a covert channel.

1 z = ...

2 A = f(z) // takes F cycles

3 y = load(A) // interference target

4 B = g(z) // takes G > F cycles

5 v = load(B)

6 if (i < N) { // mispredicted branch

7 secret = load(& TargetArray[i]) // secret access

8 x = load(&S[secret * 64]) // Interference Gadget

9 f‘(x)

10 }

Listing 2.3: Speculative interference attack by contention at non-pipelined execution unit

A speculative interference attack involves a three-step process. First, an interference

gadget competes for resources conditionally, based on the secret. This resource contention

induces timing variations in the behavior of an interference target, typically a non-speculative

instruction, leading to changes in the cache state. Finally, the attacker exploits these cache

state changes to infer the secret.

The variants of speculative interference attacks, shown in Listing 2.3, focus on resource

contention at a non-pipelined execution unit. In this scenario, two functions, f and f ′, utilize

the same non-pipelined execution unit, resulting in resource contention. The cache state of

S[0] is assumed to be uncached, while S[1] is cached. Consequently, the transmitter load

(interference gadget) shows secret-dependent behavior.

If the secret is 0, the transmitter load quickly returns, allowing f ′ to execute in the

non-pipelined execution unit. This stalls the execution of f , delaying the load of A. At

the same time, the non-speculative load of B completes before A, resulting in the order of

non-speculative loads as B → A. On the other hand, if the secret is 1, the transmitter

waits for the load to return, avoiding immediate contention for the execution unit. This

enables f to execute, completing the load of A first, followed by B, resulting in the order of

non-speculative loads as A → B.

This reordering of loads translates into persistent cache state changes, primarily through

cache replacement state. The attacker decodes the ordering of non-speculative loads from

the cache replacement state, utilizing methods like RELOAD+REFRESH [21]. As a result,

the secret is leaked.
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Chapter 3

Related works

3.1 Mitigating speculative execution attacks

This section explores the different techniques proposed to defend against speculative exe-

cution attacks. The community has suggested both software and hardware mitigations to

tackle this issue. One challenge with these attacks is that they exploit micro-architectural

vulnerabilities that are difficult to detect or mitigate through software. Software solutions,

such as KAISER [35], Retpoline [73], and Memory fences [28], aim to prevent secret leakage

by isolating addresses or limiting speculative execution in critical code areas. However, im-

plementing these solutions requires rewriting software or the operating system code and is

often incompatible with existing code. Moreover, software-based approaches are tailored to

specific attack scenarios and may not provide comprehensive protection against new threats.

Additionally, they can lead to significant performance slowdowns, sometimes as high as 50%

[54].

Given these limitations, there is growing interest in hardware-based mitigations, which

offer more effective protection against speculative execution attacks while minimizing per-

formance impact. Hence, we focus on hardware mitigations. Speculative attacks consist of

three steps, as outlined in Section 2.4. Shown in Figure 3.1, the transient execution step

can be broken down into two parts: first is the ACCESS instruction, which accesses the

secret value, and second is the TRANSMIT instruction, which transmits the secret value

into the covert channel. The decoding phase is also called the INFERENCE phase, where

the attacker decodes the transmitted secret from the covert channel.

Two primary strategies are employed to interrupt the information leakage: halting tran-

sient execution or eliminating covert channels transmitting the secret. Delay-based ap-
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Cache

Load

Secret

ACCESS

Propagate

Secret

TRANSMIT

INFERENCE

LoadCode snippet:

if (x < array1_size)


   

   

secret = array1[x]

y = array2[secret*2048]




array2[0]


array2[1 * 2048]


array2[2 * 2048] ...

Figure 3.1: Timeline of a speculative execution attack

proaches halt transient execution, while others focus on invisible speculation to remove

covert channels.

3.1.1 Delay-based Mitigations

The first approach involves delay-based techniques, wherein the transmission of secret-

dependent values is stalled until it is considered safe to proceed [80, 75]. Safety determination

can be complex and requires sophisticated mechanisms to accurately identify when an in-

struction can be considered safe for execution.

Speculative Taint Tracking [80]. A conservative approach to stop secret transmission

in the speculative execution window is by delaying the instruction following secret access.

Speculative Taint Tracking (STT) considers it safe to forward the secret to dependent spec-

ulative instructions unless those instructions form a covert channel. STT safeguards this

protection with minor frontend and backend processor design modifications, eliminating any

covert channel creation.

It taints the output registers of an ACCESS instruction, and every register dependent on

such a tainted register is marked as tainted during the program execution. Any instruction

with tainted input registers is delayed for execution, while untainted ones are allowed to ex-

ecute. The tainted instructions are executed when its registers become untainted, i.e., when

the ACCESS instruction becomes non-speculative. The ACCESS instruction broadcasts all

dependent instructions to untaint its registers once the ACCESS instruction becomes safe

to execute.
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One of the major challenges identified by the author was to identify and block all kinds

of covert channels. The authors categorized covert channels into explicit and implicit covert

channels. Explicit covert channels are created when the secret is directly passed on to a

transmitting instruction. These channels are blocked by blocking instructions with tainted

input registers till they become untainted. On the other hand, implicit channels do not

require direct transmission of secret, rather instruction execute depending on the secret cre-

ating a secret dependent resource contention. Implicit covert channels come in two forms:

explicit branch and implicit branch. In explicit branch cases, instructions execute based on

a secret-dependent branch predicate. In the case of an implicit branch, there is an implicit

secret-dependent branch that dictates the sequence of events, forming the covert channel.

To block implicit channels, side effects of misprediction detection are stalled. For explicit

branches, squashes and branch predictor updates are delayed until the predicates are un-

tainted. Similarly, for implicit branches, implicit branch resolution, such as squashes, is

postponed, effectively blocking prediction and resolution-based channels in both cases.

Non Speculative Data Access [75]. Data can be leaked through a covert channel when a

chain of speculative instructions accesses and transmits the secret. To break the chain, Non-

Speculative Data Access (NDA) tries to block secret propagation from an unsafe instruction.

It restricts data propagation by preventing tag broadcast of destination registers of unsafe

instructions to source registers of all its dependent instructions, delaying the wakeup of

their dependents until source instruction becomes safe. NDA suggests different policies for

deciding which instructions are unsafe, allowing dependent instructions to proceed. These

policies offer varying levels of security and come with different performance impacts, and are

as follows:

• Strict data propagation marks all instructions following an unresolved branch un-

safe. The tag bits of destination registers of unsafe instructions are not broadcasted to

dependent instructions, breaking the data propagation chain. On branch resolution,

the unsafe instruction is declared safe and broadcasts tags to dependent instructions.

• Permissive data propagation considers only LOAD instructions candidates for an

ACCESS instruction. Thus, it marks only LOAD instructions following an unresolved

branch unsafe.

• Load Restriction marks all LOADs as unsafe till it reaches the head of ROB.

26

https://ams.iitb.ac.in/d/154317-OQU2A7TDP2ACYB9O

__deuterium_page_d154317-34

https://ams.iitb.ac.in/d/154317-OQU2A7TDP2ACYB9O


3.1.2 Invisible Speculation

Invisible speculation restricts covert channels by blocking the INFERENCE step. Previously

proposed invisible speculation schemes [77, 14, 15] focus on speculative attacks using cache-

based covert channels. Speculative LOADs are allowed to ACCESS secret and TRANSMIT

them, making such a scheme efficient in case of correct speculation. However, it restricts

speculative instructions to modify the state of the cache system1, restricting the creation of

a covert channel. The cache state is updated once the LOADs are deemed safe.

InvisiSpec [77] uses a speculative buffer (SB) to store all speculative data. When a LOAD

request occurs, the speculative buffer is checked first. If the requested data is not found,

it is invisibly retrieved from the cache hierarchy. This process ensures that the cache state

remains unchanged; caches are not filled in case of misses, and replacement states are left

untouched. The speculative buffer is cleared in case of a misprediction to prevent attack-

ers from inferring information during the INFERENCE step. However, if the prediction is

correct, the speculative LOADs are reissued to update the cache states.

