
DeepDetect: A Practical On-device Android
Malware Detector

Saurabh Kumar∗, Debadatta Mishra∗, Biswabandan Panda†, Sandeep Kumar Shukla∗
∗ Indian Institute of Technology Kanpur, Kanpur, India

skmtr@cse.iitk.ac.in, deba@cse.iitk.ac.in, sandeeps@cse.iitk.ac.in
† Indian Institute of Technology Bombay, Mumbai, India

biswa@cse.iitb.ac.in

Abstract—Over the past few years, Android has become one
of the most popular operating systems for smartphones as it
is open-source and provides extensive support for wide variety
of applications. This has led to an increase in the number of
malware targeting Android devices. The lack of robust security
enforcement in Play Store along with the rapid increase in the
number of new Android malware presents a scope for a variety of
diverse malicious applications to spread across devices. Further-
more, Android allows installation of an application from unver-
ified sources (e.g., third-party market and sideloading), which
opens up other ways for malware to infect the smartphones.
This paper presents DeepDetect that enables on-device malware
detection by employing a machine learning based model on static
features. With effective feature engineering, DeepDetect can be
used on-device. To classify an Android application as malware,
it takes ∼5.32 seconds, which is 2.23X faster than API based
malware detector, while consuming 0.45% (for 50 applications)
of total device energy. DeepDetect provides a malware detection
rate of 99.9% for known malware with a 0.01% false-positive
rate. For unseen/new samples, it detects more than 97% malware
with a false-positive rate of 1.73%. Further, in the presence
of obfuscated malware, DeepDetect correctly detects 95.57% of
malware samples. We have also evaluated our model against the
Pegasus malware sample and with a new dataset after removing
the potential biases across space and time.

Index Terms—Android, static analysis, malware detection,
security, machine learning.

I. INTRODUCTION

In the recent years, Android has become one of the most
popular operating systems (OSes) for smartphones because of
its open source nature and large support for different applica-
tions (Apps). Recently, a report shared by the International
Data Corporation (IDC) for smartphone OSes showed that
in the year 2019, the total market share of Android was
86.1% [1]. As a consequence of such large-scale adoption
of Android, the security of these devices has become a non-
trivial challenge. In the year 2019, security experts at G DATA
observed that around 4.18 million new Android malware
samples have been discovered [2]. This shows that a new
Android malware is born every eighth second [2].
The problem: Malware may get unleashed into the device
bypassing the defense system of Google Play Store [3] or

This work is partially supported by Visvesvaraya Ph.D. Fellowship grant
MEITY-PHD-999, SERB and DST through C3i center and C3i hub projects
at IIT Kanpur.

from an unverified sources (e.g., third-party market, side-
loading). Therefore, on-device malware detection is crucial
to stop malware affecting end-user devices. The performance
of existing on-device malware detectors [4], [5] in presence
of recent malware is unknown. Furthermore, these detectors
utilize the API call information for malware detection that
are susceptible to code obfuscation and require significant
processing time (hence impact battery life). For example,
API based malware detectors take ∼11.89 seconds to extract
Restricted API information which is 2.23X slower than opcode
based detector (see §VII-E). Moreover, most malware detec-
tors like DroidSieve use the PRAGuard [6] dataset to evaluate
their efficiency against obfuscated malware. PRAGuard dataset
contains malware till March 2013. These samples are outdated
and do not represent the current state of Apps.
Our goal: We believe, an efficient and accurate on-device
malware detection mechanism should complement the existing
offline analysis process to stop malware infecting the end-user
devices in an effective manner.
Our approach: To design an on-device malware detector that
is faster, consumes less device energy, provides high malware
detection rate and low false-positive rate, we use the following
approach:
(i) With code obfuscation, selection of correct features is a
challenging proposition as many features either negatively
impact the accuracy or unnecessarily increase the feature set
size with negligible contribution towards accuracy. Therefore,
we carefully select features that are either unaffected by
obfuscation or we transform them into another form to make
them independent of obfuscation.
(ii) The most time consuming step in malware detection is
the feature extraction process while other computation such
as executing the trained classification model on the feature
vectors require significantly less time. Hence, we design a
lightweight feature extraction module that can extract features
efficiently. We also adapt the N-Gram method for feature
construction to preserve the relationship between opcode.
(iii) With the outdated obfuscated malware samples, it is
hard to measure a malware detector’s efficiency with the
current pace of obfuscation methods. Hence, we create a new
obfuscated malware dataset that reflects the current state of
obfuscation techniques and App design paradigm.

The accuracy of on-device malware detectors ([4], [5], [7],

[8]) built around machine learning algorithms with static fea-
tures goes down in the presence of unseen1/new2/obfuscated
Apps. Talos [26] uses only requested permissions to detect
a malware, which can be extracted efficiently from an App
by using the Package Manager (Android built-in feature).
However, a malware detector based on only permissions is
not a good solution because it can classify malware as benign
that is obtained by introducing malicious code inside a benign
App. Drebin [4], IntelliAV [5], Yuan et al. [8] include API
call information (suspicious API and/or Restricted API), which
requires significant processing time (see §VII-E) to extract
from an App. Furthermore, the API call information is more
susceptible to the code obfuscation attack, which impacts the
accuracy of a model (see §VII-A). Also, in the newer versions
of the Android OS, some APIs may go outdated or suppressed,
and the same will not be present in the future/unseen Apps.

Techniques ([9]–[12]) that are primarily proposed for de-
ployment in the market place provide good detection accuracy
for both new malware samples and obfuscated samples. One
choice for on-device malware detection could be the deploy-
ment of the same model on a real device. However, these
methods extract various features (permissions, intent filters,
API calls, native code, etc.), and the processing time required
for the extraction of this information is relatively high. For ex-
ample, DroidSieve [11] takes an average of 2.5 seconds, while
Garcia et. al. [9] take around two seconds to analyze an App
in an offline manner. Since the processing time requirement
for these techniques are high on a server environment with
huge processing capabilities, we speculate that the deployment
of the same techniques on low-end devices will consume
more time and therefore, it is not practical. Note that, Drebin
takes 750 milliseconds to analyze an application on a server
environment. However, when it is deployed on a real device,
its reported analysis time for an App is 10 seconds. Similarly,
DroidAPIMiner [12], an API based malware detector takes
around 15 seconds for extracting features and 25 seconds of
overall time to analyze an App in a server environment with
a detection rate of ∼97%.

In this paper, we present DeepDetect that enables on-device
malware detection by employing machine learning on static
features with significantly less processing time and device
energy. Overall, our contributions are as follows:
(i) We reduce the size of Dalvik opcode instruction set by
combining the same semantic instruction and represent them as
one instruction (§IV-A). We also develop a lightweight opcode
information extraction module to extract the opcode sequence
from an Android Application Package (APK) inside a real
device efficiently (§IV-B).
(ii) We develop a feature engineering framework that can
drastically reduce the feature set size (from 7,12,595 to 75
features) while achieving malware detection rate of more than
97% (§V).

1Samples that are not the part of training set, but they may be from the
same period or prior to the samples of training set.

2Samples that comes after the samples used for training.

(iii) We design an on-device malware detector that is capable
of identifying a stand-alone malware (§VI). We show the
efficacy of DeepDetect in the presence of known3 (training
samples), unseen, and new malware in terms of detection rate
(recall), precision and F1-score (§VII-B). We also evaluate our
model against the Pegasus malware samples that have been
collected from the CloudSek organization.
(iv) We create a new dataset of obfuscated malware by
obfuscating 4993 unique malware with six different categories.
We evaluate DeepDetect against these obfuscated samples,
DeepDetect correctly detects 95.57% malware, which is an
overall drop of 1.55% compared to the same set of non-
obfuscated samples (§VII-C). The malware samples in this
new dataset are from the year 2019 and downloaded from the
AndroZoo [13]. Additionally, we evaluate DeepDetect against
a new dataset (spanning over four years 2016 to 2019) down-
loaded from Androzoo and eliminated both the potential biases
i.e. spatial and temporal. In this evaluation, DeepDetect is able
to detect ∼97% of malware while generating ∼1.4% false
alarms (§VII-D). Further, we show the runtime performance in
extraction of different features on a real device in terms of the
execution time and device energy consumption. The opcode
based malware detector is 2.23X faster than the Restricted
API based detector and consume 2.17X less device energy
(§VII-E).

