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Abstract—Hardware prefetching is a latency-hiding technique
that hides the costly off-chip DRAM accesses. Although hardware
prefetching is an extensively researched topic with many state-of-
the-art data prefetchers pushing the performance limits, prefetch-
ing for irregular applications with hard-to-predict access patterns
is still a challenging problem to solve. The usage of neural
networks for hardware prefetching is a promising direction,
especially for predicting irregular memory access patterns. This
paper presents Drishyam, a novel hardware prefetcher based on
computer vision algorithms that use images to learn memory
access patterns and predict future memory accesses with high
accuracy and coverage. For hardware prefetching, an image is
a graphical representation of memory accesses observed over
time. For a sequence of memory addresses, Drishyam creates
images that predict the future addresses by predicting the future
OS page and a cache line offset within the OS page. Drishyam
outperforms Voyager, the state-of-the-art machine learning (ML)
based prefetcher, for a set of irregular benchmarks by an average
of 4.7% with an average prefetch accuracy and prefetch coverage
of 89.5% and 66.6%, respectively. In terms of training time,
Drishyam outperforms Voyager by 225.5%.

Index Terms—Cache, Prefetching, Performance

I. INTRODUCTION

Hardware data prefetching is a latency-hiding technique that
proactively brings data into the caches, effectively converting
cache misses into hits. State-of-the-art data prefetchers [1]–
[5] have pushed limits of hardware prefetching with 2 to
3% performance improvement over previous state-of-the-art
techniques. However, these prefetchers lose effectiveness and
perform poorly for irregular benchmarks with hard-to-predict
memory access patterns.

Machine learning (ML) can be used for better hardware
prefetching [6]–[10], keeping practical aspects aside. A recent
ML-based prefetcher called Voyager [10] is a top-performing
prefetcher that solves some of the challenges faced by previous
ML approaches. One of the fundamental problems while
applying ML techniques on data prefetching is the class ex-
plosion problem. For a 64-bit address space, access to address
X can be followed by a 64B cache-line aligned delta (any
address in the cache-line aligned 58-bit address space), which
is huge (258). So, applications of ML techniques on absolute
addresses (as classes) are not a feasible solution. However,
the class explosion problem can be solved by breaking the
prediction of the delta problem into two sub-problems: (i) OS

A major part of the work was done through a summer internship, while the
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page prediction and (ii) offset prediction within a given page
[10].
Why computer vision for prefetching? Computer vision
requires images to analyze and discern distinctions and pat-
terns between them to recognize the images. The usage of
images helps in capturing the temporal correlations among
memory accesses. We are motivated by the wild and crazy
idea (WACI) that appeared in ASPLOS 2022, WACI session
[11]. While the number of memory accesses for a program can
range in millions, using images reduces that size, decreasing
the training and inference time. For example, generating an
image with ten consecutive memory accesses reduces a data
set consisting of a hundred memory accesses into a data set
of ten images.

We propose Drishyam1, a prefetcher that uses images to
generate prefetch requests. Drishyam creates two images for
a memory address; one for a memory region (like a 4KB OS
page) and one for the offset within the page. For a 4KB page
with a cache-line size of 64 bytes, there are 64 possible cache-
line offsets. Instead of using the page numbers and offsets, the
images for pages are created using their embeddings and for
offsets using their embeddings, which also contain the context
of the page. Drishyam feeds these images to a transformer
[12] to predict the future addresses that should be prefetched.
Our approach. For prefetching, we create two sets of images,
one for the page accessed and another for the corresponding
offset in that page which was referred. This division of tasks
makes prediction easier as the number of unique addresses
accessed in a program can range in millions. Still, the number
of pages is only in the range of thousands (minimum 4K with
pr and maximum 90K with mcf), whereas the number of
offsets is fixed at 64.

Figure 1 shows an image (16 rows and 16 columns) cor-
responding to 16 memory accesses that can get mapped to
16 different pages. Each of these rows corresponds to one of
the pages. The goal of this image creation is to predict the
future page. Similar images can be created for predicting the
offsets. To create meaningful images, we need to represent
the pages and offsets as numerical values. That is where
embeddings come in and represent non-numerical data into
low-dimensional numerical vectors. An embedding is an inter-
nal representation of input features within a neural network.

1Drishyam is a Sanskrit word meaning visual.
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Fig. 1. An image representing memory accesses corresponding to 16 pages
for the mcf benchmark.

An embedding layer learns the corresponding representation
such that input features that behave similarly have similar
embeddings. In Figure 1, the columns, therefore, represent the
features that help in distinguishing the two pages. In this case,
the embedding vector for a page is a 16-dimensional vector,
where the weight of each component is in the range [0,1].
Figure 1 is a YBG spectrum image meaning if the weight is
1, then the pixel color is yellow; green if the weight is 0.5,
and blue if the weight is 0. It means that if the embedding
component is close to zero, the pixel color is blue, and if it
is close to one, the color is in the yellow spectrum. So, in
a nutshell, rows in Figure 1 represent the embedding vectors
for individual pages. For example, rows 12, 13, and 14 have
the same color distribution for each column. This implies that
they are visual representations of the same pages. Drishyam
creates these vectors so that similar inputs will have similar
embeddings.