To maintain memory consistency, InvisiSpec employs either validation or exposure meth-

ods. Validation involves checking for any violations during the speculative window. After

reissuing LOADs, the system validates whether the data in the speculative buffer matches

the reissued LOAD. If a mismatch is detected, the specific instruction and all subsequent

instructions are squashed to preserve memory consistency. In the Exposure method, no such

check is conducted after the completion of LOAD reissue and is utilized when no memory

consistency violation is anticipated.

GhostMinion [15] has been proposed to mitigate Spectre attacks with minimal perfor-

mance impact. It introduces a small cache called the GhostMinion (GM) cache, which stores

speculative data and is flushed in a single cycle upon a domain boundary switch or branch

misprediction. The rest of the cache hierarchy remains unaffected by speculative data re-

quests, and only committed instructions write data back to the cache hierarchy.

Backward in-time channel attacks discussed in Section 2.5 exploit the timing effects of

speculative instructions on logically earlier instructions. To mitigate these attacks, Ghost-

Minion proposes a more generalized solution. Like MuonTrap [14], it uses a small cache (GM

cache) to store speculative requests. However, GhostMinion employs multiple restrictions

1This includes the state of the cache hierarchy, replacement policy state, and coherence state modifica-
tions.
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on the GM cache to defend against newer attack variants. GhostMinion’s distinguishing

factors include parallel access to the L1 cache and temporal ordering of instructions using

techniques like TimeGuarding and LeapFrogging to prevent backward in-time attacks. In

Section 3.1.4, we discuss GhostMinion in more detail.

3.1.3 Other Techniques

Techniques like Delay-on-Miss [62], CleanupSpec [59] and DoppelGanger [44] do not fall di-

rectly into the category of delayed-based or invisible speculation techniques. In this Section

we discuss these three techniques.

Delay-on-Miss. Inspired by both delay-based and invisible speculation methods, Delay-

on-Miss (DOM) identifies extra costs associated with reissuing LOADs in the invisible

speculation-based approach and with delaying all instructions after a branch instruction

in the delay-based approach. It introduces a hybrid approach that operates invisibly upon

an L1D hit without changing cache states and only delays execution upon an L1D miss.

DOM allows speculative data accesses that encounter a hit in L1 to continue execution with-

out updating its replacement or coherence states, while in case of a miss, delay the LOAD

until it becomes non-speculative. Additionally, the authors enhance this idea by introducing

a value predictor that predicts values on an L1D miss, eliminating the delay in case of a

correct prediction.

CleanupSpec. It allows speculative changes to the cache hierarchy and adopts an undo-

based approach in case of misspeculation. Cleanupspec handles the uncommon case of

misspeculation (≈5%) and rollbacks cache state changes made during speculation. It uses

partitioned L1D along with a random replacement policy and randomized L2 and LLC to

mitigate cross-core or multi-thread covert channels.

DoppelGanger. It enhances delay-based mitigation techniques and improves performance

by reducing delay. It generates a doppelganger for any LOAD it can, employing an address

predictor. This doppelganger is then preloaded into the LOAD’s destination register. If

the prediction is accurate, the preloaded value is propagated to the LOAD. However, if the

prediction fails, the LOAD is replayed. In cases where it cannot produce a duplicate (unable

to make a prediction), it resorts to either the NDA or STT mechanism to safeguard the
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Figure 3.2: GhostMinion secure cache system

load. In case of correct prediction, DoppelGanger eliminates the delay incurred in case of

delay-based approaches improving performance.

3.1.4 GhostMinion

GhostMinion uses a small 2KB cache called the GM, accessed concurrently along with the

L1D, that stores the data of speculative instructions till they commit (or retire). On a

demand miss generated by a speculative instruction at GM, it searches for the data at L1D,

L2, and LLC, similar to a conventional cache hierarchy. However, on a hit at L1D, L2, or

LLC, the cache state (replacement policy priority bits) is not updated. On a miss at the

L1D, L2, and LLC, the response is directly filled into GM, bypassing L1D, L2, and LLC

(Figure 3.2, 1 ). On a commit, the rest of the cache hierarchy (L1D, L2, and LLC) gets

the data of committed instructions from GM if it is a GM hit, through on-commit writes

(Figure 3.2, 2a ). In case of a GM miss, re-fetching of data is done into the non-speculative

cache hierarchy (L1 to LLC) (Figure 3.2, 2b ). GM is neither inclusive nor exclusive to the

rest of the cache hierarchy.

Within GM, instructions are restricted to see the eviction or insertion of others depending

on their temporal order. The temporal order is maintained based on the timestamp. Time-

Guarding used by GhostMinion ensures the insertions and the evictions are invisible under

multiple speculations. To hide contention at MSHRs, the timestamp metadata propagates

into the MSHRs at each cache level, allowing younger loads to be canceled and replaced by

the older loads (leapfrogging). Also, in GhostMinion, a block can only be in a shared or
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Table 3.1: Summary of mitigation techniques.

Mitigation
techniques

Classification Secure?
Storage
overhead

Perf.
slowdown

CleanupSpec [59] Undo-based No <1KB Medium

NDA [75] Delay-based Yes ≈ 150 Bytes High
STT [80] Delay-based Yes ≈ 1.4 KB Medium
NDA +

Doppelganger [44]
Delay-based Yes ≈ 13.5 KB Medium

DoM [61]
Delay + invisible
speculation-based

No ≈ 0.4 KB High

DoM +
Doppelganger [44]

Delay + invisible
speculation-based

No ≈ 13.9 KB High

STT +
Doppelganger [44]

Delay-based Yes ≈ 14.9 KB Low

InvisiSpec [77] Invisible speculation No ≈ 9.5 KB High
MuonTrap [14] Invisible speculation No 2 KB Low

GhostMinion* [15]
Invisible

speculation
Yes 2 KB Low

invalid state and the coherence states of GM and non-speculative caches are not altered until

an instruction is committed.

Table 3.1 summarizes recent mitigation techniques, keeping security, performance, stor-

age, and implementation complexity in mind. We use the secure implementation of Ghost-

Minion as suggested in Pensieve [78]. DoM, MuonTrap, Invisispec, and Cleanupspec are not

secure as these techniques do not mitigate the speculative interference [19] attacks. Cleanup-

spec does not fit into delay or invisible speculation-based mitigation techniques. The degree

of implementation complexity indicates the extent of hardware changes required within the

processor core and memory hierarchy. High implementation complexity indicates changes

are required in both the core and memory hierarchy. We categorize performance slowdown

into three bins: low (<5%), medium (5% to 10%), and high (>10%).

As mentioned in Section 3.1, mitigation techniques fall into one of the two broad ap-

proaches: delay-based [80, 75, 61] and invisible speculation [77, 15, 14, 60]. For performance

evaluation, we use SPEC CPU2017 [70] and GAP [10] benchmarks. Invisispec [77] uses a

speculative buffer similar to GM, but it does not provide strictness ordering. It incurs higher

performance overhead than GhostMinion [15]. Among all the delay-based approaches, STT

provides security guarantees with minimum performance overhead. Doppelganger improves

the performance of delay-based approaches, which includes STT. Compared to delay-based
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techniques that incur high storage overhead, invisible speculation techniques like GhostMin-

ion entail lower performance penalties with minimum storage overhead. Therefore, in this

paper, we select GhostMinion as our secure cache system.

3.2 Hardware Prefetching

Cache prefetching is a technique to mitigate expensive off-chip memory latency by predicting

upcoming memory accesses and retrieving the data that is not currently in the cache before

it’s requested by the processor. In particular, we focus on hardware prefetchers, which

observe load/store access patterns and prefetches data based on past access behavior. Let us

consider a practical scenario illustrated in Figure 3.3. 1 denotes the cache access pattern

by the CPU. The prefetcher learns this pattern and predicts future cache accesses. 2

indicates the cache access predicted by the prefetcher, which is issued to memory ahead of

time, indicated by 3 . The data is prefetched into the cache 4 . When the CPU actually

issues the request 5 , it gets a cache hit instead of a cache miss. This improves performance

significantly. Some of the commonly used metrics to evaluate a prefetcher are:

Coverage = Misses eliminated by prefetching/Total misses (3.1)

Accuracy = Useful prefetches/Total prefetches (3.2)

Lateness = Late prefetches/Total prefetches (3.3)

Here misses eliminated is the difference between the number of cache misses without a

prefetcher and the number of cache misses with a prefetcher. A coverage of one indicates

the ideal case where all misses are covered by the prefetcher, which is impractical. Hence, a

higher coverage is desirable. However, a prefetcher with high coverage and low accuracy can

degrade performance by generating unnecessary memory traffic. Another important metric

is the prefetcher lateness which is the percent of late prefetches. Here, late prefetches are

accurately predicted prefetches that were issued late and are present in the MSHR of the

corresponding cache level.