II. BACKGROUND

In this section, we discuss the APK building blocks and
Android permission systems.

A. Android Application Package (APK)

APK comprises of five major components [14]. These
components are as follows:
Classes.dex: It contains main execution logic of an App,
which comprises of four components. These are:
(i) Activities: An activity represents a single screen through
which a user can interact with the App.
(ii) Content Providers: A content provider supplies data from
one App to another on request.
(iii) Services: These are the processes that keep running in the
background without any need for interaction with the user.
(iv) Broadcast Receivers: It responds to broadcast messages
from other Apps or from the system itself.
Native Libs: At times, a piece of code written in C/C++ is
included in the native library. To invoke a native function in
an Android App, Java Native Interface (JNI) is used.
Resources: Elements such as images, strings, color value, etc.,
used in an App fall under the category of resources.
META INF: It contains meta-information about an App along
with the public key of the signing certificate used to verify the
integrity of an App.
Application Manifest [14]: It stores all the information about
an App like broadcast receivers, content providers, activities,
etc. All components need to be registered in this file. If

3Samples that are the part of training data.

a component is not present in the Manifest file, then its
functionality would not be visible to Android.

B. Permission System

Android works on the principle of least privilege. Hence,
an App can only perform the task for which it is designed.
Android assigns a unique user-ID to every App at the time of
installation. This user-ID is then used to enforce the isolation
between Apps at run-time such that an App cannot access
the data of others. Access to other resources which do not
belong to an App, is allowed based on the permissions. All
such permissions must be declared in Manifest file [14].

III. DATASET

We use a class balanced dataset consisting of 96,748 Apps.
The dataset has 40,402 unique malware distributed across
more than 70 different classes of malware. These distributed
set of malware helps the classifier to learn more about different
variants to identify unseen malicious Apps. In the dataset, the
malware samples are collected from AMD [15] and VirusShare
[16]. For benign Apps, we have crawled through the Play
Store and gathered 65,806 samples. These samples were
passed to VirusTotal [17] to make sure they are benign. The
Apps that are identified as malicious by even one antivirus
engine on VirusTotal are discarded to create the benign dataset
resulting in 56,346 benign samples. AMD dataset contains
malware collected between the years 2012 to 2016, whereas
the malware from VirusShare and benign Apps from Play
Store were collected in April 2018. In §IV, we discuss the
feature extraction process and the type of features extracted
from the dataset.

IV. FEATURE EXTRACTION

Feature extraction is an important step in machine learning
based malware detection systems. In this section, we discuss
about the type of features extracted from the dataset along
with the process of feature extraction.

A. Type of Features

In this work, we extract features from two locations, i.e., (i)
App Manifest file [14] and (ii) Dex code. The Manifest file
contains information about the Android App, whereas the Dex
code holds the main execution logic. Our primary goal is to
design a malware detector based on the static features while
ensuring that the prediction accuracy is not affected due to the
obfuscation. Note that, here obfuscation includes all defense
mechanisms like packed malware, dynamic code loading, na-
tive code, and others [18]. Generally, the obfuscation is applied
to the code available in the Dex file, where a malware writer
hides the use of actual API by transforming it into another
form. The extraction of used API information from the Dex file
may lead to miss classification, and the overall performance of
the detection model may be negatively impacted. Therefore,
we utilize low-level Dalvik bytecode (opcode) instead of the
high-level API information and the features from the Manifest
file to design an obfuscation-resilient malware detector.

TABLE I
REDUCED INSTRUCTION SET WITH DESCRIPTION.

Symbol Description
A Arithmetic operation instructions
B Branch instruction (Conditional jump like if-eq)
C Comparision instruction like cmpl-float
D Data Definition instructions like const/4
F Type conversion instructions (int-to-long, int-to-float)
G Get instructions (aget, aget-wide)
I Method call instructions (invoke-direct, invoke-virtual ...)
J Jump instructions (Unconditional) like goto

L Lock instruction, use to acquire/release a lock
(monitor-enter and monitor-exit)

M Data manipulation instruction like move and its variants
O Exception instruction (through)
P Put instructions (aput, aput-wide)
R Return instruction like return-void
S Bit-wise operation instructions (and-int, shl-int)
T Type judgement like check-cast
V Array operation instructions like array-length
X Switch case instructions

Features from the Manifest file: There are four categories of
features [4] that can be extracted from the Manifest file. The
description of the features are as follows:
(i) Requested permissions: An App has to request permis-
sion to access important and sensitive information. Malicious
software tends to request certain permissions more often than
benign Apps.
(ii) App components: In an App, there are four types of
components. Each component defines user interfaces or inter-
faces to the system. They are—Activities, Content Providers,
Services, and Broadcast Receivers.
(iii) Intent filters: Using intent, inter-process and intra-process
communication is performed. Malware often listens to such
intents.
(iv) Hardware components: Access to a certain hardware
may have some security implications.
Features from the Dex code: API call information extracted
from the Dex code is prone to obfuscation attacks. As an
API is treated as a string by the static analyser, a malware
can bypass it very easily because the execution happens with
a stream of Dalvik opcodes. Dalvik instruction set contains
230 instructions to perform a designated task. These instruc-
tions include method call instruction, branch instructions, data
manipulation instructions, and others. We generate a 2-Gram
(N-Gram [19]) sequence of Dalvik opcodes for each function
to use them as features for malware detection. N-Gram is
widely used in natural language processing, and it has also
been adapted for malware analysis.

As the Dalvik instruction set is large enough (230 instruc-
tions), a possible number of unique features obtained using
N-Gram is approx 230N . Such a large number of features
are not suitable to design an on-device malware detector.
Therefore, we have clubbed several instructions to reduce
them into one instruction based on their usages (Table I),
like move instructions or method call instructions similar
to the approach used in [20], [21]. However, our reduced
instruction set contains 17 instructions (Table I), which is
slightly more than the reduced instructions set of TinyDroid

TABLE II
EFFECT OF FEATURE SELECTION & ENCODING ON EXTRACTED FEATURES.

#Features
Category Original Encoding
Requested Permission 23,175 668
Hardware Component 245 245
Intent Filters 50,257 1
Activities 5,24,989 1
Services 57,202 1
Broadcast Receivers 49,751 1
Content Providers 6,659 1
Custom Permissions 0 1
2-Gram Opcode Sequence (2-Opc) 317 317

Total Features 7,12,595 1,236

[21] and Dong et al. [20]. Our reduced instruction set is
based on the 228 instructions (excluding the NOP and empty
method call instruction), whereas the simplified instruction
set of TinyDroid and Dong et al. includes only 107 and 218
instructions, respectively. Apart from the size of the instruction
set, we also include features from the Manifest file and reduce
the feature set size through the feature engineering module
which is different from the Dong et al. and TinyDroid.
The above mentioned features are extracted using Androguard
[22] and represented as strings. From each sample, we have
extracted all the information discussed above as features. In
Table II, column named Original shows the number of unique
features extracted from the dataset. There is a total of 7,12,595
unique features extracted from the Manifest file and Dex
code. Using such a large number of features for an on-device
malware detection leads to significant overhead in terms of
processing time and computation requirements. To overcome
this limitation, we need to reduce the dimension of the feature
space to build an efficient on-device malware detector. We
discuss the process involved in reducing the feature set size
in §V. Next we discuss the efficient feature extraction method
designed for a real device.

B. On-device Efficient Feature Extraction:

We use the features from two locations as discussed in
§IV-A. To extract features from the Manifest file, Android
provides an in-built functionality called Package Manager
(referred to as PM). Whenever an App gets installed (or gets
updated, which is done frequently) on an Android device,
the PM maps all the information related to the Manifest
file. Hence, we use PM directly to extract features from the
Manifest file efficiently. However, Android does not provide
any in-built functionality to extract information (opcode) from
the Dex files of an APK. Hence, we have designed an efficient
and lightweight opcode information extractor with the help of
DexLib2 library.