Based on Figure 1, we create images wherein one image
contains the information about 16 recent memory accesses,
and k images represent k × 16 memory accesses. We assign
a class to each image, such that the class associated with
it will be the memory address(more specifically the page
and offset associated with the address) that will be accessed
after 16 accesses that are used to create the image. Therefore
our prediction process boils down to a classification process
where we predict the class, to which an image belongs. The
classification is performed by the SWIN transformer [12].

To the best of our knowledge, this is the first work that makes
a case for the usage of images for accurate data prefetching.
Note that this paper does not make a case practical use
of computer vision algorithms for use in hardware data
prefetchers.

Overall, our contributions are as follows:
• We make a case for a hardware prefetcher that uses

images and image classification algorithms to learn future
memory access patterns (Sections III and IV).

• We use a SWIN transformer with self attention across
shifted windows to improve our prediction accuracy (Sec-
tion IV-C).

• We explain the design of Drishyam (Sections V and VI).
Compared to the state-of-the-art ML prefetcher Voyager,
Drishyam provides an average 4.7% performance boost

with an average prefetch accuracy and coverage of 89.5%
and 66.6%, respectively (Section VII). Compared to Voy-
ager, Drishyam is 225% faster in terms of training time.

II. RECENT ADVANCES IN ML FOR DATA PREFETCHING

Hashemi et al. [9] formulate data prefetching as a classi-
fication problem and use Long Short-term Memory (LSTM)
[13] for prefetching. However, their proposal can only learn
access patterns within a spatial region. Voyager [10], on the
other hand, can perform prefetching that crosses the spatial
boundaries and is the high-performing ML prefetcher. The 1st
ML for prefetching championship co-located with ISCA 2021
[14] has some interesting ML prefetchers. However, none of
them perform better than Voyager, and in some cases, perform
worse than the baseline system with no prefetching. Usage of
reinforcement learning (RL) for prefetching [6] [15] is also a
promising approach. However, the table-based RL methods
are inefficient and do not provide significant performance
improvement for irregular benchmarks.

III. DATA PREFETCHING AND IMAGE CLASSIFICATION

Image classification is a procedure of mapping pixel features
to classes. The classifier receives a pixel feature x and maps
it to any one of the n classes C1, C2, ..., Cn:-

f(x): x → ∆ ;x ∈Rm, ∆ = C1, C2, ..., Cn

where the dimension of the pixel vector is m, and the number
of classes is n. f is a function that assigns the pixel vector x
to a single class in the set ∆.

The role of an image classifier is to distinguish one class
from others; therefore it performs as a discriminant. This is
done with the help of a discriminant function. The discriminant
function takes as input the pixel feature x and a class Ck.
If a particular pixel feature belongs to a class x, then the
discriminant value for that class would be the highest:-

g(x,Cy) > g(x,Cz), z=1,....,n; z ̸= y;x ∈Rm

Here g is the discriminant function that correlates the pixel
feature vector with the class it belongs in.
Problem formulation. A robust problem formulation is es-
sential for any machine-learning problem. For our case, we
use probability distribution to model data prefetching as an
ML problem. The output is in the form of a probability
distribution. We use the unique pages and offsets that an
application encounters as classes. Consider a sequence of 17
memory accesses to 17 different pages; the first 16 accesses
are used to create an image. The 17th access is the class
associated with that image. This procedure is carried out for
an entire application. Finally, we get a labeled dataset for the
prediction process. The upper limit for the number of classes
is the number of unique pages encountered in the application.
Creating the dataset for offset prediction has the same process,
but the number of classes is fixed at 64 since there are only 64
possible offsets within a page size of 4KB. The output of the
classifier, therefore, is the probability of an image belonging
to a class given the features. Figure 2 explains this in detail.

Figure 1 illustrates how classes are assigned to an image.
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Fig. 2. Images with different widths created with an image length of four.

(a) (b)

Fig. 3. Radar chart of offset embeddings (a) without page context (b) with
page context chart for the two random occurrences of the offset nine in astar
benchmark. The Y axis denotes the magnitude of the individual components
of the vector.

The image in Figure 1 is generated from a sequence of 16
accesses that go to 16 pages (not necessarily unique). The goal
of using image classification is that given an image generated
from a sequence of accesses A1, A2, ...An, we have to provide
the probability that a future address Addr will be accessed.
Addr can thus be seen as a class the image may belong to.
Consider an image I generated from accesses A1, A2, ...An,
the learning task, therefore, becomes P (Addr|x), where x is
the pixel vector extracted from the image I. In ML parlance,
x is the input feature, and Addr is the output label.

