
Avenger: Punishing the Cross-Core Last-Level
Cache Attacker and Not the Victim by Isolating the

Attacker
Yashika Verma

Dept. of Computer Science and Engineering
Indian Institute of Technology Kanpur

yashikav@cse.iitk.ac.in

Biswabandan Panda
Dept. of Computer Science and Engineering

Indian Institute of Technology Bombay
biswa@cse.iitb.ac.in

Abstract—On a multi-core system, the shared last-level
cache(LLC) is vulnerable to various kinds of cross-core
contention-based attacks. LLC randomization and LLC parti-
tioning are two promising mitigation strategies that mitigate these
attacks. LLC-randomization techniques make an attacker’s life
difficult in mounting contention-based attacks but do not entirely
mitigate them. Randomized caches are also ineffective in prevent-
ing occupancy-based attacks. In contrast, state-of-the-art LLC
partitioning techniques mitigate all possible LLC contention-
based attacks by allocating isolated LLC regions to different
processes or security domains. However, restricting processes to
isolated LLC region(s) affects overall LLC utilization and incurs
performance overhead (as high as 72%) and memory subsystem
energy overhead (as high as 89%); effectively providing security
guarantee at the cost of performance and energy.

One of the primary reasons for this trend is the fundamental
design choice that drives all the state-of-the-art secure LLC
partitioning techniques, which isolate all the applications and
all the time at the LLC. We revisit this choice and argue
that we need to isolate only the attacker process and not all
the processes. To isolate the attacker, we propose Avenger, a
mitigation technique that uses a state-of-the-art LLC contention
attack detector and isolates only the attacker. The detector is
flexible and can be trained as per the security requirements
of any organization or cloud provider. Experimental results on
a 16-core simulated system with one attacker and 15 victims
show that Avenger outperforms three state-of-the-art secure LLC
partitioning techniques in performance and energy overhead
without affecting security. Overall, Avenger provides a robust
security guarantee against all contention-based cross-core LLC
attacks with 1% average performance overhead in contrast to
an average performance overhead of more than 17% with the
state-of-the-art secure LLC partitioning techniques.

I. INTRODUCTION

Cross-core contention-based attacks at the shared last-level
cache (LLC) are successful because an attacker (spy appli-
cation) can cause controlled contention at the LLC sets and
later can observe the effect of contention by measuring the
latency differences between an LLC hit and an LLC miss. As
multiple cores share the LLC, a successful attacker can cause
information leakage by disclosing the victim’s sensitive data.
Past works show that these contention-based LLC side-channel
attacks have been successful in recovering cryptographic keys

[31], user keystrokes [33], and browsing history [36]. These
attacks are practical even on a cloud setting [33].

LLC attacks can cause information leakage either through
(i) eviction-based attacks like Prime+Probe [31], (ii) shared
memory based flush attacks like Flush+Reload [51] that uses
a clflush like instruction to flush out victim’s cache lines,
and (iii) cache occupancy-based attack that can perform re-
mote website fingerprinting across browser tabs using just
HTML+CSS, and observing the LLC space (working set)
occupied by a victim [36].

There are two broad categories of cross-core LLC
contention-based attack mitigation techniques: LLC random-
ization and LLC partitioning. Randomized LLCs [39], [47]–
[49] randomize the address to cache set mapping, iteratively
with the help of a parameter called remap interval, which
makes the life of an eviction-based attacker difficult. Although
randomized LLCs are simple to implement, these techniques
are not effective across all kinds of attacks. For example,
randomized LLCs do not mitigate cache occupancy-based
attacks [36] and performance (denial of service) attacks [29].
A recent work named DAMARU [29] shows that randomized
caches can cause significant performance degradation because
of encryption and remapping of LLC blocks. So, in summary,
randomized caches do not mitigate all the possible LLC
contention attacks.