The DexLib2 is a Java library to process the Dalvik ex-
ecutable code, which has been used by many heavy APK
processing frameworks like APKTool to perform reverse engi-
neering. One can argue that, if APKTool is available, then why
a new feature extraction method is needed for on-device? Why
can we not use APKTool directly? The reason is, APKTool
disassembles an APK and dumps the disassembled code into

Feature Selection &
Encoding

Category-wise
Feature

Reduction

Feature Reduction
from Combined

Feature Set Selected
Features

Feature Engineering

Fig. 1. Flow of feature engineering module.

the secondary storage in smali code (see listing 1, a smali
code snippet of a method disassembled using APKTool). The
generated smali code is then used to extract the features by
parsing them, requiring a lot of string processing/comparison
and file system operation. Both file operation and string
comparison requires significant processing capability and time.

1 const/4 v0, 5
2 const/16 v1, 10
3 add-int v2, v0, v1
4 invoke-virtual {v3, v2}, Activity;->setter(I)V
5 return-void

Listing 1. Sequence of Dalvik opcodes (smali code).

1 1250
2 1302 0a00
3 9002 0001
4 6e20 cc00 2300
5 0e00

Listing 2. Sequence of Dalvik opcodes (hex code).

To extract opcode features efficiently, we deal with the Dex
code as follows:
(i) Dex file is a stream of Hex code. Hence, we operate directly
on the sequence of hex stream (avoiding string operations).
(ii) We read Dex files one-by-one (in case of MultiDex App)
from an APK and operate only in-memory (avoiding file
system operation).

Listing 2 shows the Dalvik opcode sequence in the hex
stream (little-endian format), equivalent to the smali code
shown in listing 1. Compared to the smali code (listing 1),
the hex stream (listing 2) does not contain any string. Hence,
it does not require time-consuming string operations to extract
opcode information (highlighted in blue color in both listings
1 and 2).

V. FEATURE ENGINEERING

A model built upon gathering as much information as
possible helps the classifier to learn more. However, the
computation capability and processing time required to build
such models are enormous. Such models are not feasible to
deploy on a real device to detect malware. Therefore, we need
a mechanism such that, a machine learning model can be
trained using less number of features, while maintaining good
detection accuracy.

Often most of the features are usually irrelevant or re-
dundant and increase the model complexity. Therefore, we
consider only the essential and relevant features. Feature selec-
tion/reduction methods are often used to solve such problems.
Fig. 1 shows the flow of the feature engineering module.
This module has three major phases, which are discussed in
subsequent sub-sections.

Category-wise
Initial Feature Set

Category-wise
Final Feature Set

Feature Reduction
Based on Correlation

Optimal Feature
Identification

Category-wise Feature Reduction

Fig. 2. Category-wise feature reduction process.

A. Feature Selection and Encoding

Android App developers can provide any name to custom
permissions, services, and activities, etc. Such user-defined
components have a massive number of features due to user-
defined names. Despite having a large number of binary-
valued features in each set for components, they do not show
good prediction abilities concerning the number of features
available in each feature set. Hence, in the quest of reducing
the feature set, one should carefully handle loss of information.
Therefore, instead of eliminating these binary-valued features,
we transform them by maintaining a count of a component in
each category. After the transformation, each of these set holds
the frequency of their usage for an App. Another change can
take place in requested permissions where we keep Android
defined permissions as binary-valued features and make the
count of remaining permissions (custom permission). Note
that, we did not perform any transformation to the features
extracted from the Dex code. As it is already done by reducing
the instruction as discussed in §IV-A. We only use frequency
of 2-Gram opcode sequence extracted from every function
inside the Dex code.

Finally, after transformation and encoding of the extracted
features, we have feature sets that contain either binary value
or the frequency of their usage. The Encoding column in Table
II shows the resulting set of features after this step.

B. Category-wise Feature Reduction

Most of the categorical sets individually have a lot of pre-
dictive powers. Hence, we optimize the performance of each
of the binary-valued feature set and 2-Gram opcode sequence,
individually and then combine their predictive power to build
a better model.

Category-wise feature reduction involves two processes for
feature reduction, as shown in Fig. 2. Both the binary-valued
feature sets (see §V-A) and opcode sequence are passed
through each of these processes to filter out the redundant
and irrelevant features in each category. All the processes
involved in the category-wise feature reduction are elaborated
as follows.
Feature Reduction Based on Correlation: Often a dataset
contains some features that are highly correlated with each
other and provide the same information. Keeping all such
features (correlated features) increases the complexity of the
model without contributing towards classification efficiency.
This step addresses the issue by finding all the correlated
features. Correlation between two features is performed based
on the Pearson’s correlation coefficient [23] that lies between
−1 to 1. Pearson value closer to 0 denotes weak correlation
whereas value closer to 1 and −1 implies strong positive

TABLE III
EFFECT OF PEARSON COEFFICIENT THRESHOLD (CORt) ON ACCURACY

(ACC) AND #FEATURES (#FEAT).

Acc(%) / #Feat
CORt ReqP HWC 2-Opc

0.5 93.69 / 533 60.58 / 194 86.32 / 39
0.6 94.00 / 562 60.79 / 207 90.05 / 55
0.7 93.99 / 575 60.82 / 212 94.82 / 72
0.8 94.74 / 602 60.80 / 224 95.50 / 104
0.9 94.86 / 626 60.79 / 226 95.99 / 172
1.0 94.89 / 668 60.85 / 245 96.28 / 317

Note: ReqP=Requested Permissions set, HWC=Hardware Component set, 2-Opc=2-
Gram opcode sequence

TABLE IV
TERMINOLOGY USED IN FEATURE ENGINEERING.

Term Description
CORt Threshold for eliminating the correlated values.
Acc It represents the accuracy of a detection model.
AccR Highest accuracy given by the RFECV [24].
FeatR Optimal #features used by RFECV to achieve accuracy AccR.

RFEt
It is a penalty over the highest accuracy AccR while selecting
less #feature in place of optimal #feature FeatR.

FeatC Chosen #Feature with penalty RFEt over AccR.
AccC Accuracy achieved while taking only FeatC features.
Pre Denotes the precision at which detection model can operate.
Rec Denotes the malware detection rate (recall) of a detection model.

and negative correlations, respectively. In both the strong
correlations (i.e. positive and negative), consideration of only
one feature can reduce the feature set size while retaining the
effectiveness of the model.

By this analogy, we apply different Pearson correlation
values as a threshold in both the directions (i.e., negative and
positive) to filter out highly correlated features. The effect
of correlation value (referred to as CORt

1) for different
threshold (0.5 to 1.0) against the accuracy2 of the detection
model has been shown in Table III. The CORt value 1.0
represents the original features without any reduction process.
The results shown in Table III are obtained by evaluating a
RandomForest model on the training set (see §VII) with 10-
fold cross-validation. We use a threshold of 0.8 for requested
permissions and hardware components while 0.9 for 2-Gram
opcode (highlighted in Table III) as it results in the correct
tradeoff between accuracy and number of features (significant
reduction in feature set size with minimum loss in accuracy).
Note that, we use similar methods (using training set) for the
remaining stages of feature engineering.
Optimal Feature Identification: This process utilizes RFECV
(recursive feature elimination with cross validation) [24] to
identify the optimal feature set. RFECV uses a feature ranking
method and selects the best features that contributes signifi-
cantly in solving the desired problem. We provide the classifier
C as RandomForest, ranking function F as accuracy and the
number of features N (set to 1) as input to RFECV for feature
elimination. As a result, RFECV provides a grid of score and
the set of optimal features that gives highest accuracy (see
Fig. 3). Corresponding to requested permissions, hardware

1Summary of notations in Table IV used in the remaining sections.
2Accuracy represents the number of samples (in percentage) correctly classified.

0 100 200 300 400 500 600
Number of features selected

0.825

0.850

0.875

0.900

0.925

0.950
RF

EC
V

Sc
or

e
(A

cc
ur

ac
y)

Fig. 3. Optimal #features Vs accuracy graphs for requested permissions.

components and 2-Gram opcode sequence, the optimal number
of features selected with highest accuracy by the RFECV is
371, 185 and 169, respectively, which are still a lot of features.
However, if we carefully observe Fig. 3, we find that with
a significantly less number of features result in an accuracy
very close to the maximum achievable accuracy. With this
observation, we define a threshold RFEt, which is a penalty
in choosing less number of features in terms of accuracy.