State-of-the-art hardware prefetchers have significantly enhanced single-thread perfor-

mance, achieving average performance boosts ranging from 3% to 5% [20, 17, 53, 51]. Most

proposed storage-efficient prefetchers are designed for the L2 cache [17, 20]. Exceptions

include multi-lookahead offset prefetching (MLOP) [65], instruction pointer classifier-based
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Figure 3.3: Hardware prefetching

prefetching (IPCP) [53], and Berti [51], which are L1D prefetchers. It is well-established

that an L1D prefetcher offers superior performance compared to an L2 prefetcher because

prefetched lines are brought closer to the core, as demonstrated by IPCP [53]. Addition-

ally, an L1D prefetcher observes unfiltered memory access patterns, enabling more accurate

predictions of future accesses than an L2 or LLC prefetcher. Berti stands out as the state-

of-the-art L1D prefetcher, boasting a high accuracy of almost 90%.

Prefetchers lead to covert channels, as shown in [25, 29], which can, in turn, lead to

information leakage through transient execution. As discussed in Chapter 1, having a secure

cache system is not enough to mitigate speculative execution attacks as speculatively trig-

gered prefetches can modify the cache state, creating a covert channel. Next, we discuss five

state-of-the-art hardware prefetchers, which we later compare with our proposed technique

for evaluation.

IP-stride. Stride-based prefetching is a simple prefetching technique where the prefetcher

tries to learn constant strides across memory accesses. IP-stride prefetcher is a stride

prefetcher that associates a stride with a particular Instruction Pointer (IP). This prefetcher

tries to learn the stride by subtracting the current address from a previous address associ-

ated with a particular IP. As a particular stride occurs for the same IP, the confidence is

incremented. When confidence reaches a threshold, prefetches are issued for the particular

IP with the learned stride. It can learn multiple strides across multiple IPs with varying

stride patterns.
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Bingo. Spatial data prefetching exploits the recurrence of access patterns over memory

regions to prefetch future memory references. Most existing prefetchers associate observed

access patterns to either short events with a high probability of recurrence or long events

with a low probability of recurrence, which leads to low accuracy or very little prediction

opportunity, respectively. Bingo [17] solves this problem by considering both short and long

events to achieve high accuracy with minimum loss of prediction opportunities. Bingo is in-

spired by the TAGE predictor based on the idea of storing multiple cascaded history tables

where each entry is associated with different events. Bingo stores the page access footprint,

associating them to long and short events. It uses the longest event while prediction, in-

creasing accuracy without losing on prefetch opportunities by relying on shorter events.

Signature Path Prefetcher. An effective prefetching algorithm must accommodate a

broad spectrum of memory access patterns. While simple stride prefetching techniques can

detect sequences of addresses with constant differences, they fall short of capturing diverse

delta patterns. Offset-based prefetchers like the Best Offset prefetcher [49] assess multi-

ple offsets at runtime to issue prefetches, maximizing the likelihood of use. However, they

overlook temporal ordering between delta patterns and struggle with accuracy on complex

address patterns. Look-ahead prefetchers like Signature Path Prefetcher (SPP) [42] encode

access relationships to make future predictions. By recursively referring to a pattern table,

they generate timely prefetches for complex access patterns.

Instruction Pointer Classifier-based Spatial Prefetching. Instruction pointers show

different access patterns. Capitalizing on this fact, Instruction Pointer Classifier-based Spa-

tial Prefetching (IPCP) [42] classifies IPs having different access patterns into three classes:

constant stride, complex stride, and global stream. IPCP classifies accesses based on IP

showing one of the three stride patterns at the L1D cache. It integrates the three types

of prefetching concepts mentioned earlier, selecting the most suitable one depending on the

situation to enhance performance.

Berti. Offset-based prefetchers operates by adding offsets to the current access and prefetch-

ing the resultant address. It selects an offset based on the maximum likelihood of its use

in the future. Berti [51] is an offset-based prefetcher that proposes to use local (per IP)

deltas instead of having a single global offset. Delta is the difference between two cache
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Figure 3.4: Strides, local deltas & timely local deltas. The values on the timeline (2, 5, 7...)
represent the addresses referenced by the same instruction (adapted from [51])

line addresses. It not only selects deltas having the maximum probability of usage but also

factors in if the deltas will lead to a timely prefetch. Berti stands out as the most efficient

and lightweight among all the state-of-the-art prefetchers. Therefore, we opt for it as the

preferred prefetcher. Section 3.2.1 describes the Berti prefetcher in detail.

3.2.1 Berti prefetcher: 10K feet view

Training the prefetcher. Berti trains for deltas for a given IP, which is known as the local

deltas. For an IP, local deltas are defined as the difference between the cache line addresses

of two demand accesses. The goal of the training mechanism is to estimate the coverage of

each seen delta per IP, considering only those deltas that would result in a timely prefetch as

shown in Figure 3.4. The training consists of the following actions: measuring fetch latency,

learning timely deltas, and computing the coverage of the deltas.

1. Measuring fetch latency. To learn the deltas that are timely, it is necessary to measure

the time required to fetch data to the L1D. This measurement is performed for any cache

line in L1D, both for demand misses and prefetch requests. Fetch latency can be measured

by keeping a timestamp for any L1D miss inserted into the MSHR and any prefetch request

inserted into the PQ. On an L1D fill, the latency is simply computed by subtracting the

stored timestamp from the current cycle.

2. Learning timely and accurate deltas. Once the fetch latency is obtained for each L1D

fill, Berti looks up for past accesses (from the same IP) that could have triggered a timely

prefetch for the current request, given the history of accesses and their recorded timestamps.

(Access time of timely + fill latency of current request < access time of current request)
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Timely deltas are then computed by subtracting the address of each timely access in the

history from the current address.

3. Computing the coverage of deltas. On every search in history, Berti obtains a set of

timely deltas. Deltas frequently appearing in the search would cover a significant fraction of

misses, while deltas that rarely appear would result in low coverage. It is important to note

that high local (per IP) coverage translates into high global accuracy.

Issuing prefetch requests. For a given IP, deltas with the highest coverage are selected

and added to the current load address to form the prefetch requests. Berti orchestrates the

prefetch requests across the cache hierarchy depending on the coverage of each delta and the

L1D MSHR occupancy. If the coverage of a delta is above a high-coverage watermark and

the L1D MSHR occupancy is below the occupancy watermark, then prefetch requests using

that delta gets filled at all the cache levels till L1D. Otherwise, if the coverage is above a

medium-coverage watermark, irrespective of the L1D MSHR occupancy, prefetch requests

get filled till L2. Finally, if the coverage is above a low-coverage watermark, requests get

filled only in the LLC.

In the subsequent chapter, we delve into the challenges posed by the negative interactions

between a secure cache system and a prefetcher. Additionally, we address the inherent issues

associated with designing a secure prefetcher.
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Chapter 4

Motivation

4.1 Threat model

We assume the following capabilities in our transient execution attacker:

(i) (S)he is capable of mounting attacks like Spectre and speculative interference [19]

through the cache system.

(ii) (S)he can exploit a hardware prefetcher by speculative training and prefetching that

can change the cache state, as mentioned in Muontrap [14].

(iii) The attacker and the victim can be part of the same process or two different processes.

The attacker can run arbitrary code but cannot access secret data directly, i.e., the attacker

is running within a sandbox either at the user or at the kernel level.

(iv) (S)he is also capable of mounting attacks like Augury [74] and Gofetch [24] using data

memory-dependent prefetchers. There are timing-based side and covert channels involving

hardware data prefetchers and caches [67, 30, 26] that can be mitigated by existing spatial

isolation techniques [31, 58].