Recent LLC partitioning techniques [15], [26], [34] for se-
curity, on the other hand, partition the LLC either at the cache
way level or the cache set level. These techniques provide
complete isolation from an attacker (in principle, provide no
information leakage) and hence mitigate all kinds of cross-
core LLC contention-based attacks. However, partitioning
techniques incur performance, memory subsystem energy, and
fairness overheads. A recent LLC partitioning technique [34]
provides finer granularity of cache partitioning that is flexible
and can provide LLC space as per the application’s cache
footprint requirement. However, it is still a rigid approach,
and it isolates all the applications and incurs performance
overhead.

Figure 1 shows performance degradation with state-of-the-
art secure LLC partitioning techniques for a 16-core system

1

that runs 18 representative multi-programmed workloads cre-
ated from SPEC 2017 [12] and GAP [11] benchmark suites,
normalized to a non-secure baseline with no partitioning. On
average, there are performance slowdowns of 22%, 18%, and
17% with maximum slowdowns of 72%, 65%, and 67% with
page coloring [15], DAWG [26], and BCE [34], respectively.
Note that it takes a decade of research in microarchitecture op-
timizations at the LLC to offer 4% performance improvement
[35] and average performance overhead of 17% is significant.
In terms of dynamic energy, we see an average increase
in the DRAM dynamic energy consumption of as much as
89% with page coloring (refer to Figure 9). Table II lists all
simulated parameters (similar to Intel Sunny Cove) [3]. Table
III shows the LLC misses per kilo instructions (MPKI) for
the benchmarks that we use. Table IV provides details about
representative mixes.
The problem. Randomized LLCs do not mitigate all pos-
sible LLC attacks, and the agility of the attacker limits the
effectiveness of these techniques. Partitioned LLCs provide
a robust security guarantee at the cost of performance and
memory subsystem energy. One of the primary reasons for
performance and energy overheads is the rigid approach used
by state-of-the-art LLC partitioning techniques that isolate all
the applications running on a system and not the attacker.
The fundamental principle behind mitigating LLC contention-
based attacks should be to prevent the cyclic-interference that
causes cross-core LLC evictions between the attacker and the
victim applications at the LLC, and not among all the benign
applications. A cyclic interference between an attacker (A)
and victim (V) for a given LLC location follows this access
pattern: A ≺ V ≺ A; an interference in both the directions
A ≺ V and V ≺ A, with information leakage from V to A.
Note that cyclic interference can occur even among benign
applications. However, the frequency of cyclic interference is
extremely low (e.g., on average, two times in 100,000 cycles
for SPEC CPU 2017 and GAP benchmarks in contrast to more
than four times in 1500 cycles for an agile attacker [48]). The
pertinent question. Is it possible to isolate the attacker and
not the victims while providing a security guarantee? This is
a pertinent question because we do not need to isolate all
the applications at the LLC. So, instead of a rigid approach,
is it possible to propose a flexible approach that isolates
the attacker to provide a security guarantee with negligible
performance and energy overheads?
Our goal and approach. We envision a secure LLC that does
not incur significant performance and energy overheads. We
provide a security guarantee with a philosophy of punishing
(isolating) the attacker and not the victim, hence named
Avenger. To achieve the same, we use an attack-detector based
LLC way based isolation approach, and we isolate the attacker
at the LLC only when the detector classifies an application
as the attacker. Note that, at a given time, multiple attackers
may be active on a system, and providing an LLC way-based
isolation for each attacker will not be scalable (for example,
15 attackers on a 16-core system can occupy 15 out of 16
ways). Avenger, instead, makes sure that all the attackers are

0

20

40

60

80

Pe
rfo

rm
an

ce
 S

lo
wd

ow
n

(in
 %

)

72%
65% 67%

22%
18% 17%

Max slowdown Avg slowdown

PAGE COLORING
DAWG

BCE

Fig. 1. Maximum and average performance degradation among 18 16-core
representative mixes of SPEC CPU 2017 [12] and GAP [11] benchmarks with
three state-of-the-art LLC partitioning techniques [15], [26], [34] normalized
to a non-secure baseline with no LLC partitioning.

restricted to limited LLC ways. For example, on a 16-core
system, if there are 15 attackers, then all the attackers (once
they get detected) will be allocated to the same LLC way.