For example, let the highest accuracy given by RFECV
is AccR with optimal number of features FeatR. However,
we observe FeatR is still large and can be further reduced
finding a sweet spots without significantly compromising on
accuracy. Let the chosen accuracy from RFECV grid score be
denoted by AccC and the corresponding number of features
as FeatC . Then the relation between the threshold RFEt,
highest accuracy AccR and the chosen accuracy AccC is
shown in (1).

AccR −AccC ≤ RFEt and FeatC < FeatR (1)

The effect of the RFEt with varying values from 0.0
to 0.5 is shown in Table V where 0.0 denotes the RFECV
score with highest accuracy and the threshold is the difference
between AccR and AccC in percentage. As shown in Table
V, the changes in threshold RFEt drastically reduces the
feature set size while maintaining acceptable accuracy score.
In this step, we have selected 0.5 as the RFEt value where
a drastic reduction in the feature set size can be observed.
The remaining relevant features contributes effectively towards
solving the desired problem. However, we do not know the
features involved to achieve the same results except the count
of those features. To extract the required features, we have
used Recursive Feature Elimination (RFE) [25] that takes a
classifier and the number of features we want to select (as
information retrieved using RFECV and threshold RFEt)
as input to obtain the list of features without impacting the
accuracy.

C. Feature Reduction from Combined Feature Set.

In §V-B, we have performed category-wise feature reduction
where binary features from two categories (requested permis-
sions and hardware components) along with the frequency of
2-Gram opcode sequence are involved. However, the original
feature set contains three types of features viz. binary features,
2-Gram opcode sequence and the numeric features. This sec-
tion combines all features and performs a feature reduction in
the combined feature set. This process includes two steps — (i)

TABLE V
EFFECT OF RFEt THRESHOLD ON ACCURACY (ACC) AND #FEATURES.

Acc(%) / #Features
RFEt ReqP HWC 2-Opc

0.0 94.77 / 371 60.79 / 185 96.01 / 169
0.1 94.76 / 86 60.75 / 17 95.92 / 69
0.2 94.68 / 60 60.72 / 13 95.90 / 62
0.3 94.57 / 52 60.65 / 13 95.76 / 48
0.4 94.47 / 41 60.62 / 13 95.76 / 37
0.5 94.34 / 40 60.60 / 12 95.64 / 30

Note: ReqP=Requested Permissions set, HWC=Hardware Component set, 2-Opc=2-
Gram opcode sequence

TABLE VI
EFFECT OF COMBINING DIFFERENT FEATURE SET.

Combination #Features Acc (%) Pre (%) Rec (%)
Num+HC 18 86.45 86.55 85.46
Num+OP 36 96.90 96.93 96.90
HC+OP 42 96.07 96.19 96.07
Num+RP 46 96.45 96.46 96.24
Num+HC+OP 48 96.87 96.89 96.87
RP+HC 52 95.16 95.08 94.96
Num+RP+HC 58 96.57 96.59 96.37
RP+OP 70 98.15 98.15 98.15
Num+RP+OP 76 98.14 98.15 98.14
RP+HC+OP 82 98.12 98.12 98.12
Num+RP+HC+OP 88 98.12 98.12 98.12
Note: RP=Reduced Requested Permissions set, HC=Reduced Hardware Component
set, Num=Numeric Feature (features for that we have taken frequency of their usage
except n-Gram features), OP=Reduced 2-Gram Opcode Sequence, Acc=Accuracy,
Pre=Precision, Rec=Recall

combining the features and selecting the best combination of
feature set and (ii) feature reduction on the selected combined
feature set.
Combining Feature Set: In §V-A, we have selected obfusca-
tion resilient features divided in four sets—one set correspond-
ing to numerical features, one related to the opcode sequence
and the remaining two sets related to the binary features. Using
four different feature sets, we combine all the features in differ-
ent combinations and select the best combination among them.
In total, there are 11 unique combinations, which are possible
for four sets. We have trained a RandomForest classifier on
these combinations and the result for them is summarized
in Table VI where performance of all the combinations are
enlisted in three evaluation metrices—(i) accuracy (Acc), (ii)
precision1 (Pre), and (iii) recall2 (Rec). As shown in Table
VI, the hardware components feature set do not contribute
towards accuracy in a significant manner; neither individually
nor by combining with other features. If we compare detection
results with two different combinations with high accuracy—
(i) numeric feature combined with requested permissions &
opcode sequence (76 features), and (ii) combining requested
permission with opcode sequence only (70 features), the
results indicates that the performance of both the sets are
almost same but differs in the number of features. One could
simply select the feature set which contains less features in
this case combination (ii). However, in place of combination
(ii), we select combination (i), because the contribution of

1Precision denotes the fraction of malware correctly detected.
2Recall represents the malware detection rate for a model.

TABLE VII
ELIMINATION OF FEATURE FROM COMBINED FEATURE SET.

Feature Set #Feature Acc (%) Pre (%) Rec (%)
Num+RP+OP 76 98.14 98.15 98.14
Num+RP+OP-I 75 98.18 98.18 98.18
Num+RP+OP-C 75 98.08 98.08 98.08
Num+RP+OP-I-C 74 98.13 98.13 98.13
Note: RP=Reduced Requested Permissions set, Num=Numeric Feature,
OP=Reduced 2-Gram Opcode Sequence, I=Intents Filter, C=Custom Permis-
sions, Acc=Accuracy, Pre=Precision, Rec=Recall

numeric feature set is significant when it is combined with
the requested permissions (see Table VI). Therefore, we select
combination of Numeric feature, requested permissions and
opcode sequence for the next phase of reduction. Note that,
here selection of combination is based on the analyst point of
view as both combination perform almost equally.
Feature Reduction in Selected Feature Set: In this step, we
perform final optimization on the feature set of the selected
combination. The aim of this optimization is to eliminate some
features that increases the processing time and requires extra
support for extraction. In the selected feature set, such features
are Intent Filter (referred to as I) and Custom Permissions
(referred to as C). We observe the effect on accuracy, precision,
and recall (see Table VII) when eliminating either one or both
features from the feature set. From Table VII, we find that the
elimination of Custom Permissions (C) significantly impacts
the accuracy of malware detection (recall). On the other hand,
the elimination of the Intent Filter does not affect the detection
rate of the model. After exclusion of Intent Filter, the resulted
feature set (of size 75) is used to learn the final detection
model.

VI. DEEPDETECT: BUILDING THE SYSTEM

So far, we have extracted the features from the dataset
(see §IV) and selected the most relevant features (see §V) to
design an on-device malware detector. In this section, we first
provide an overview of DeepDetect followed by the off-device
training process of the machine learning model and porting it
for mobile devices to detect malware on real devices.

A. Overview

In DeepDetect, we train a machine learning model on a
server machine. Firstly, we extract the static features from
the Manifest file and Dex code (see §IV). These extracted
features are then passed to the feature engineering process. In
feature engineering (see §V), we first eliminate the effect of
obfuscation with the help of transformation and then reduce
the size of feature dimension by applying a multilevel feature
selection/reduction process. At last, a detection model is
learned and embedded into an App for on-device detection. We
describe learning the malware detection model and detecting
malware on a real device in §VI-B and §VI-C, respectively.

B. Learning Model

The final feature set obtained from §V-C contains
obfuscation-resilient features, and obfuscation techniques used

Algorithm 1: Feature Vector Generation
Input : Listpkgs, Modelperm, Model2−opc

Output : V ectorfeat

1 V ectorfeat ← ϕ // Vector of features
2 Nact ← ActivitiesCount(PM,Listpkgs)
3 Nserv ← ServicesCount(PM,Listpkgs)
4 Nrecv ← ReceversCount(PM,Listpkgs)
5 Nprov ← ProvidersCount(PM,Listpkgs)
6 Listperm ← Permissions(PM,Listpkgs)
7 Freq2−opc ← GetTwoGramOpcodeFreq(Listpkgs)

8 NCustPerm ← CustPermCount(Listperm)

9 append(V ectorfeat, (Nact, Nserv, Nrecv, Nprov, NCustPerm))

10 foreach perm in Modelperm do
11 if perm is in Listperm then
12 bit← 1
13 else
14 bit← 0
15 append(V ectorfeat, bit)

16 foreach twoOP in Model2−opc do
17 if twoOP is in Freq2−opc then
18 count← get(Freq2−opc, twoOP)
19 else
20 count← 0
21 return V ectorfeat

by the malware writer cannot affect the prediction ability
of a model built upon them. As our primary goal is to
detect malware on-device, the classifier’s choice for the final
detection model should be lightweight. Keeping this in mind,
we use TensorFlow [26] library (developed by Google) to
build the final model. Google also provides a light version of
TensorFlow, i.e., TensorFlow Lite, which is designed
for mobile devices. We use TensorForest [27] to learn final
detection model. We use training set for learning the final
model and serialize the model into a file. The saved model
occupies 869 KB of space in the system. The saved model
needs to be converted into the .tflite format for direct
use with TensorFlow Lite. The TensorFlow Lite
converter has been used to convert the learned output so
that we can use it in an Android device to detect malware
seamlessly. At last, we obtain a final TensorFlow Lite
model of size ∼150 KB only. The final detection model is
provided to the DeepDetect along with the features used in
training to detect malware on-device.