4.2 Secure Prefetching

The focus of this work is to build a secure classical prefetcher complementing a secure cache

system. Specpref [68] and Ghost Loads [60] design a secure prefetcher for a specific cache

hierarchy like MuonTrap [14] and Ghost Loads [60]. Specpref prefetches speculatively but

conservatively to the small speculative cache of Muontrap (similar to the GM) and prefetches

on commit to the rest of the cache hierarchy. Overall, Specpref is a throttling technique that
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Figure 4.1: Average L1D accesses per kilo instructions and average L1D load miss latency
with on-access prefetching

is applied on top of existing prefetchers, which ignores some of the fundamental observations

that we present.

4.3 Impact of secure cache system on prefetching

This section analyzes what prevents the prefetcher effectiveness on secure cache systems like

GhostMinion and observes that the main cause is the traffic generated on restoring the cache

state on commit.

Figure 4.1 shows the increase in L1D accesses for the prefetchers evaluated in this work

with a GhostMinion secure cache system and for on-access prefetching. On a non-secure

system with no prefetching, the average L1D accesses per kilo instructions (APKI) is 199,

which goes up to 375 in GhostMinion because of commit requests that update the cache

state. With Berti on GhostMinion, the APKI goes up to 570. The trend persists for all

the prefetchers. For L2 prefetchers like Bingo and SPP+PPF there is no access from the

prefetcher to L1D as the prefetch requests are generated from L2.

The increase in APKI results in additional traffic causing an increase in L1D miss latency

as shown in Figure 4.1. One of the primary contributors to this additional miss latency is the

following interesting trend that makes the latency worse especially in the presence of hard-

ware prefetching. On average, for the Berti prefetcher, with a secure cache system, there is a

10.4% increase in L1D MSHR occupancy and the L1D MSHR becomes full for an additional

8.7% of the time. Furthermore, without prefetching, the L1D MSHR occupancy decreases

by 15.9% when we move from a non-secure to a secure cache system because demand misses

are first served by the GM.
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Figure 4.2: Speedup normalized to a non-secure cache system with no prefetching, traffic (in
terms of APKI), and miss latency with on-access prefetching for 605.mcf s-1554B trace

To dig deep into the interesting interactions, we choose 605.mcf s-1554B and perform

a detailed analysis. Figure 4.2(a) shows the normalized performance with respect to a non-

secure baseline without prefetching. A significant reduction in performance is observed when

the prefetchers are applied to a secure cache system (for Berti, it is more than 300%). Fig-

ure 4.2(b) shows the increase in traffic at L1D contributed by load, prefetch, and commit

requests from GhostMinion. Figure 4.2(c) shows a significant increase in L1D miss latency.

When we analyze the MSHR occupancy numbers, without prefetching, L1D MSHR occu-

pancy decreases by 16.2% when we move from a non-secure to a secure cache system because

the demand requests are first served by GM. However, with prefetching, there is an increase

in L1D MSHR occupancy of 10.1% when we move from a non-secure to a secure cache sys-

tem. This happens because, with a non-secure cache system, the L1D MSHR only has to

deal with demand and prefetch requests, while with a secure cache system, it also has to

handle prefetch requests on top of GhostMinion requests, which increases the pressure on the

MSHR. Without prefetching, L1D MSHR is almost never full. However, with prefetching,

there is an increase in the percentage of time L1D MSHR is full (from 6.3% to 20%). In

Section 5.1, we propose a mechanism that resolves the additional traffic-induced performance

loss when hardware prefetching is enabled.

4.4 Impact of secure hardware prefetching

As described in GhostMinion [15], on-commit prefetching results in no information leakage

due to speculative execution. However, as shown in Figure 1.1, simply moving state-of-the-

art prefetchers to the commit stage results in 3%-4% performance loss compared to on-access

prefetching. This section analyses the reason.
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Figure 4.3: Average L1D/L2 demand MPKI in terms of coverage and lateness.

Figure 4.3 shows the average demand misses per kilo instructions (MPKI) across the

workloads analyzed in this work. The MPKI is shown for the cache level where the prefetcher

works, namely, L1D for IP-stride, IPCP, and Berti, and L2C for Bingo and SPP+PPF. In

addition, each prefetcher is evaluated both with on-access and on-commit prefetching. The

MPKI has been divided into the following four categories:

• Commit late prefetch: This is a new kind of late prefetch request that we introduce

in this work and it only appears when the prefetcher is placed at the commit stage.

We define it as follows: at the time of a demand cache miss, a prefetch request for the

target cache line has not been triggered yet by the on-commit prefetcher, but it would

have been triggered by an on-access prefetcher. Importantly, this type of prefetch does

not fall in the traditional late prefetch category since in fact the prefetcher request has

not been triggered yet when the access takes place.

• Late prefetch: This is the typical late prefetch, where a demand miss finds in the

MSHR a prefetch request for the target cache line, and merges both requests.

• Missed opportunity : The demand miss is for a cache line that would have been predicted

correctly by an on-access prefetch but it was missed by on-commit prefetch as it is

trained in a different order. This kind of prefetch is also only present for on-commit

prefetching and gives information about the negative impact of training at commit.

• Uncovered : Demand misses that did not fall in any of the previous categories.
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We observe a common trend for all evaluated prefetchers: the uncovered demand misses

are reduced when moving the prefetcher to on-commit. Even if we add the missing opportu-

nity bar to the uncovered one, in general, the resulting MPKI (excluding the MPKI coming

from the commit late prefetch requests) is lower for on-commit prefetchers. The Uncov-

ered misses of L1D/L2-MPKI are reduced with on-commit as some uncovered ones are now

classified as on-commit late.

Despite this trend, performance is worse when compared to on-access prefetching. The

reason is timeliness. Although traditional late prefetch requests practically do not increase

when moving from on-access to on-commit, our new defined class of commit late is the

culprit of the increase in overall MPKI for on-commit prefetching. That is, prefetch requests

must be triggered earlier to compensate for the delays entailed by on-commit prefetching.

Fortunately, as we show in this work, it is possible to compensate for this lack of timeliness.

Section 5.2 proposes a mechanism that mitigates the lack of timeliness.

In chapter 5, we address the challenges associated with the impact of secure cache systems

on prefetching and the issues inherent in secure hardware prefetching. To mitigate the

negative interactions between secure cache systems and prefetchers, we introduce the Secure

Update Filter (SUF). Additionally, we propose Timely Secure Berti (TSB), a timely and

secure adaptation of the state-of-the-art hardware prefetcher Berti, which addresses the

issues related to secure hardware prefetching.
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Chapter 5

Secure Prefetching for Secure Cache

Systems

5.1 Prefetch-friendly secure cache system

Secure cache systems, based on invisible speculation, update the cache hierarchy when mem-

ory instructions are not speculative, e.g., when committing. In the case of GhostMinion, this

entails re-fetching the cache line on a miss in the GM or sending on-commit write requests

(for clean cache lines) to the rest of the cache hierarchy on a hit in the GM. The goal of

this extra data movement is to populate the cache hierarchy, which was left intact when the

data was speculatively requested by the core, to minimize cache misses in the subsequent

accesses.

Both re-fetching and write propagation have an important impact on memory hierarchy

traffic. The extra traffic, however, does not come with a noticeable performance degradation

in a memory system that is not heavily contended, as one with prefetching mechanisms.

However, prefetching mechanisms stress the cache hierarchy queues and MSHRs, preventing

the prefetcher from improving performance as shown in Section 4.3. We observe that many

requests aimed at restoring the cache hierarchy are indeed not necessary and cause severe

contention. For example, triggering a re-fetch for data that was provided by the L1D would

consume L1D ports to just update the LRU replacement policy. In the same context, the

on-commit write requests propagate up in the memory hierarchy until the data is already

found in a cache level. The access to the cache level already containing the cache line could

be therefore avoided.
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Figure 5.1: Overview of the secure update filter (SUF)

Driven by this observation, we propose the secure update filter (SUF). SUF records the

cache level that provided the data when requested. Then, at commit time, either filters the

re-fetching when the data was provided by the L1D or stops the on-commit write propagation

at the level previous to the one that provided the cache line. In case the SUF mispredicts,

because the fetched cache line may have been evicted in the interim, a subsequent fetch

request would incur extra latency since it will be served from a higher level. Thanks to SUF’s

high accuracy, the number of cache accesses is reduced, and consequently, the amount of

traffic generated when restoring the cache state. SUF works independently of the underlying

prefetching technique, in a transparent way.