IV. GENERATING IMAGES FOR PREDICTIONS

Image length is the number of consecutive memory accesses
(page and offset) used to create an image.
Image width is the frequency at which images are cre-
ated,i.e. every one access or every two accesses, and so
on. For example, If an image-I is created for accesses
a1,a2,a3,...,a16, then width of one means image-II is
created for accesses a2,a3,...,a17 and width two means

image-II is created from accesses a3,...,a18.
How frequently do we create images? Figure 2 shows
four different sets of images created from eight consecutive
accesses that may go to eight different pages. There are
multiple options for an image of length four that tracks four
pages. Image-I can be created from page 1 to page 4 (P1 to
P4). Image-II can have pages P2 to P5, P3 to P6, P4 to P7,
or P5 to P8, based on the image width.
What resolution should the images be? We use the image
resolution 16X16 to visualize page and offset accesses. How-
ever, larger resolutions can be used. The trade-off in deciding
the resolution is how dense an image will become and whether
it will cause information loss that can affect the prediction
accuracy. For the irregular benchmarks that we study, we find
a resolution of 16×16 is the best, and the effectiveness goes
down slightly when we move to 32×32 or 64×64, and it
becomes worse beyond 64×64.
Color images vs. grey-scale images. If we use color images,
the processing time will be longer but since we can use more
bands of color, we can capture more information. For grey-
scale images, the processing time will be less, but we will lose
relevant information. In general, color images convey more
information. Grey images do well for regular benchmarks like
gcc, but with irregular benchmarks like mcf, we find a drop
of 32% in prediction accuracy.

A. How to create images from memory accesses?

As a program can access millions of unique addresses, it
is easier to divide the prediction task into two stages:-page
predictions and offset predictions. The procedure for creating
images for both predictions is slightly different. In offset
prediction, there is an added complication of distinguishing
the same offsets from different pages. This problem is referred
to as the offset aliasing problem. Consider an offset O and
two pages P1 and P2. If the offset from the two pages is not
differentiated, then the pixel intensities of the two occurrences
of the offset would be the same. As a result, the classifier sees
the same input for offset residing on different pages. This
would force the classifier to learn an average behavior and
lead to inaccurate predictions.

Figure 3(a) is a radar chart of offset embeddings without the
page context for two random occurrences of offset nine for the
astar benchmark. It shows us that without the context of the
page the accesses reside in, the classifier fails to differentiate
between offsets residing on different pages. Figure 3(b), on the
other hand, shows the offset embeddings with page context
for the same occurrences of offset nine as in figure 3(a).
Adding the page context distinguishes the offset embeddings,
and the classifier can now see the same offsets residing on
different pages, separately. While calculating the attention for
a vector v1 of dimension M with respect to another vector
v2 of dimension N, such that N>M, the number of “experts”
assigned to calculate the attention vector is N/M. The resulting
attention vector for v1 has a dimension of N. In Figure 3(a), the
offset embedding vector has a dimension of 16. In Figure 3(b),
upon calculating the revised offset embedding by calculating
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Fig. 4. Representative images for the irregular benchmarks.

Fig. 5. An image depicting regular access pattern in gcc benchmark.

the attention with respect to a page embedding vector of
dimension four, we get the output vector with dimension four.

The embedding layer is trained in a way so that the
features in terms of pages and offsets closer to each other
will have similar embeddings. In simple terms, if two pages
are next to each other then the cartesian distance between
their embeddings would be lesser than the distance between
a page further than them. In layman’s terms, if we were
to generate simple embeddings for ”foot” and ”football”,