C. On-device Detection

To detect malware on a real device, we require feature vector
from an APK, so that we can pass it to the already trained
model (see §VI-B) for the detection result.

The procedure for extracting the feature from a list of
App(s) (single App as well as multiple Apps) and em-
bedding them into the feature vector is shown in Algo-
rithm 1 by utilizing the Package Manager (referred to as
PM), customised opcode information module (referred to
as GetTwoGramOpcodeFreq designed using the process
discussed in §IV-B). Algorithm 1 takes the list of the Apps
in terms of their package names (referred to as Listpkgs),
list of requested permission (referred to as Modelperm) and
the list of selected 2-gram opcode sequence (referred to as
Model2−opc) as input. In Algorithm 1, features are extracted
from Apps by querying PM and custom opcode information

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Flase Positive Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 P
os

iti
ve

 R
at

e
1-Gram, AUC=0.987, #Feat=18
2-Gram, AUC=0.992, #Feat=30
3-Gram, AUC=0.995, #Feat=44
UP, AUC=0.973, #Feat=59
SA, AUC=0.944, #Feat=42
RA, AUC=0.929, #Feat=959
USR, AUC=0.993, #Feat=1060

Fig. 4. AUC-ROC curve for the model build on various feature extracted from
Dex file. UP: Used Permission, SA: Sensitive APIs, RA: Restricted APIs and
USR: Combined features (UP, SA and RA). #Feat: Number of Features.

extractor (line 2 to 7), number of custom permissions are
filtered (line 8), and all features are encoded into the feature
vector (line 9 to 20). Note that, requested permissions that
do not start with “android.permission” are called custom
permissions. The feature vector obtained using Algorithm 1 is
then passed to the detection model (see §VI-B). The detection
model analyses the extracted features and provides the result
in terms of a binary answer where a true implies malware
and a false implies benign. If the targeted App is flagged
as malware, the same is notified to the user. DeepDetect also
provides an option to uninstall the App from the device.

VII. EVALUATION

To evaluate the effectiveness of DeepDetect in terms of
malware detection accuracy and runtime performance, we have
separated 20% samples (referred to as evaluation set) from
the dataset described in §III and assumed them to be unseen
Apps. In all the experiments, we train every model using
the remaining 80% samples (referred to as training set) of
the dataset, which has samples till April 2018. Note: only
runtime performance experiments (§VII-E) are performed on
real smartphones to measure execution time and device energy
consumption. Rest of the experiments are performed on a
server machine. This section answers the following research
question to evaluate the proposed detection system effectively:
(i) Robustness against known, unseen, and new samples
(§VII-B): Does DeepDetect maintains its prediction capability
against known, unseen, and new samples?
(ii) Impact of obfuscation (§VII-C): What is the impact of
obfuscation on the malware detection rate?
(iii) Effect of experimental biases (§VII-D): How DeepDetect
performs after eliminating potential experimental biases?
(iv) Run-time overhead (§VII-E): Does 2-Gram opcode se-
quence features consume less device energy as compared to
other features from Dex code?

A. Performance Comparison of Features

In this experiment, we extract seven categories of features
from the Dex code—(i) 1-Gram sequence of opcode, (ii) 2-
Gram, (iii) 3-Gram, (iv) Used Permissions (UP), (v) Suspicious
APIs (SA), (vi) Restricted APIs (RA), and (vii) combined
features from UP, SA, RA (referred to as USR). To compare
performance of these feature sets, we train a RandomForest

TABLE VIII
EVALUATION OF FINAL MODEL WITH KNOWN, UNSEEN, NEW AND

PEGASUS SAMPLES.

Dataset Pre (%) Rec (%) F1 (%) FPR (%)
Training Set 99.98 99.95 99.95 0.01
Evaluation Set 98.05 97.50 97.69 1.51
AndroZoo-2019 97.70 97.12 97.69 1.73
Pegasus (5 Sample) – 100 – –

model on the training set and evaluated against the evaluation
set. Fig. 4 shows the Receiver Operating Characteristic (ROC)
curves obtained from the evaluation results of the trained
model along with the value of AUC (Area Under the Curve)
and the number of features (#Feat) in a feature set. ROC
curve represents the relationship between the true positive rate
(TPR), and false-positive rate (FPR). The AUC measures the
ability of a classifier (model) to distinguish between classes
and is generally used as a summary of the ROC curve.
The higher the AUC, the better the model’s performance at
distinguishing between the positive and negative classes. As
shown in Fig. 4, high AUC scores are observed for 2-Gram,
3-Gram, and USR (more than 99%). However, the number of
features in USR is relatively large as compared to 2-Gram
and 3-Gram. Also, the device energy consumption and time
required to extract features are also large (see §VII-E). Hence,
USR is not a good choice of features to design an on-device
malware detector. Therefore, from the remaining two feature
sets, any one can be used for on-device malware detection.
However, we select 2-Gram because it consumes ∼1.4X less
device energy as compared to 3-Gram. Note: The main aim
of this experiment (and also experiment in §VII-E) is to select
best features that can be efficiently extracted from the Dex
code and combined with features extracted from the Manifest
file.

B. Performance Against Known, Unseen, and New Samples

To show the effectiveness of DeepDetect in identifying
unseen samples, we use the evaluation set. We have collected
10760 new samples from AndroZoo [13] (referred to as
AndroZoo-2019) where the Dex file date is of the year 2019.
In AndroZoo-2019, 5380 samples are malware, and rest of
them are benign. Apart from the AndroZoo-2019, we have
collected five samples of Pegasus malware from the CloudSek
organization. For the known samples, we have used the same
samples used for training the final model. Table VIII summa-
rizes the evaluation results for the known (training set), unseen
(evaluation set), new (AndroZoo-2019), and Pegasus malware
samples with four evaluation metrices–(i) F1-score1 (referred
to as F1), (ii) precision, (iii) recall, and (iv) false-positive rate
(referred to as FPR). When the model is evaluated against the
known samples, the model correctly classifies 99.90% malware
and generates 0.01% of false alarms. For the unseen samples,
our detection model correctly detects 97.50% malware with a
false positive rate of 1.51%. In the presence of new samples,
our model detects 97.12% of new malware while generating

1F1-score represents the weighted average of recall and precision.

TABLE IX
OBFUSCATORS IMPLEMENTED IN OBFUSCAPK [28] TOOL.

Category Obfuscators
trivial Randomize Manifest file, Rebuild, New Alignment, Re-signing
renaming Renaming the Class, Fields and Method
encryption Encryption of Library, resource strings, Assets, and constant strings
reflection Invoke user defined and framework APIs using the reflection APIs

code
Junk code insertion, instruction re-ordering, calls redirection,
removing debug data, insertion of goto instruction, adding new
method by exploiting method overloading.

1.73% of false alarms. Interestingly, our model is able to
detect all the Pegasus malware samples. Maybe this is possible
because Pegasus samples are pre-2019. In comparison to the
state-of-the-art on-device detector (Drebin [4]), DeepDetect
detects ∼3.5% more malware (unseen malware) using only
75 features, whereas Drebin uses 0.5 million features with a
malware detection rate of ∼94%. If we compare DeepDetect
with the recent on-device malware detector IntelliAV [5],
DeepDetect outperforms in both type of samples, i.e., known
and unseen/new samples. DeepDetect’s malware detection rate
in case of known samples is 0.15% more as compare to
IntelliAV. In the presence of unseen/new samples, the detection
rate of IntelliAV is still less than the best state-of-the-art
detector Drebin. Further, we have analysed the importance of
features in differentiating a malware from the benign. In our
analysis we found that GET ACCOUNT requested permission
and SB (Bit-wise operation followed by branch instruction)
opcode sequence play a major role. For more details about
the list of features, their importance, more experiment (with
other classifiers and performance metrics) along with more
details about the used datasets, please refer to the weblink:
https://skmtr1.github.io/DeepDetect.html.