Identifying the cache level holding a cache line. SUF uses the lower level (L1D

is the lowest level and LLC is the highest level of the cache) holding a cache line to decide

if filtering should be employed. The cache level can be learned when the processor requests

the data, by propagating down the hierarchy the cache level that served the cache line. That

information is encoded using 2 bits indicating if the data comes from L1D (or GM, which is

accessed in parallel), L2C, LLC, or DRAM. The 2-bit hit-level information is stored along

with the requested data in the memory operation entry at the load queue (LQ) ( Figure 5.1,

step 1 ).
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Filtering updates. Once a speculative load is committed, it checks the GM in order to

decide if re-fetching the cache line down the hierarchy (GM miss) or propagating the cache

line up in the hierarchy (GM hit) is required. SUF checks the hit-level field, and proceeds as

follows. In the case of the data being provided by the L1D (value 00), SUF drops the update

(both for re-fetching and on-commit propagation). Otherwise, the re-fetch or propagation is

done as usual that causes the cache line to move from GM to L1D (step 2 ). Upon eviction

of the cache line from either L1D or L2, the decision to propagate the writeback block is

determined by the GhostMinion writeback bit1. The value of the GhostMinion writeback bit

at L1D and L2 are evaluated at commit time using the hit-level and propagated along with

the writeback block. Each cache line at L1D stores the L2 writeback bit as well, so that it

gets propagated to L2 upon writeback (step 3 ). Finally, during the eviction from L2, the

GhostMinion writeback bit is once again employed to determine whether to propagate or

not (step 4 ).

Security guarantees. SUF selectively filters out commit requests. These commit re-

quests do not expose any speculative information, as GhostMinion’s Timeguarding mecha-

nism ensures that the timing of instructions bound to commit remains unaffected by transient

instructions. The primary consequence is that the cache hierarchy will not be updated as

intended, potentially resulting in a subsequent miss for the same address within the cache

hierarchy, leading to performance degradation. However, due to the high accuracy of SUF,

this performance loss is minimal.

Another potential issue is that the replacement policy state of the cache will not be

updated due to filtered requests, which could also result in performance loss. On average,

this impact is negligible. Notable exceptions include 605.mcf s-782B, 628.pop2 s-17B, and

654.roms s-523B, where there is potential for performance improvements of 1.23%. Nonethe-

less, the overall performance impact due to the positive replacement state update is out-

weighed by the substantial reduction in traffic.

Applicability. SUF is applicable to any secure cache system based on invisible specu-

lation that updates the cache hierarchy on commit.

Storage overhead. SUF is implemented with only 0.12 KB of additional storage: 0.03

KB at the LQ and 0.09 KB at the L1D. Each of the 128 entries in the LQ is extended with

a two-bit hit-level field and each of the 768 entries of the L1D is extended with a single L2

writeback bit.

1The GhostMinion paper does not mention this bit. However, we assume it is implicit.
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5.2 Timely secure prefetcher

As discussed in Section 4.4, transitioning prefetchers from on-access to on-commit leads to

an average performance loss of 3% to 4%. This performance degradation stems from the new

timeliness constraints, which introduces commit-late prefetch requests and missed prefetch-

ing opportunities. These factors contribute to lower prefetch accuracy and coverage. We

observe that this behavior can be fixed by adjusting prefetch timeliness for prefetchers like

IP-stride and IPCP. One of the ways to improve prefetch timeliness is to increase the prefetch

distance to cover more distant memory requests, which can lead to fewer commit-late prefetch

requests. However, we find that even with adaptive approaches, all the prefetchers fail to

beat the Berti prefetcher.

Another option for addressing the timeliness issue is to modify the learning process of the

hardware prefetcher. We pursue this approach with Berti. We focus on Berti because (i) it

shows the best performance improvements over its peers and (ii) its learning is unaffected

by the order of memory access streams (on-access vs on-commit) as it operates on timely

deltas, which is not the case with other prefetchers.

5.2.1 Issues with the secure prefetcher

As explained in the previous subsection, Berti relies on the fetch latency to guide its learning

mechanism. For secure prefetching, we identify two main issues: (i) the latency seen by the

prefetcher is a misleading on-commit latency (instead of the actual on-access latency) and

(ii) the deltas selected are timely at commit but not at access when data are actually needed.

To understand these problems better we start by describing the on-commit version of

Berti implemented on GhostMinion. Berti is located at the L1D cache and utilizes post-

commit L1D accesses and fills for training. Since GhostMinion speculatively fills the GM

and moves that cache line to L1D on commit, Berti observes the on-commit write latency

from the GM to L1D, instead of the fetch latency from a higher level of the memory hierarchy

to GM. This alteration in fetch latency disrupts the learning process, leading to inaccurate

delta learning and prefetch requests, which in turn translates into performance degradation.

Figure 5.2 (in red) provides a visual example of the training and prefetch request issuance

process for on-commit Berti in GhostMinion. The timeline shows a +1 delta for a given load.

All L1D accesses are misses that take three cycles to fill GM and one cycle to perform an

on-commit write from GM to L1D. We focus on the process of how on-commit Berti issues
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Figure 5.2: Timeline representing working of on-commit Berti (red) and TSB (green). The
timeline represents the access/commit of consecutive executions of the same load instruction,
with each step representing one cycle.

a prefetch request for cache line @5.

Upon the commit of the load for @2 (C@2), the learning process initiates. When cache

line @2 fills the L1D cache from the GM (via on-commit write), the latency of one cycle

is recorded. Consequently, Berti searches for the nearest commit instruction capable of

triggering a timely prefetch request. In this example, this instruction is C@1. Berti then

learns the appropriate delta, for the writeback latency, which in this case is +1. From this

point forward, Berti triggers a prefetch request with delta +1 upon each instruction commit.

When the load for @4 is committed (C@4), Berti issues a prefetch request for line@5 (PF@5).

However, this prefetch request takes three cycles to fill the cache, resulting in a late prefetch

request since the access to cache line @5 is performed two cycles later. This occurs because

the learning process is performed (i) with the writeback latency, not with the fetch latency,

and (ii) the deltas selected are timely at commit (C@2) but not at access (A@2). Note that

this late prefetch will occur even if Berti searches for deltas based on the cache access time

(A@2) rather than the commit time (C@2). Hence, both problems should be addressed in

order to achieve timely secure prefetching.

5.2.2 Timely training of the secure prefetcher

Driven by the previous two observations, we propose Timely Secure Berti (TSB), a new

timely training mechanism for Berti that utilizes the fetch latency to GM and computes the

right delta using the access times. This way the training mechanism emulates the latency

that future demand accesses will face.

TSB works as follows: first, when the demand load miss happens, it speculatively saves

the necessary information for training Berti correctly, including the access time and the

fetch latency to GM. At the time of commit, the commit time for each demand miss is saved
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Figure 5.3: TSB design overview. Berti original hardware extensions are shown in light gray.
TSB hardware extensions are shown in gray.

in history table. While training at commit, TSB searches committed instructions, which

could have triggered a timely prefetch for the current load. Timely deltas are calculated

by subtracting the address of each timely commit from the current address. As we show

in Figure 5.2(in green), when cache line @2 fills the GM, the fill latency is calculated as

the difference between the fill timestamp and the cache access timestamp and saved until

commit. When instruction @2 commits (C@2) and Berti is ready to be trained: the fill

latency is used to search the commit that can trigger a timely prefetch request that will

hit in the access of cache line @2; once the commit is known (in our example, C@0), the

delta is calculated (+2). Unlike the default on-commit version, TSB will trigger prefetch

requests with delta +2, which means that C@3 triggers the prefetch request for cache line

@5, resulting in a timely prefetch request.