their embeddings would be similar. However, if we train the
embedding layer to distinguish between body part and sport
then the embeddings for both would be different. Figure 4
shows representative images of page accesses for various
irregular benchmarks. Figure 5 shows an image of a regular
benchmark gcc where consecutive accesses are spread across
two pages in contrast to many pages with page jumps in
Figure 4. The pages accessed for the images are as follows:-
i)sphinx:-41059520835, 10980916361,
10980916361, 68179700096, 41059520846,
41059520847, 41059520821, 41059520850,
41059520851, 41059520851, 41059520850,
41059520851, 41059520850, 41059520824,
41059520838, 41059520736
ii)soplex:-30557552214, 30557552214,
30557552215, 43398299683, 43398299684,
43398299684, 43398299690, 30557552215,
43398299683, 43398299684, 43398299684,
43398299690, 43398299690, 43398299684,
43398299683, 30557552209
iii)omnetpp:-2719162767, 37265539527,
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37265539528, 37265539529, 37265539531,
10980916358, 10980916358, 2719162767,
37265539520, 10980916358, 10980916358,
2719162766, 2719162761, 37265539536,
37265539539, 37265539540
iv)astar:-10980916364, 2719162762, 2719162763,
41059520725, 41059520726, 41059520726,
41059520727, 41059520728, 10980916364,
41059520729, 41059520730, 41059520731,
41059520732, 41059520732, 41059520733,
41059520734
v)xalanc:-10980916365, 10980916366,
10980916368, 10980916361, 10980916368,
10980916369, 10980916370, 10980916361,
10980916361, 10980916370, 68179699905,
68179699906, 10980916361, 68179699909,
10980916361, 68179699911
vi)mcf:-43398299714, 29107545297,
29107545295, 63938738763, 29107545297,
63938738763, 63938738665, 63938738763,
63938738763, 63938738763, 29107545297,
29107545467, 29107545301, 63938738763,
63938738763, 43398299714
vii)bfs:-10980916362, 10980916361,
10980916370, 10980916371, 10980916374,
10980916364, 10980916374, 10980916374,
10980916367, 10980916362, 10980916362,
10980916370, 10980916362, 10980916361,
10980916370, 10980916365
viii)pr:-10980916362, 10980916361,
10980916370, 10980916371, 10980916374,
10980916364, 10980916374, 10980916374,
10980916367, 10980916362, 10980916362,
10980916370, 10980916362, 10980916361,
10980916370, 10980916365
ix)cc:-10980916362, 10980916361,
10980916369, 10980916370, 10980916373,
10980916364, 10980916373, 10980916373,
10980916360, 10980916362, 10980916362,
10980916369, 10980916362, 10980916361,
10980916369, 10980916365

B. Adding Page context to offset embedding

To differentiate the same offset on different pages, we add
the page context to the offset embedding. This, in simple
terms, means that we add the information of the page, on
which the offset resides. We do this with the help of an atten-
tion layer. Attention is commonly used in Natural Language
Processing(NLP), where it is used to put more emphasis on
certain words. The attention layer takes as input a query and a
set of keys and values. It then captures the correlation between
the key and queries and provides as output a weighted sum
of the values. The weights used are the correlations captured
between the key and queries. Consider the dimension of the
offset embedding vector to be n and the page embedding vector

to be m. The page embedding vector will be the query, and
the offset embedding vector will be divided into n/m smaller
vectors. These smaller vectors will be the keys. The attention
layer calculates the correlation of the query with the keys
and outputs a probability vector. This probability vector is
of dimension n/m and captures the correlation of each key
with the query. Finally, we use the offset embedding as values
to calculate the weighted sum. Consider a page vector p and
the offset vector o. The correlation between page and offset
is captured through:- Wt = softmax(p.ot); 0 ≤ t < n/m
where, softmax(xi) = exp xi∑k

i=1 exp xi
We use dot product

attention to capture the correlation between the keys and the
query. These weights are then used to get the revised offset
embedding o

′
.

o
′
=

∑s
t=1 Wtot; s = n/m

C. SWIN Transformers and Prefetching

At a high level, a transformer takes as input an input
sequence and converts it into an encoding vector, and decodes
it back into another sequence. At the heart of this procedure
is the attention mechanism. The other important constituents
of the transformer are the encoder and the decoders. The
encoders convert their input into another sequence of vectors
called encodings and decoders do the reverse. VIT Trans-
former(Vision Transformer) [16] could work well for image
classification tasks. However, there were challenges in using
VIT for tasks that require pixel-level prediction, like object
segmentation [17] or object detection [18]. SWIN transformer
stands for Swin WINdow transformer. SWIN transformers are
computationally more effective than regular VITs. For VIT
transformers, if there are n patches, the attention for a patch
is computed with the remaining n − 1 patches. So the total
operations will be O(n2), whereas, for SWIN, we only com-
pute attention for patches within a window. SWIN transformer
has four major parts of the architecture:-patch Partition, patch
merging, embedding layer, and the SWIN transformer block.
For astar, we show how SWIN architecture works with a
representative image (Figure 6).
Patch partition. An image passed through the SWIN trans-
former is divided into non-overlapping patches. We pass a
16×16 image through the transformer and divide it into
patches of size 2×2, in total 64 patches (Figure 6).
Patch Merging. Patch Merging is important for the SWIN
transformer as it helps the model make some assumptions
on input data it has not seen yet. This is more commonly
known as inductive bias. This introduction of inductive bias
contributes to the improvement of SWIN transformers more
than other vision-based transformers. Patch merging combines
windows and merges them into one window. This downsam-
ples the feature map size by 2X and increases the depth of
each patch by 2X (Figure 6).
Embedding layer. The next component in the SWIN archi-
tecture is the linear embedding layer. This layer calculates
the patch embedding for each patch and their positional
embedding. The usage of position information makes the
model more robust. The final output is the addition of these
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Fig. 6. Visual representation of the patch partition and merge layer.
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Fig. 7. (a) W-MSA: attention for the top left patch(purple border) is calculated
by just taking the dot product with the remaining patches in its window (red
border) (b) SW-MSA: windows in the previous image have now been shifted,
and patches which were in separate windows previously were now in the same
window. Attention for a patch is now calculated by taking the dot product
with the patches in the new window.