C. Evaluation Against Obfuscated Malware

In order to evaluate our model against the obfuscated
samples, we require an obfuscated malware dataset. One such
dataset is the PRAGuard [6] which was available when we
performed the experiments. The PRAGuard dataset contains
10479 samples obtained by obfuscating the MalGenome [29]
and the Contagio Minidump [30] datasets. As this dataset
is old and contains samples till March 2013, there may be
overlapping samples with our training dataset collected in
April 2018. Therefore, to avoid inclusion of known obfuscated
malware samples in the training data, we created a new ob-
fuscated malware dataset by obfuscating the malware samples
downloaded from the AndroZoo for the year 2019 (5380
samples). To obfuscate malware samples, we have utilized the
Obfuscapk [28] tool.

Obfuscapk is an open-source black-box obfuscation tool
for Android App. Obfuscation techniques of Obfuscapk are
classified into five categories, which are shown in Table IX.
Out of the 5380 malware samples, we have successfully
obtained 4993 obfuscated samples in six categories. Five
categories are the same as provided by the Obfuscapk, whereas
the sixth category comprises a mix of two or more obfuscation
techniques (referred to as mix). The number of obfuscated

TABLE X
EVALUATION OF FINAL MODEL AGAINST OBFUSCATED MALWARE.

Category #Samples #Sample Detected Detection rate
Original Obfuscated drop (%)

trivial 160 156 156 0
renaming 570 554 554 0
encryption 1135 1102 1096 0.53
reflection 252 241 239 0.79
code 2429 2358 2298 2.47
mix 447 438 429 2.01

Overall 4993 4849 4772 1.55

Q1
'1

7

Q2
'1

7

Q3
'1

7

Q4
'1

7

Q1
'1

8

Q2
'1

8

Q3
'1

8

Q4
'1

8

Q1
'1

9

Q2
'1

9

Q3
'1

9

Q4
'1

9

Testing Samples (Quarters)

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Re
ca

ll
(%

)

Recall
FPR 0.2

0.4

0.6

0.8

1.0

1.2

1.4

FP
R

(%
)

Fig. 5. Detection results after removing experimental bias (Space and Time).

samples in each category and their evaluation with our detec-
tion model are shown in Table X. We have also evaluated
the same non-obfuscated samples in each category against
our detection model. The number of samples detected in non-
obfuscated and obfuscated samples are shown in the Original
and Obfuscated columns of Table X, respectively. Note: We
have trained our model on the training set only, which contains
samples till April 2018.

The results shown in Table X indicate that the detection
rate of DeepDetect does not go down for trivial and renaming
obfuscation techniques. The main reason behind this is the
feature encoding, where we take count of user-defined similar
entities like activities. However, we observe some drop in
detection rate for other categories. We see a maximum drop in
detection rate (up to 2.47%) for code obfuscation techniques.
In general, our detection model can detect 95.57% of malware,
whereas, for the same non-obfuscated malware sample, it
achieves a 97.12% of detection rate. Therefore, the overall
drop in malware detection rate in the presence of obfuscated
samples is 1.55%.

D. Evaluation After Elimination of Experimental Biases
Across Space and Time

There are many Android malware detectors ([4], [9]–[11],
[31]) available that publishes high detection results up to 99%.
However, there are two potential experimental biases in the
experiment (shown by Tesseract [32])–(i) Spatial bias and
(ii) Temporal bias. Spatial bias occurs due to the incorrect
distribution of malware and benign samples in the dataset,
whereas temporal bias is caused by the incorrect time splits
of training and testing samples. DeepDetect evaluation is free
from the temporal bias when evaluated against AndroZoo-
2019 and Obfuscated samples, but spatial bias is still present.

https://skmtr1.github.io/DeepDetect.html

TABLE XI
ANDROID APPS USED FOR RUN-TIME PERFORMANCE AND DEVICE

ENERGY CONSUMPTION.

App Name #Dex Files Size (MBs)
APK Dex Files

Slack 3 61 24.6
UberCab 15 50 116.6
Twitter 5 19 33.6
AarogyaSetu 1 4.3 5
Facebook 11 55 81.2

Therefore, to evaluate appropriately against potential biases,
we have downloaded 87,634 (with ∼10% malware) unique
samples from AndroZoo spanning for four years (2016 to
2019). We train the DeepDetect model on the sample from year
2016 and test it quarter-wise against the years 2017, 2018, and
2019. Samples in each quarter contain ∼10% malware, and the
remaining are benign. The evaluation result (see Fig. 5) shows
that DeepDetect can detect ∼97% of malware while generat-
ing ∼1.4% false alarms when evaluated after elimination of
experimental biases across space and time. It indicates that
our model is also robust against experimental biases. However,
when Tesseract evaluated Drebin and MaMaDroid [31] against
potential biases, the performance decreased up to 50%.

E. Runtime Efficiency

To measure the runtime efficiency (execution time and
energy consumption), we have used five Android Apps—
Slack, UberCab, Twitter, AarogyaSetu, and Facebook. The
selection of these Apps is based on their size and the number of
Dex files used (SingleDex or MultiDex file App, see Table XI).
We analyse these Apps on three different mobile devices—
OnePlus 7Pro, Xiaomi 10T, and Redmi Note 7Pro. We execute
each App ten times on each device and log the time taken to
extract different features used in §VII-A and the device energy
consumed by these methods (see Fig. 6). To obtain the battery
utilization, we have used dumpsys utility through ADB shell
and analyzed using the battery-historian tool. Fig.
6(a) shows the average time spend to extract features from an
individual App executed on OnePlus 7Pro, which is obtained
by taking the average of all the execution time (ten runs),
whereas Fig. 6(b) denotes the average time taken to analyse
all Apps on different devices. The energy consumption result
(see Fig. 6(c)) shows battery utilization in analyzing these
Apps ten times. For the OnePlus 7Pro device (Fig. 6(a)), the
result shows that the 2-Gram feature set takes ∼5.32 seconds,
which is 2.23X and 2.53X faster than the RA and USR feature
set, respectively. The feature extraction time depends on the
Dex file size and not on the size of APK because an APK
also contains other resources and files like images, native
code, etc. With respect to device battery consumption (see
Fig. 6(c)), the 2-Gram approach also outperforms all the other
methods that do not use opcode information and improves the
device energy consumption by more than 2.1X (consumes only
0.45% of total device battery). However, the average execution
time and energy consumption of all the devices (averaging
the estimation of all the devices) for the 2-Gram feature set

Slack UberCab Twitter AarogyaSetu Facebook
Application Used

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(in
 S

ec
on

ds
)

1-Gram
2-Gram
3-Gram
UP

SA
RA
USR

(a) Execution time of an App with different techniques on OnePlus 7Pro.

OnePlus 7Pro Xiaomi 10T Redmi Note 7Pro Average
Devices Used

0

5

10

15

20

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(in
 S

ec
on

ds
)

1-Gram
2-Gram
3-Gram

UP
SA

RA
USR

(b) Average execution time of different techniques.

OnePlus 7Pro Xiaomi 10T Redmi Note 7Pro Average
Devices Used

0.0

0.5

1.0

1.5

2.0

2.5

De
vi

ce
 b

at
te

ry
co

ns
um

pt
io

n(
%

)

1-Gram
2-Gram
3-Gram

UP
SA

RA
USR

(c) Device energy estimation.

Fig. 6. Estimation of feature extraction time and device battery consumption
of (i) 1-Gram, (ii) 2-Gram, (iii) 3-Gram, (iv) Used Permissions (UP), (v)
Suspicious APIs (SA), (vi) Restricted APIs (RA), and (vii) USR (Combined
UP, SA and RA).

are 6.06 seconds and 0.7%, respectively. For the analysis of
individual App execution time on other mobile devices, please
refer to the weblink: https://skmtr1.github.io/DeepDetect.html.