Storage overhead. TSB uses X-LQ, an extension of the LQ needed to propagate the

actual fetch latency. The X-LQ is dual-ported and it contains as many entries as the LQ

(128 entries in our modeled system) and it is indexed with the LQ entry id (one-to-one

mapping). Each entry contains a valid bit, a bit indicating that the access was a hit on

a prefetched cache line (Hitp), a 16-bit access timestamp, and a 12-bit fetch latency. TSB

incurs a storage overhead of only 0.47 KB over Berti (3.01 KB over no-prefetch). Figure 5.3

shows an overview of TSB, where the light gray represents the Berti hardware and the dark

gray represents the additional TSB hardware.
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On an L1D miss, the valid bit is set, and the access timestamp is filled with information

from the clock of the local processor (the last 16 bits of the current cycle). When the cache

fill in the GM is done, the fetch latency is also recorded. On a hit to a prefetched cache

line, both the valid bit and the Hitp bit are set. In this case, the access timestamp is also

recorded, but the fetch latency corresponds to the latency of the prefetched line (which has

been previously computed and stored along with the L1D cache [51]). On a regular hit, the

valid bit is not set, since no action will be taken at commit. When a load commits, the

history table is filled for both misses and prefetch hits using commit timestamp, and the

timely deltas are searched by using the fetch latency and access timestamp in X-LQ.

TSB security guarantees. TSB is trained and triggered on commit, which ensures

that it is not trained on any transient instructions, and hence no prefetch requests can be

generated based on transient information. In the speculative phase, the access time and

fill latency of a particular request are stored in the X-LQ. The only vulnerable information

is fill latency, which may be altered by a transient instruction. Any aberration to the fill

latency through resource contention by a transient instruction could lead to prefetcher-based

side channels. If the fill latency of a bound-to-commit instruction is altered by a transient

instruction (e.g. backward-in-time attack), then the security is compromised. However, this

is not possible with GhostMinion as a transient instruction can not affect the timing of a

bound-to-commit instruction thanks to strictness ordering ensured by time-guarding. Also,

as the X-LQ is flushed on a domain switch, the transient information stored in the X-LQ

cannot be exploited by a malicious process. Moreover, the information stored by a particular

load instruction in the X-LQ is accessible only by that instruction and only at commit time.

No other instruction can access the information corresponding to any other instructions.

This makes it secure as there is no possibility of data leakage.

TSB applicability. TSB applies to all secure cache systems (both invisible speculation

and delay-based). Note that on-access prefetching is not secure with delay-based techniques

like STT. STT defines “ACCESS” instructions as instructions deemed capable of accessing

a secret. In STT, a load that only reads a (potential) secret but does not transmit one (i.e.,

“ACCESS” instruction), executes without delay. Now, if we train the prefetcher on-access,

the data corresponding to the executed “ACCESS” instructions get filled into the cache

hierarchy, training the prefetcher with speculative information; modifying the prefetcher

state, making it insecure. As the “ACCESS” instructions are executed speculatively, the

utility of our proposal is to train prefetchers on commit and cover misses that would happen

at access.
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5.2.3 Timely training of non-self-timing prefetchers

Berti is a self-timing prefetcher. However, prefetchers like IP-stride, IPCP, Bingo, and

SPP+PPF are not. To make these prefetchers secure, they should be trained and triggered

on commit. The prefetch tables should not be updated on speculative requests. To compen-

sate for the performance loss as shown in Figure 1.1, all these prefetchers should be adapted

to mitigate on-commit lateness, making them timely.

IP-stride and IPCP. For prefetchers like IP-stride and IPCP, the prefetch distance should

be tuned based on the lateness. We use a mechanism that increases the distance with an

increase in prefetch lateness. We calculate prefetch lateness as the ratio of late prefetch

requests to useful prefetch requests. We monitor prefetch lateness every 512 misses (size of

the L1 in terms of the number of cache lines) and if the prefetch lateness increases for two

consecutive intervals, then we increment the prefetch distance by one. Updating distance

based on the lateness of only the previous interval leads to noisy decision-making.

SPP+PPF. For SPP+PPF, we use the same mechanism of prefetch lateness-driven adap-

tive distance selection as done with IP-stride and IPCP. However, SPP is a different prefetcher

that uses the predicted delta in the signature used for finding out the next delta, recursively.

To make it adaptive, we continue the learning of SPP with on-commit requests. However, we

skip the next k deltas before we start prefetching, where k is driven by the prefetch lateness.

Based on empirical analysis, we find that for timely prefetching, the value of k is between

two to five. As SPP is an L2 prefetcher, the monitoring interval used is 4096 misses (one-half

of the size of the L2).

Bingo. Bingo is a region-based prefetcher, similar to SMS [69] where introducing timeliness

is a non-trivial task. We extend Bingo with temporal information as suggested in Tempo [71]

using a local tempo buffer and global tempo buffer. We then change its distance dynamically

based on the prefetch lateness.

For all the prefetchers, we use the lateness threshold of 0.14, which is just less than the

average lateness while we perform on-commit prefetching. However, with Bingo, the prefetch

lateness threshold that we use is 0.05. In general, with Bingo, the number of late prefetch

requests is lower than IP-stride, IPCP, and SPP+PPF, as shown in Figure 4.3. We also use

a phase change detector as used in prior works [40] and on an application phase change, we

reset the prefetch distance to the base distance used.
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5.2.4 Secure data memory-dependent prefetchers

So far we have discussed how to design secure and high-performing classical prefetchers. In

recent years, there are attacks like Augury [74] and Gofetch [24] that use a data memory-

dependent prefetcher (DMP). DMP is a specialized prefetcher for prefetching an array of

pointers and captures access patterns like A[B[i]] that classical prefetchers do not cover. The

Augury attack attempts to leak the secret, B[i]. The DMP generates a prefetch request to

address A[B[i]]. This is similar to the Spectre attack with the difference being that a DMP

prefetcher is activated to prefetch the secret dependent load address.

Secure cache systems like GhostMinion can mitigate these attacks with minor changes,

which are as follows. To design a secure interaction of the DMP prefetcher with the Ghost-

Minion, we advocate that the prefetch addresses generated by the DMP prefetcher should be

filled into the GM cache only. As there is no instruction associated with a prefetch request

generated by the DMP prefetcher, the prefetched address will never get written back to the

non-speculative cache hierarchy, on commit. On a domain switch, the GM cache is flushed

out as usual, leaving no footprint in the cache hierarchy. Also, on a domain switch, the DMP

prefetcher is flushed. To make DMP secure and high-performing, the prefetch distance of

the DMP prefetcher has to be adjusted based on lateness. Note that prefetching into the

small GM cache is possible with the DMP prefetcher because it is not activated on every

load request and rather only on indirect accesses. We use the indirect memory prefetcher

(IMP) [81] as the DMP prefetcher. We use IMP with a degree two and adaptive distance (d)

to prefetch A[B[i+d]]. The adaptive distance takes care of timeliness issues. The baseline

IMP has a fixed distance of 16.

In chapter 6, we provide a detailed analysis of our techniques namely secure update filter

(SUF) and timely secure berti (TSB) in comparison to on-commit prefetcers. In addition,

we conduct sensitivity studies to demonstrate the benefits of TSB with delay based tech-

niques like STT. We also highlight the benefits of timely-secure versions of non-self-timing

prefetchers over their on-commit counterparts.
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Chapter 6

Evaluation

6.1 Methodology

We use ChampSim [8], a trace-driven simulator used for the 2nd and 3rd Data Prefetching

Championships (DPC-2 [2] and DPC-3 [6]). Recent prefetching proposals are also coded

and evaluated on ChampSim [20, 17, 53, 65, 51]. The version employed in DPC-3 has been

extended with a decoupled front-end [56], a detailed memory hierarchy support for address

translation, and a faithful DRAM model that accounts for the variable access time due

to bank conflicts, close/open page, page hit/miss, etc. We calculate the dynamic energy

consumption of the memory hierarchy (caches and DRAM) with CACTI-P [45] and the

Micron DRAM [3] power calculator on 7 nm process technology. Table 6.1 details our

baseline system configuration, similar to an Intel Sunny Cove microarchitecture [33, 4, 5].