two embeddings.
Attention mechanism. Before moving on to the SWIN trans-
former block, we describe the changes made in the attention
mechanism. Both SWIN and VIT use encoder blocks adopted
from the original transformer architecture. The encoders com-
prise a multi-headed self-attention layer and a feed-forward
network. However, VIT’s multi-headed self-attention uses dot
product attention to compute the attention of one patch w.r.t.
all other patches in the image. This means that while calcu-
lating the attention for one patch, we take the dot product
with all the other patches. However, with SWIN, we only
need to take dot products of the patches within a window.
Consider Figure 7(a); if we want to calculate attention for
the top left patch, then we have to take the dot product with
all other patches. This is the source of the quadratic time
complexity for VIT. SWIN transformers resolve this by using
custom attention methods: namely, Multi-head Self Attention
in a Window (W-MSA) and Multi-head Self Attention Across
“Shifted” Windows (SW-MSA).
Multi-head Self Attention in a Window (W-MSA) In SWIN,
to compute attention, it takes a fixed-size window. In our case,
Figure 7(a), the window dimension is 2×2, i.e., it consists
of 4 patches. To compute attention for the top left corner
patch, we only have to attend to patches in the same window.
This is much more computationally effective and scalable than
attending to all patches.
Multi-head Self attention across “shifted” windows (SW-
MSA) A correlation between windows is also important for
computer vision-related tasks. SW-MSA is introduced. Figure

7 visually represents its functioning. The windows represented
in Fig 7(a) have been shifted, and new windows are created.
In the new windows created (Figure 7(b)), patches that were
in separate windows before now lie in the same window.
Attention is calculated within the new windows, and this
ensures that we get the relation between patches that were
previously in another window. In summary, to capture the
attention between windows, we (i) shift the output of W-MSA
by half their height and width. (in our case by 1) and (ii)
compute W-MSA in the shifted windows.
SWIN transformer block. The SWIN Transformer block is
the backbone of our prefetcher. It consists of two encoders
placed in series. We feed the output of the first one to the
second encoder. The first encoder computes W-MSA, i.e.
attention within windows. The second encoder computes SW-
MSA, i.e. attention between windows. The major change in
the transformer block is that instead of a simple global multi-
headed self-attention, SWIN uses W-MSA and SW-MSA.
Why SWIN transformer for prefetching? One thing to note
is that when the transformer is fed patches of the images, it
looks at a part of the 64-bit address instead of the entire 64-
bit address as the patches are formed over the 2D image and
each row is a data point of 1D. If we consider an entire row
as a signal, then the transformer is fed a part of the signal.
In a conventional transformer, the entire signal is given as
input but for irregular benchmarks, since finding an access
pattern between the inputs is difficult, the relationship between
components of signals can be exploited. Consider a signal
sub-sequence S1 and S2 such that whenever these two occur
page P1 is accessed. It is difficult to find this pattern when
considering the entire signals as the signals may vary but if
they contain this sub-sequence then the pattern can be learned.

V. DRISHYAM PREFETCHER

This section describes our computer vision model for data
prefetching. Our solution showcases that images can be a new
avenue for data prefetching. We first summarise our approach
into three key steps in our prediction process:
Efficient representations for memory addresses. We divide
the memory accesses into pages and offsets for a smaller
output space, making the prediction process easier. Since the
individual pages and offset have no numerical meaning, we
convert them into a suitable representation.
Creating images for the memory accesses. After getting
the alternate representation for the pages and offsets, we
create images using those representations. As the alternate
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Fig. 9. Different layers of the SWIN transformer in action for Drishyam’s prediction process.

representations of the pages and offsets are of dimension H,
we create images of dimension H×H (image length is H).
Prediction using SWIN transformer. The images created are
then fed to the SWIN transformer. The output is a one-hot
encoding vector for pages and offsets.

Figure 8 shows the neural architecture for our prefetcher.
The input to the prefetcher is a sequence of addresses of length
H; broken down into pages and offsets. The first section of
the prefetcher is the embedding layers. As mentioned before,
the function of these layers is to convert the page and offsets
into real numbers such that inputs that behave similarly have
similar embeddings. We calculate the embeddings for the
page and offsets separately in the first embedding layer. The
embedding dimension for the pages is H, therefore, the output
from the page embedding layer is of shape H×H. The output
from the first offset embedding layer is of shape H×N, where
N > H . The embedding dimension is greater here as we
are yet to add the page context to this offset embedding.
The revised offset embedding is calculated using the attention
layer. The output from this layer is of shape H×H. Now
that we have embeddings for both pages and offset ready,
we form images using these embeddings. The images are of
dimension H×H, where each pixel represents one component
of the embeddings. The next layer takes these images as input
and uses two separate SWIN transformers for each page and
offset images. The output from the SWIN transformer is fed
into a pooling layer for feature summarization, fed into a dense
layer with a softmax activation function. The output from the
dense layer is a probability distribution over the possible pages
and offsets. The page and offset with the highest probability
are chosen separately, and the prefetch address is generated
by adding the offset within a page number. Table I shows

TABLE I
HYPERPARAMETERS FOR TRAINING THE PREFETCHER.