F. Discussion and Limitations

Even though DeepDetect provides a strong defense system
to detect unseen malware on a real device with a malware
detection rate of more than 97.5%, it also has the following
limitation:
(i) Currently, it is designed to work as a third-party App
for detecting Android malware on an actual device. Hence
it cannot stop an App from being installed on a device. To
overcome this limitation, a device vendor or AOSP project
can include it in their core system, and the installation of an
App should start after getting a clean chit from DeepDetect.
(ii) It cannot detect packed malware where entire code is
encrypted except for the unpacking logic.
(iii) As DeepDetect uses information from Manifest file and
Dex code (opcode) to detect malware, it cannot detect malware
that include malicious behaviour exclusively in the native code.
(iv) Static analysis based detection systems fail to detect mal-
ware that downloads malicious code from the external source
and execute it at runtime. This is also true with DeepDetect.
However, if a malware dynamically loads a code already

https://skmtr1.github.io/DeepDetect.html

present inside the APK and is not encrypted, DeepDetect
can detect such malware efficiently as we extract opcode
information from all the Dex file present inside an APK.
Evaluation summary: In a nutshell, DeepDetect can effec-
tively detect malware and maintain its detection capability
against the obfuscated samples with significantly low process-
ing time when deployed on the device.

VIII. RELATED WORK

With the rapid growth in Android malware, various defense
systems have evolved to fight malware. Existing defense mech-
anisms [4], [5], [8], [12], [31], [33]–[41] use static, dynamic,
or a combination of both analysis techniques to analyze Apps
[42]. These methods can be deployed either on market place in
an offline manner or on a real device. Since dynamic analysis
is costly and requires significantly higher processing power,
deploying the same techniques on a real device is impractical.
For example, Malton [39] is an on-device dynamic malware
analysis system that monitors an App on each layer of Android
OS. For Malton, the maximum slowdown for different Java
operations is ∼36X while observing taint propagation. This
solution is good for the analysis environment but not suitable
for the end-users devices. Therefore, we restrict our discussion
to the static analysis based on-device malware detection.

With the consideration of low-end mobile devices, some
on-device malware detectors [4], [5], [7], [8], [37] have been
proposed and works only on static features. Drebin [4] extracts
features from the Dex code and Manifest file with a detection
rate of 94%. IntelliAV [5] uses framework level API along
with the features extracted from the Manifest file. IntelliAV
shows a high prediction rate of more than 99% in the case
of known samples (training sample), while the detection rate
falls to ∼72% for unseen samples. However, the average
analysis times on real devices for Drebin and IntelliAV are
10 seconds and 3.5 seconds, respectively. Directly comparing
the execution time of DeepDetect with Drebin and IntelliAV
is not a good approach because the average App size has
quintupled [43] every year. Talos [7] uses only requested
permissions and trains a deep learning model while achieving
an accuracy of more than 93% and takes negligible time to
analyze an App (in milliseconds). DeepDetect analysis time is
∼5.32 seconds, which is more than the Talos, but DeepDetect’s
malware detection rate is more than 97% for unseen malware,
which is significantly high compared to Talos, Drebin, and
IntelliAV.

Mercaldo et al. [37] have also proposed an on-device
malware detector using 1-Gram opcode sequence only, where
they utilize six opcodes (details can be seen in [37]). Our
experiment shows (see §VII-E) that 1-Gram opcode’s device
energy consumption and average execution time for feature
extraction are relatively less than the 2-Gram opcode sequence.
However, the malware detection accuracy is good for the
2-Gram method compared to that of 1-Gram. Furthermore,
utilizing only single-source information to design a malware
detector is not a good approach where the single source

is a Dex file. Therefore in our solution, we also include
information from the Manifest file in the feature set.

Similarly, Yuan et al. [8] use API call information, permis-
sions and intent filters as the feature set. As shown in Fig. 4,
API-based information is not good to detect malware as com-
pared to Opcode because the API calls are the most susceptible
to obfuscation attacks. However, this work is benefited from
the on-device training to train a model incrementally to learn
more malicious behavior. Even though on-device training is a
good approach, an end-user device does not see a variety of
samples in the live environment, which is a core requirement
to learn different behavior.

Some other on-device malware detectors [38], [44] are
also proposed using dynamic analysis or a mix of static and
dynamic techniques (also known as hybrid analysis). Sinha et
al. [44] insert instrumentation information into an App with
the help of Dynalog [45] and then execute the modified App
on an actual device. This method requires modification in an
App due which the integrity of the App is compromised which
can be exploited by malware to bypass dynamic analysis.

Similarly, BRIDEMAID [38] uses hybrid techniques to de-
tect malware on-device. For the static analysis, BRIDEMAID
uses the n-Gram opcode sequence as a feature set (similar to
our approach), whereas they rely on a kernel-level modification
(kernel module) for the collection of dynamic information
(adapting the MADAM [46] solution). As the collection of
dynamic information requires modification in the Android
kernel, BRIDEMAID requires rooting of the device or support
from the device vendor/AOSP.

IX. CONCLUSION

As Android’s official market place (Play Store) itself is not
free from malware, we have proposed DeepDetect: an on-
device malware detector that is capable of detecting malware
on a real device. In DeepDetect, we have designed a feature
engineering framework with the aim of reducing the feature
set size by finding the right tradeoff of feature set size
and detection accuracy. We have shown the effectiveness of
the feature engineering framework by reducing the feature
set size from 712K to 75 features that are free from the
impact of code obfuscation. We have performed experiments
to demonstrate the effectiveness of DeepDetect against the
known, unseen, and obfuscated malware samples, and shown
that DeepDetect can effectively detect more than 97% new
malware with an FPR of 1.73%. For the obfuscated malware,
DeepDetect achieves a malware detection rate of 95.57%.
However, the malware detection rate of DeepDetect for known
malware is 99.90%, with an FPR of 0.01%. Additionally,
DeepDetect performance is not impacted significantly when
evaluated without the spatial and temporal biases, and achieves
malware detection rate of ∼97%. Finally, we have shown that
when DeepDetect deployed on a real device, it can analyze an
application in ∼5.32 seconds on an average, which is 2.23X
faster than API based malware detector, while consuming
0.45% (for 50 Apps) of total device battery.

REFERENCES

[1] (2020) IDC: Smartphone Market Share-OS. [Online]. Available:
https://www.idc.com/promo/smartphone-market-share/os

[2] (2020) G DATA Mobile Malware Report 2019: new high for malicious
android apps. [Online]. Available: https://www.gdatasoftware.com/news/
g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps

[3] A. Orlowski. (2019) Google play store spews malware onto 9 million
’Droids. [Online]. Available: https://www.theregister.co.uk/2019/01/09/
google play store malware onto 9m droids/

[4] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of android malware in your
pocket,” in Symposium on Network and Distributed System Security
(NDSS), 02 2014.

[5] M. Ahmadi, A. Sotgiu, and G. Giacinto, “IntelliAV: toward the feasibility
of building intelligent anti-malware on android devices,” in Machine
Learning and Knowledge Extraction. Springer International Publishing,
2017, pp. 137–154.

[6] Maiorca et al., “Stealth attacks: An extended insight into the obfuscation
effects on android malware,” Computers & Security, vol. 51, pp. 16 –
31, 2015.

[7] H. C. Takawale and A. Thakur, “Talos App: on-device machine learning
using tensorflow to detect android malware,” in 2018 Fifth International
Conference on Internet of Things: Systems, Management and Security,
2018, pp. 250–255.

[8] W. Yuan, Y. Jiang, H. Li, and M. Cai, “A lightweight on-device detection
method for android malware,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, pp. 1–12, 2019.

[9] J. Garcia, M. Hammad, and S. Malek, “Lightweight, obfuscation-
resilient detection and family identification of android malware,” ACM
Trans. Softw. Eng. Methodol., vol. 26, no. 3, Jan. 2018.

[10] S. Jaiswal, “Feature engineering & analysis towards temporally robust
detection of android malware,” Master’s thesis, Indian Institute of
Technology, Kanpur, 2019.

[11] G. Suarez-Tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto, and
L. Cavallaro, “DroidSieve: fast and accurate classification of obfuscated
android malware,” in Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy, 2017, p. 309–320.

[12] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-Level
Features for Robust Malware Detection in Android,” in Security and
Privacy in Communication Networks. Springer International Publishing,
2013, pp. 86–103.