We employ publicly available traces [7, 10] from the SPEC CPU2017 [70] and single-

threaded GAP [18] benchmark suites. We limit our study to the 65 memory-intensive

traces (45 from SPEC CPU2017 and all from GAP) that exhibit at least one miss per kilo-

instruction (MPKI) at the LLC in our baseline system. We run both single- and multi-core

simulations. We collect statistics for 200M sim-point instructions after a 50M-instruction

warm-up [66]. For multi-core experiments, we simulate 150 randomly generated heteroge-

neous mixes of SPEC CPU2017 and GAP traces and report weighted speedup.

We evaluate the effectiveness of SUF and TSB on a GhostMinion [15] secure cache system

with a 2KB GM with 1 cycle latency for different data prefetchers: IP-Stride [32] (the Intel

and AMD L1D prefetcher), IPCP [53] (the winner of the DPC-3 competition), Bingo [17],

SPP+PPF [20], and Berti [51]. We use the tuned implementations of each prefetcher using

the parameters listed in Table 6.2.
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Figure 6.1: Speedup normalized to non-secure cache system with no prefetching.

Core
Out-of-order, hashed perceptron branch predictor [38], 4 GHz with
6-issue width, 4-retire width, 352-entry ROB

TLBs
L1 iTLB/dTLB: 64 entries, 4-way, 1 cycle
STLB: 1536 entries, 12-way, 8 cycles

L1I 32 KB, 8-way, 4 cycles, 8 MSHRs, LRU
L1D 48 KB, 12-way, 5 cycles, 16 MSHRs, LRU
L2 512 KB, 8-way, 15 cycles, 32 MSHRs, LRU, non-inclusive

LLC
1 bank per core, each bank: 2 MB, 16-way, 35 cycles, 64 MSHRs,
LRU, non-inclusive

DRAM

Controller: One channel/4-cores, 6400 MTPS [11], FR-FCFS, reads
prioritized over writes, write watermark: 7/8th
Chip: 4 KB row-buffer per bank, open page, burst length 16, tRP:
12.5 ns, tRCD: 12.5 ns, tCAS: 12.5 ns

Table 6.1: Simulation parameters of the baseline system.

6.2 Results

This section shows the benefits of our two main contributions: the secure update filter (SUF)

and the timely secure Berti (TSB) prefetcher. All normalized graphs are relative to a non-

secure system without prefetching. If a red line is present, it represents a GhostMinion secure

cache system without prefetching. When averaging results, we use the geometric mean when

normalizing values and the arithmetic mean otherwise. In graphs showing average numbers,

each bar represents a prefetch configuration: on-access prefetch in a non-secure cache system

(white bar), on-commit prefetch in a GhostMinion cache system (gray bar), and on-commit

prefetch in a GhostMinion system with the SUF mechanism (black bar). The last prefetcher

is the timely secure Berti (TSB).
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Figure 6.2: Speedup of Berti, TSB, and TSB+SUF normalized to a non-secure system
without prefetcher. The higher the better.

6.2.1 Performance

Overall speedup. The average single-thread speedup of the prefetchers evaluated for both

non-secure and secure systems is shown in Figure 6.1. The first (white) bar shows the speedup

of the non-secure version of the prefetchers. The second (gray) bar shows the speedup

obtained in a GhostMinion secure cache system by the same prefetchers, now being secure.

All prefetchers exhibit a performance loss (between 7.3% and 9.6%) when transitioning from

non-secure to secure, in part due to the ≈5% performance degradation of GhostMinion

(red line). The third (black) bar shows the speedup achieved by SUF, which improves the

performance of all secure prefetchers with the highest improvement of 3.7% for Bingo and

the lowest of 1.9% for Berti.

The last set of bars illustrates the improvements of our TSB proposal, only for secure

scenarios. TSB without SUF achieves the same speedup as secure Berti + SUF (23.0%).

When SUF is added to TSB, the speedup increases by 4.2%, reaching a total of 28.4% (over

baseline). Among the on-access prefetchers in a non-secure system, only Berti offers a clear

performance advantage over our secure TSB+SUF; SPP+PPF, Bingo, and IPCP offer similar

performance (less than a 0.8% performance difference) and IP-Stride has lower performance
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Prefetcher Configuration Size
IP-Stride 1024 entries 8KB

IPCP [53]
128-entry IP table, 8-entry RST table, and 128-entry
CSPT table

0.87KB

SPP+PPF [20]

256-entry ST, 512-entry 4-way PT, 8-entry GHR, Per-
ceptron weights: 4096×4, 2048×2, 1024×2, and 128×1
entries, 1024-entry prefetch and reject tables 39.2 KB

Berti [51]
128-entry History Table, 16-entry Delta table with 16
deltas

2.55 KB

Bingo [17] 2 KB region, 64/128/16K-entry FT/AT/PHT 124 KB

Table 6.2: Configurations of evaluated prefetchers

(2.9%). Importantly, TSB+SUF mitigates the performance degradation of using a secure

system from 5.1% (in a system without prefetching) to 2.1% (in a system with prefetching).

Finally, TSB can also be applied to non-secure cache systems, thus removing any speculative

side-channel attack induced by the prefetcher. In that case TSB performs on par with respect

to on-access Berti (speedup for TSB 1.310 (not shown in Figure 6.1) vs. speedup for Berti

1.311).

Individual speedup. Figure 6.2 shows the individual speedup for on-commit Berti,

TSB, and TSB+SUF. For SPEC traces, TSB improves performance by more than 5% in

7 out of 45 traces (15.6% of all traces) when compared with the on-commit Berti. For

603.bwaves s-2931B, performance improves by 24.9% over Berti, because it has a large fetch

latency which is learned correctly in TSB. Our new learning system allows TSB to learn

better and more accurate deltas, which provides better accuracy and coverage. TSB+SUF
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Figure 6.4: Average L1D, L2, and LLC demand MPKIs. The lower the better.

On-access (Non-secure cache system) On-commit (Secure cache system) On-commit + SUF (Secure cache system)No Pref (Secure cache system)

1.0

1.5

2.0

2.5

3.0

IP
-S

tri
de

IP
C
P

B
in
go

S
P
P
+P

P
F

B
er

ti

TS
B

N
o

rm
a

liz
e

d
 t
ra

ff
ic

(a) L1D

1.0

1.5

2.0

2.5

3.0

IP
-S

tri
de

IP
C
P

B
in
go

S
P
P
+P

P
F

B
er

ti

TS
B

N
o
rm

a
liz

e
d
 t
ra

ff
ic

(b) L2

1.0

1.5

2.0

IP
-S

tri
de

IP
C
P

B
in
go

S
P
P
+P

P
F

B
er

ti

TS
B

N
o
rm

a
liz

e
d
 t
ra

ff
ic

(c) LLC

Figure 6.5: Normalized L1D, L2 and LLC traffic. The lower the better.

achieves more than 5% performance improvement in 18 out of 45 traces (40% of all traces),

with a maximum improvement of 75.8% in 605.mcf s-1554B. After analyzing its behavior,

we detected that this improvement comes from the reduction in the number of cycles that the

L2 MSHR is found full, which drops by 42.2%. TSB and TSB+SUF only sees a performance

drop of more than 1% in one application, 605.mcf s-1536B. As for GAP, TSB achieves better

performance in all bfs traces with an average improvement of 10.8%, also because of their

large fetch latency. TSB+SUF achieves slightly better performance in all benchmarks, with

more than 3.8% average performance improvement in sssp traces due to the inclusion of the

SUF filter. Interestingly, TSB and TSB+SUF do not degrade performance in any trace.

This is because, on average, SUF filters accurately for 99.3% of the time, with the maximum

accuracy of 99.9% for 654.roms s-1613B and a minimum of 87.26% for 605.mcf s-1554B,

improving the effectiveness of GhostMinion with prefetching.

Prefetch accuracy. Figure 6.3 shows the accuracy of the different prefetchers. Com-

pared to the on-access prefetcher, on-commit prefetchers experienced a decrease in accuracy

in all prefetchers, with a maximum of 24.0% in IPCP and a minimum of 4.1% in Bingo. Be-

cause SUF does not affect the timeliness of the prefetcher, it does not modify the accuracy

of any prefetcher. The improvements in the learning system for TSB and TSB+SUF are
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Figure 6.6: Demand load latency in cycles at L1D, L2 and LLC for all prefetchers. The
lower the better.

reflected in their accuracy, which is 2.4% better than on-access Berti in non-secure systems,

achieving an accuracy of 90.3%.