Sequence Length(i.e. Image Length) 16
Image width 8

Embedding dimension for pages (H) 16
Embedding dimension for offsets (N) 64
Frequency of page Number of heads 4

Image dimension 16x16
SWIN transformer hper-parameters

Patch, window, and shift size 2, 2, and 1
Learning rate 0.001

Batch Size 128
Dropout Rate 0.03

Optimizer Adam [19]

hyperparameters used for training Drishyam.
Learning rate is a hyperparameter that governs the rate or
speed at which the neural network learns the value of the
parameter estimates. In simpler terms, it indicates how often
the network changes its knowledge. A lower learning rate
means less number of changes.
Batch size. Since the amount of data that has to be handled by
a neural network can range from tens of thousands to millions;
it will be impossible for the neural network to learn from the
entire dataset at the same time. Batch size denotes the number
of data points currently processed by the network. The weights
of the neural network are updated after each batch is processed.
Batch size has to be selected carefully as a small batch size
can lead to over-fitting.
Dropout rate. Neural networks suffer from a problem called
co-adaptation, where multiple neurons extract the same fea-
ture. This could lead to overfitting if the duplicate features
are characteristic of the training set. To overcome this issue,
some neurons of the network are randomly shut down(values
are zeroed). The fraction of neurons to be shut down is the
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dropout rate.
Optimizer algorithms change the values of the weights and
learning rate in order to reduce the losses. We have used
Adaptive Moment Estimation (ADAM) optimizer [19] similar
to Voyager [10].

VI. DRISHYAM IN ACTION

Next, we describe how images created are used to make
predictions (Figure 9). The image is first sent into the patch
partition layer. We use the patch dimensions of 2×2 with three
color bands red, green, and blue. This means an image of
dimension 16×16 is broken down into 64 patches. The output
from the patch partition layer is, therefore, a matrix consisting
of 64 entries of dimension 12. Each entry contains the pixel
information of each patch. Since the patches are of dimensions
2×2×3, the entries are 12 dimensional. The image is then sent
into the linear embedding layer, which linearly transforms the
patch features into dimension C. In our case, C is 256. The
image is, therefore, now in the form of a matrix of shape
64×256, which is an input to the SWIN transformer block.

The SWIN transformer block uses shifted window attention.
In the next layer, the window regions are shifted, and attention
is calculated locally within the newly shifted windows. This
ensures that patches that were isolated or could not interact
with each other in the first layer can now do so in this layer.
It is important to note that each pixel in the input image is an
embedding component of the individual page accessed in that
window. This shifted window attention, therefore, is useful in
the context of prefetching as we find out which embedding
components are more useful for the individual patches. The
SWIN transformer block keeps the shape of the matrix intact
and provides this as input to the patch merging layer. This
layer reduces the feature map size by 2X and increases the
dimension of each patch by 2X. The output from this layer is
a matrix of shape 16×512. These patches are then sent to the
second SWIN Transformer block, which functions similarly to
the first one. The output from this block remains a matrix of
size 16×512.

The next layer is the global average pooling layer. It has
a straightforward operation of calculating the average of each
feature map obtained from the previous layer. This averaging
operation reduces the dimension of the data. It is a preparation
step for the final classification layer. The average operation
ensures that the model is more robust to spatial translations,
i.e., if a particular feature appears anywhere in the feature
map, it will be “learned” through the average operation. The
output from this layer is the dimension of a single feature
map that is 512×1. Finally, this is provided to the final dense
layer with softmax activation function. The number of nodes
in the dense layer must be the same as that of the number of
classes (P). Softmax assigns a probability to each class, and
these probabilities sum up to 1. In simple terms, the output
of dimension P×1(P is the number of unique pages or offsets
accessed by the application) from the dense layer gives us the
probability that the image belongs to a certain class. Here,
the class is the page that will be prefetched given the image.

We choose the page with the highest probability. A similar
procedure is followed for offset selection, except that P is
fixed at 64.

Note that, we train each benchmark (application) in isola-
tion. Therefore, each benchmark uses its own weights. This
is because the dimensions of the embedding layer depend on
the number of unique pages in the benchmark, which varies
across benchmarks.