[13] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo:
collecting millions of android apps for the research community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, 2016, p. 468–471.

[14] S. Kumar and S. K. Shukla, The State of Android Security. Springer
Singapore, 2020, pp. 17–22.

[15] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, “Deep ground truth analysis
of current android malware,” in Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer International Publishing, 2017,
pp. 252–276.

[16] VirusShare. (2018). [Online]. Available: https://virusshare.com/
[17] VirusTotal. (2018). [Online]. Available: https://www.virustotal.com/
[18] K. Tam, A. Feizollah, N. B. Anuar, R. Salleh, and L. Cavallaro, “The

evolution of android malware and android analysis techniques,” ACM
Comput. Surv., vol. 49, no. 4, Jan. 2017.

[19] P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. D. Pietra, and J. C. Lai,
“Class-based n-gram models of natural language,” Comput. Linguist.,
vol. 18, no. 4, p. 467–479, Dec. 1992.

[20] H. DONG, N. qiang HE, G. HU, Q. LI, and M. ZHANG, “Malware
detection method of android application based on simplification instruc-
tions,” The Journal of China Universities of Posts and Telecommunica-
tions, vol. 21, pp. 94–100, 2014.

[21] T. Chen, Q. Mao, Y. Yang, M. Lv, and J. Zhu, “TinyDroid: a lightweight
and efficient model for android malware detection and classification,”
Mobile Information Systems, vol. 2018, pp. 1–9, 2018.

[22] Desnos et al. (2019) Welcome to Androguard’s documentation!
- androguard 3.3.5 documentation. [Online]. Available: https://
androguard.readthedocs.io/en/latest/

[23] W. Kirch, Ed., Pearson’s Correlation Coefficient. Springer Netherlands,
2008, pp. 1090–1091.

[24] (2019) SKLEARN: RFECV. [Online]. Available: https://scikit-learn.
org/stable/modules/generated/sklearn.feature selection.RFECV.html

[25] (2019) SKLEARN: RFE. [Online]. Available: https://scikit-learn.org/
stable/modules/generated/sklearn.feature selection.RFE.html

[26] (2019) Tensorflow. [Online]. Available: https://www.tensorflow.org/
[27] T. Colthurst, G. Hendry, Z. Nado, and S. D., “TensorForest: scalable

random forests on tensorflow,” in Machine Learning Systems Workshop
at NIPS, 2016, pp. 1–9.

[28] S. Aonzo, G. C. Georgiu, L. Verderame, and A. Merlo, “Obfuscapk: An
open-source black-box obfuscation tool for android apps,” SoftwareX,
vol. 11, p. 100403, 2020.

[29] Y. Zhou and X. Jiang, “Android malware genome project,” 2012.
[Online]. Available: http://www.malgenomeproject.org/

[30] Contagio. (2019) Contagio mobile - mobile malware mini dump.
[Online]. Available: http://contagiominidump.blogspot.com/

[31] L. Onwuzurike, E. Mariconti, P. Andriotis, E. D. Cristofaro, G. Ross,
and G. Stringhini, “MaMaDroid: detecting android malware by building
markov chains of behavioral models (extended version),” ACM Trans.
Priv. Secur., vol. 22, no. 2, Apr. 2019.

[32] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“TESSERACT: eliminating experimental bias in malware classification
across space and time,” in 28th USENIX Security Symposium, 2019, p.
729–746.

[33] T. Chakraborty, F. Pierazzi, and V. S. Subrahmanian, “EC2: ensemble
clustering and classification for predicting android malware families,”
IEEE Transactions on Dependable and Secure Computing, vol. 17, no. 2,
pp. 262–277, 2020.

[34] H. Fereidooni, M. Conti, D. Yao, and A. Sperduti, “ANASTASIA:
android malware detection using static analysis of applications,” in 2016
8th IFIP International Conference on New Technologies, Mobility and
Security (NTMS), 2016, pp. 1–5.

[35] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant
permission identification for machine-learning-based android malware
detection,” IEEE Transactions on Industrial Informatics, vol. 14, no. 7,
pp. 3216–3225, 2018.

[36] X. Wang, J. Wang, and X. Zhu, “A static android malware detec-
tion based on actual used permissions combination and api calls,”
International Journal of Computer, Electrical, Automation, Control and
Information Engineering, vol. 10, no. 9, pp. 1652–1659, 2016.

[37] F. Mercaldo, C. A. Visaggio, G. Canfora, and A. Cimitile, “Mobile mal-
ware detection in the real world,” in 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion, 2016, pp. 744–746.

[38] F. Martinelli, F. Mercaldo, and A. Saracino, “BRIDEMAID: an hybrid
tool for accurate detection of android malware,” in Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications
Security, ser. ASIA CCS ’17, 2017, p. 899–901.

[39] L. Xue, Y. Zhou, T. Chen, X. Luo, and G. Gu, “Malton: Towards on-
device non-invasive mobile malware analysis for ART,” in 26th USENIX
Security Symposium, Aug. 2017, pp. 289–306.

[40] A. Fatima, S. Kumar, and M. K. Dutta, “Host-server-based malware
detection system for android platforms using machine learning,” in Ad-
vances in Computational Intelligence and Communication Technology.
Springer Singapore, 2021, pp. 195–205.

[41] S. Kumar, D. Mishra, B. Panda, and S. K. Shukla, “Stdneut: Neutralizing
sensor, telephony system and device state information on emulated
android environments,” in Cryptology and Network Security. Cham:
Springer International Publishing, 2020, pp. 85–106.

[42] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, “A taxonomy and quali-
tative comparison of program analysis techniques for security assessment
of android software,” IEEE Transactions on Software Engineering,
vol. 43, no. 6, pp. 492–530, 2017.

[43] (2017) Shrinking APKs, growing installs. How your app’s APK size
impacts install. — by Sam Tolomei — Google Play Apps & Games
— Medium. [Online]. Available: https://medium.com/googleplaydev/
shrinking-apks-growing-installs-5d3fcba23ce2

[44] A. Sinha, F. Di Troia, P. Heller, and M. Stamp, Emulation Versus
Instrumentation for Android Malware Detection. Springer International
Publishing, 2021, pp. 1–20.

[45] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Dynalog: an automated
dynamic analysis framework for characterizing android applications,” in
2016 International Conference On Cyber Security And Protection Of
Digital Services (Cyber Security), 2016, pp. 1–8.

[46] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM:
effective and efficient behavior-based android malware detection and
prevention,” IEEE Transactions on Dependable and Secure Computing,
vol. 15, no. 1, pp. 83–97, 2016.

https://www.idc.com/promo/smartphone-market-share/os
https://www.gdatasoftware.com/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps
https://www.gdatasoftware.com/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps
https://www.theregister.co.uk/2019/01/09/google_play_store_malware_ onto_9m_droids/
https://www.theregister.co.uk/2019/01/09/google_play_store_malware_ onto_9m_droids/
https://virusshare.com/
https://www.virustotal.com/
https://androguard.readthedocs.io/en/latest/
https://androguard.readthedocs.io/en/latest/
https://scikit-learn.org/stable/modules/generated/ sklearn.feature_selection.RFECV.html
https://scikit-learn.org/stable/modules/generated/ sklearn.feature_selection.RFECV.html
https://scikit-learn.org/stable/modules/generated/ sklearn.feature_selection.RFE.html
https://scikit-learn.org/stable/modules/generated/ sklearn.feature_selection.RFE.html
https://www.tensorflow.org/
http://www.malgenomeproject.org/
http://contagiominidump.blogspot.com/
https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2
https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2

	Introduction
	Background
	Android Application Package (APK)
	Permission System

	Dataset
	Feature Extraction
	Type of Features
	On-device Efficient Feature Extraction:

	Feature Engineering
	Feature Selection and Encoding
	Category-wise Feature Reduction
	Feature Reduction from Combined Feature Set.

	DeepDetect: Building the System
	Overview
	Learning Model
	On-device Detection

	Evaluation
	Performance Comparison of Features
	Performance Against Known, Unseen, and New Samples
	Evaluation Against Obfuscated Malware
	Evaluation After Elimination of Experimental Biases Across Space and Time
	Runtime Efficiency
	Discussion and Limitations

	Related Work
	Conclusion
	References