Prefetch coverage. Figure 6.4 shows the demand misses per kilo instructions (MPKI) at

the L1D, L2, and LLC (Y axis) with prefetchers (X-axis). All prefetchers exhibit an average

MPKI increase of 4.3%, 7.4%, and 8.3% at the L1D, L2, and LLC caches, respectively, when

they move from on-access in a non-secure system to on-commit in a secure system. As with

accuracy, since SUF does not change the way that prefetchers work, its coverage remains the

same for all of the prefetchers. Our secure prefetcher, TSB, achieves an MPKI reduction of

2.4%, 4.9%, and 8.8% at the L1D, L2, and LLC caches, respectively, compared to on-commit

prefetcher (Berti). TSB and TSB+SUF have the same coverage as on-access Berti in a non-

secure cache system. The superior coverage of TSB can be attributed to the correct latency

seen by it, which provides the least late and incorrect prefetch requests.

6.2.2 Memory hierarchy traffic, latency and energy with SUF

Memory hierarchy traffic. GhostMinion adds a significant amount of traffic due to the

writeback and re-fetch requests. Figure 6.5 shows the traffic between the different levels of

cache (Y-axis) under the different hardware prefetchers (X-axis). All prefetchers increase

traffic compared to its on-access version by an average of 54.7%, 46.6%, and 40.4% in L1D,

L2, and LLC, respectively. SUF mitigates the increase in traffic generated by GhostMinion

writeback and re-fetch actions with all the prefetchers (an average reduction in L1D traffic

by 30.1%).

Latency. Figure 6.6 shows the number of cycles that load misses take to fill the L1D,

L2, and LLC caches (Y axis). The utilization of a secure system cache increases the latency

of all prefetchers at all levels, with a significant increase at the L1D cache. On average,
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the on-commit prefetcher sees an increase in latency of 34.8% in the L1D cache, 5.2% in

the L2 cache, and 8.8% in the LLC cache with respect to on-access prefetchers. Of all the

prefetchers, Berti is the one whose latency is most affected, with a maximum increase of

49.4% in the L1D cache (from 87.8 cycles to 131.2 cycles). This is because Berti is the most

aggressive of all the prefetchers, triggering more prefetch requests and increasing memory

traffic. Thanks to the reduction in traffic between cache levels, SUF is able to reduce the

latency penalty introduced by GhostMinion by more than 12% at all cache levels, which

translates into higher performance.

Energy. Figure 6.7 shows the normalized dynamic energy consumption in the memory

hierarchy (L1D, L2C, LLC) (Y-axis) for the different prefetcher configurations (X-axis).

There is a direct correlation between traffic and dynamic energy consumption overhead

in the memory hierarchy. The secure system has extra traffic generated by GM, which

increases the base energy consumption for all prefetchers. The on-commit version of the

prefetcher increases energy consumption by an average of 41.8%, compared to the on-access

version. SUF is able to reduce this increase in energy from 41.8% to 30.0%. On-commit

IP-Stride+SUF is able to consume less than the system without prefetching, thanks to SUF

reducing all the redundant traffic from GM. TSB and TSB+SUF show higher dynamic energy

consumption than prefetchers like IP-Stride or Berti because they trigger a greater number

of prefetch requests, but they also achieve better performance.

6.2.3 Multi-core performance

Figure 6.8 shows the performance of SUF and TSB on a 4-core simulated system. The mixes

have been sorted in increasing order of speedup. Compared to the non-secure baseline,

GhostMinion incurs an average performance overhead of 16.8%. Only 14 mixes show a
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performance improvement.

As multi-core execution increases the traffic in the higher levels of the cache, it increases

the latency of memory requests. Hence, the benefits of SUF reducing the traffic are more

acute than in the single-core execution. The SUF filter improves performance over a secure

cache system in all mixes. TSB+SUF improves the performance over the non-secure baseline

by 16.1%, followed by on-commit Berti+SUF (12.4%). When compared with secure on-

commit Berti, TSB+SUF improves performance by 23%. Note that SUF’s average accuracy

drops marginally from 99.95% in single-core to 99.25% in a multi-core system. This marginal

accuracy drop is because of the cross-core evictions at the shared LLC, and this drop does

not affect overall performance.

SMT-based multi-core systems. The effectiveness of SUF is driven by its accuracy

and in an SMT core, one thread can evict cache lines of other threads from both L1D and

L2. When we apply SUF and TSB on a 2-way SMT-based multi-core processor, we find

that the average accuracy is still over 99%. The reason is that, on average, it takes 200

cycles from the time a speculative load request is generated till it gets committed. This

latency is as low as 46.93 cycles for 603.bwaves-2931B. So, the probability of an eviction at

L1/L2/LLC that can lead to a mis-prediction by SUF is extremely low, which is also evident

from high accuracy. There are mixes with multiple copies of 605.mcf-1554B, cc-14B,

bc-0B, and bc-5B where the accuracy dropped to 91.74%. In summary, the effectiveness of

SUF and SUF+TSB remains similar in multicore systems as shown in Figure 6.8 and also

in SMT-based multicore systems.
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6.2.4 Sensitivity studies

So far, we have shown the effectiveness of TSB with GhostMinion. Now, we show the

effectiveness of TSB with STT [80]. We also show the effect of timely and secure prefetching

with non-self-timing prefetchers.

STT+TSB. On single-core, on average, STT with TSB outperforms STT+on-safe prefetch-

ing by 2.3% and as high as 7.1% for gcc, with an overall average speedup of 21% compared

to non-secure baseline with no prefetching. There is no need for SUF with STT as STT is a

delay-based technique.

Timely secure prefetching with non-self-timing prefetchers. Based on the en-

hancements suggested in Section 5.2.3, we now discuss their effects on naive on-commit

IP-stride, IPCP, Bingo, SPP+PPF, and IMP, and name it TS-stride, TS-IPCP, TS-Bingo,

TS-SPP+PPF, and TS-IMP, respectively. In single core system, with GhostMinion, TS-

stride, TS-IPCP, TS-Bingo, and TS-SPP+PPF outperform on-commit versions of IP-stride,

IPCP, Bingo, and SPP+PPF by 3.1%, 2.84%, 1.92%, and 2.64%, respectively. In the case

of multi-core systems, the performance improvements go up significantly with an average of

more than 11.36% with secure and timely versions of the prefetchers compared to on-commit

prefetchers. Compared to on-commit IMP, which prefetches into the cache hierarchy, TS-

IMP, which prefetches into the GM cache shows an average performance improvement of

2.73%. We use the gem5 [48] simulator to simulate IMP with GhostMinion. The current

version of ChampSim cannot simulate IMP as ChampSim does not simulate data associ-

ated with addresses. Note that, overall, TSB is the high-performing and secure prefetcher

outperforming the timely secure version of all prefetchers by 4.1%.
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Chapter 7

Conclusion and Future Work

Secure cache systems mitigate speculative execution attacks like Spectre by providing strict-

ness ordering. We showed that hardware prefetching is fundamental for hiding the perfor-

mance overhead of a secure cache system. We performed, for the first time a comprehen-

sive evaluation of the interaction between state-of-the-art prefetch mechanisms on a secure

cache system. Our analysis shows that (i) state-of-the-art secure memory hierarchies prevent

prefetchers from achieving their true potential and even, in some cases, turning significant

speedups into no performance at all, and (ii) prefetching techniques perform sub-optimally

when moving to commit due to loss of timeliness. We addressed these two problems and

improved the effectiveness of hardware prefetchers. Our proposal improves the single-thread

performance by 6.3% and the multi-core by 23.0% (over the top-performing Berti prefetcher)

with 0.59 KB of storage overhead per core.

Designing a secure L2 prefetcher presents significant challenges due to the unavailability

of information at the L2 cache during the instruction commit phase. This limitation can lead

to various issues in prefetching efficiency and accuracy. Additionally, the performance im-

pact of securing other microarchitectural structures remains unexplored and requires further

analysis.
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