VII. EVALUATION

Simulator and benchmarks. We evaluate our prefetcher
using an extended version of ChampSim [20], which was
released with the 1st ML Prefetching Competition, co-located
with ISCA 2021. ChampSim has been used by recent data
prefetching championships and state-of-the-art non-ML data
prefetchers [1]–[3]. Table II shows the parameters for our
simulated memory hierarchy, which is similar to Intel Sunny
Cove microarchitecture [21]. The prefetcher is situated at
the last-level cache (LLC) that prefetch data into the LLC
from the DRAM. We use irregular benchmarks from SPEC
CPU 2006, 2017, and GAP benchmark suites [22], [23].
These are memory-intensive benchmarks and state-of-the-art
non-ML prefetchers fail to provide a significant performance
improvement. However, an oracle prefetcher provides at-least
10% performance improvement. This selection of benchmarks
is the same as prior works [10]. For each benchmark, we use
their respective representative sim point(s) for simulation.
Metrics. We evaluate Drishyam using the following metrics:
prefetch coverage, prefetch accuracy, performance, training,
and inference time. Performance is calculated based on nor-
malized execution time compared to no prefetching. We also
compare Drishyam with the state-of-the-art ML prefetcher,
Voyager. Please note that the ML prefetchers that appeared
in the 1st ML data prefetching championship are not high
performing.
Training. To train our prefetcher, we use the last-level cache
(LLC) accesses (similar to Voyager) for applications after
running them through ChampSim. We use Tensorflow 2.11.0
[24] for the training process. For every access, the prefetcher
provides an address to be prefetched. We train our prefetcher
for the initial 30M instructions and use the trained prefetcher
for prefetching for the rest of the sim-point (100s of millions of
instructions) [22], [23]. We detect an application phase change
using LLC accesses per cycle [25] and in case of a phase
change, we re-train our prefetcher for 30M instructions. We
simulate Voyager [10] as per the implementation provided [26]
and the parameters mentioned in the paper. We use a Tesla
GPU for training.
Accuracy and coverage. Figures 10 and 11 show prefetch
accuracy and coverage with Voyager and Drishyam. On aver-
age, compared to Voyager, Drishyam improves the accuracy
from 50.97% to 89.54% and coverage from 28.39% to 66.62%.
Drishyam provides maximum accuracy of 95.8% for cc and
maximum coverage of 88.8% for xalancbmk.
Performance, training, inference time. Figure 12 shows
improvement in execution time compared to a system with
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Fig. 10. Prefetch accuracy. Higher the better.
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Fig. 11. Prefetch coverage. Higher the better.

no prefetching. Drishyam provides an average performance
improvement of 12.5%, whereas Voyager improves perfor-
mance by 7.8% (4.7% less than Drishyam). Note that some
of the benchmarks (like xalancbmk and omnetpp) show
high prefetch coverage, but the performance improvement is
about 5%. This is because the LLC misses per kilo instructions
(MPKI) of these benchmarks are relatively low (just above
one) as compared to bfs which has an MPKI closer to five.

Note that Voyager claims a performance improvement of
41.6% over a baseline with no prefetching. However, we
report 7.8% over a baseline with no prefetching. There are
two reasons for higher performance improvement: (i) the
ChampSim simulator version that we use is more accurate with
a detailed front-end and back-end. (ii) Voyager uses only one
sim-point trace per benchmark. However, we use all the sim-
points for a given benchmark. For example, mcf has nine sim-
points [22] and Voyager uses only one of them. We corroborate
the results of Voyager on the specific sim-points used in the
Voyager paper.

Figure 13 shows training time improvement normalized to
Voyager for the irregular benchmarks with their respective
sim points. A value greater than one implies that training
time is lesser than voyager. On average, Drishyam is 225.5%
faster than Voyager. On average, Drishyam takes 1.9 minutes
to train for one million instructions, whereas Voyager takes
6.26 minutes and as high as eight minutes for mcf. This is
an expected trend as Voyager uses LSTM, which processes
each word of a sentence separately, whereas transformers
process the entire sentence in one go. In our case, sentences
are the collection of pixels in the image, but for Voyager
sentence means the sequences of memory addresses accessed.
For inference, Drishyam is 20% faster than Voyager.
Storage overhead. Compared to Voyager, Drishyam’s model
size is 39.8% cheaper. Voyager incurs storage costs (in terms
of storing the weights of different layers) of 76.8MB, whereas
Drishyam incurs storage of 54.9MB. To understand the utility
of this storage overhead, we compare the performance of
Drishyam with a 64MB LLC per core. Figure 14 shows that
on average, Drishyam outperforms a 64MB LLC (12.60% on
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Fig. 12. Performance normalized to no prefetching. Higher the better.
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Fig. 13. Normalized training time improvement. Higher the better.

average compared to 6.35%) as the reuse distance of LLC lines
is extremely high and the working sets of these applications
are in GBs (for example, mcf has a working set of 4GB).
Voyager and Drishyam. The core of Voyager’s architecture
is LSTM. In a nutshell, LSTM processes sentences, word
by word. Whereas, Drishyam uses transformers and process
a sentence as a whole, so Drishyam does not forget past
information. Drishyam also uses shifted window attention
to help in providing the relationship between words. In our
case, the sentence is an image and words are the pixels in the
image. We quantify this behavior for one of the benchmarks
named astar. For the following sequence of pages,
38098601425, 41059520803, 38098601420,
38098601420, 43398299602, 43398299603,
43398299601, 54301401950, 38098601420,
41059520781, 38098601420, 38098601426,
38098601420, 38098601427, 54301401991,
38098601420. Voyager makes an incorrect page prediction
and predicts 38098601420 whereas Drishyam makes a
correct prediction and predicts 3927991042. Overall, for
this sequence, the confidence of prediction(probability that
the sequence or image belongs to the predicted class) is low
(0.10) for Voyager and high (0.74) for Drishyam.
Effect of revised offset embedding. Drishyam uses offset
embedding that includes the page context and resolves
the offset aliasing problem through attention. To see the
impact of this revised embedding, Figure 15 shows overall
accuracy, offset accuracy, and coverage with the original
offset embedding (without page context). As we can see
the impact of page context improves overall accuracy and
coverage, significantly. Without page context, the accuracy
and coverage reduce from 92.7% to 43.3% and 63.8% to
25.6%, respectively. This can be attributed to the offset
accuracy, i.e. the percentage of prefetch requests where the
offset is calculated correctly reduces from 94.4% to 46.1%.
The offset accuracy reduction is because of offset aliasing.
Effect of the shifted window attention. Another important
aspect of the prediction process is the image classifier. We
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TABLE II
SIMULATION PARAMETERS OF THE BASELINE SYSTEM.

Core Out-of-order, hashed perceptron branch predictor, 4 GHz with 6-issue width, 4-retire width, 352-entry ROB
TLBs L1 iTLB/dTLB: 64 entries, 4-way, 1 cycle, STLB: 2048 entries, 16-way, 8 cycles
L1I 32 KB, 8-way, 4 cycles
L1D 48 KB, 12-way, 5 cycles
L2 512 KB 8-way associative, 10 cycles, non-inclusive
LLC 2 MB/core, 16-way, 20 cycles, non-inclusive, MSHRs: 8/16/32/64 at L1I/L1D/L2/LLC
DRAM One channel, 6400 MTPS, FR-FCFS, 4 KB row-buffer per bank, open page, burst length 16
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Fig. 14. Performance of Drishyam in comparison with a 64MB LLC
normalized to an LLC with 2MB and no prefetching.
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Fig. 15. Effect of page context in the offset embedding on performance.

have used the SWIN transformer as our image classifier.
An advantage of using the SWIN transformer is its shifted
window attention mechanism. To test the impact of this
mechanism, we have tested a variant of the prefetcher with
the Vision Transformer (VIT) [16] as the image classifier.
VIT uses a global attention mechanism, i.e, each patch of the
image is attended by all the other remaining patches.

The reason why the SWIN transformer works better than
VIT is because its attention mechanism includes local attention
within a window of patches and then another local attention
after shifting the windows. This shifting procedure ensured
that patches not within the same window in the first iteration
are now in the same window. Since each patch represents
embedding components for pages and offsets, because of the
shifting mechanism, patches that were isolated could now be
used for calculating the local attention between them. Figure
16 shows the utility of the SWIN transformer in terms of
prefetch accuracy and coverage.
A possible hardware implementation. As mentioned in
Section I, the goal of this paper is not to propose a practical
implementation but rather to make a case of computer vision
can also be used for prefetching. The hardware design for
our prefetcher requires two major sub-components: image
Creation and the SWIN transformer. The images are created
using embeddings of individual pages accesses accessed. The
embeddings are nothing but a hardware table with each table
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Fig. 16. Performance of the prefetcher with VIT and SWIN transformer.

containing the embedding entry for the pages. To calculate the
embeddings, an extension of Bidirectional Encoder Represen-
tations of Transformers(BERT) [27] can be used. Compared
to the SWIN transformer, which has an encoder and decoder,
BERT only has an encoder.

We use these embeddings for creating images. Since the
convention is that each pixel in an image has a value ranging
from [1,255], we can create an alternate representation for
these images. As each pixel in the image represents one
component of the embedding vector for a particular page, we
use these embedding vectors directly. In simple terms, if we
consider an image length of 16 and an embedding vector of di-
mension 16, then the input to the SWIN transformer block will
be of dimension 16×16. The next important sub-component
of this prefetcher is the SWIN transformer model, which
can be designed similarly to [28] with row-wise scheduling.
Exploration of the practical aspects is beyond the scope of this
paper, and it is a promising avenue for future research.

VIII. CONCLUSION

We make a case for the usage of computer vision for
data prefetching, where we use images to visualize memory
accesses. We use a SWIN transformer for predicting the future
prefetch address by breaking the problem into page prediction
and offset prediction. Our prefetcher, Drishyam, outperforms
the state-of-the-art ML prefetcher for a set of irregular bench-
marks in terms of accuracy, coverage, performance, training
time, and cost. We believe the insights from this paper can
motivate for practical implementation of Drishyam.
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