We use an agile state-of-the-art attack detector (Cyclone)
[21] and isolate only the attacker(s) the moment a detector
detects an attack. Once we isolate an attacker, the attacker
cannot perform contention-based attacks, providing complete
security. This approach makes sure that co-running benign ap-
plications are not isolated and their performance is unaffected.
Note that Cyclone detects an attack but not the attacker. We
extend Cyclone with the additional functionality of detecting
an attacker. We identify an attacker based on the direction of
interference. For example, the interference count from A ≺ V
≺ A is significantly more than the interference count from V
≺ A ≺ V.
Challenges. Though an attack-detector approach is a promis-
ing approach in providing isolation, there are many challenges
that are as follows: (i) the attack detector should be accurate,
(ii) the detector should be flexible so that future attacks can
be trained and detected, and (iii) the detector should be agile
and should have extremely low false-positive rate. Cyclone
tackles these challenges as it is implemented as programmable
hardware. It is flexible (e.g., a cloud provider can tune it and
train it as per its security requirements), accurate (provides
100% accuracy), agile (can raise an alert in a few thousands
of cycles), and provides a false positive rate of less than
0.0000001%.

Overall, we make the following key contributions:
• We evaluate the state-of-the-art secure but rigid LLC

partitioning techniques keeping performance and memory
sub-system energy in mind. We analyze the primary rea-
sons behind significant performance and energy overhead
in the case of workloads that contain memory-intensive
applications with high LLC MPKIs (Section II-E).

• We make a case for an LLC-contention attack detector-

2

based mitigation approach that is non-rigid and flexible.
We propose Avenger that isolates the attacker and not the
benign applications (Section III).

• Empirical evaluations on a 16-core simulated system
show that Avenger outperforms three state-of-the-art
secure LLC partitioning techniques [15], [26], [34].
Avenger delivers performance and energy closer to the
non-secure baseline without affecting the security guar-
antee (Section IV).

II. BACKGROUND

A. Threat Model

We assume the following capabilities in our attacker:
(i) She is aware of LLC indexing (through reverse-
engineering).
(ii) She can access the LLC by sending controlled memory
accesses to her data, but she cannot access any cache line
that is not part of her own address space. However, she can
accurately differentiate between an LLC hit and an LLC miss
by measuring memory access latency difference.
(iii) She is capable of mounting all the possible LLC
contention attacks that exploit a timing channel, such as
an eviction-based attack, flush-based attacks, and cache
occupancy-based attacks. For eviction and occupancy-based
attacks, she is not restricted by time to form an eviction set and
then attacks the victim. She can use various eviction strategies
to create an eviction set.
(iv) Her goal is to obtain the complete address or the cache
index bits of the address for eviction-based attacks.
(v) The attacker and the victim are running on two different
cores on a multi-core system, sharing LLC. Private caches
that are shared by multiple processes of a hyper-threading
processor core are spatially and temporally partitioned among
processes and flushed on context switches, providing isolation.
Without loss of generality, our threat model excludes attacks
on other micro-architecture units like on-chip interconnect,
cache coherence directories, and other port contention-based
attacks as we focus primarily on LLC attacks.
(vi) Similar to other LLC partitioning techniques [15], [26],
[34], we assume secure system software support (OS or
security monitor [15]) is available.

B. LLC Contention Attacks

LLC contention attacks can be broadly grouped into four
categories that are as follows:
Eviction-based cache attacks. In eviction-based attacks, an
attacker fills its data into an LLC set that conflicts with the
victim’s data. Later in the Probe step, the attacker re-accesses
its data, and if it observes longer access latency, then it means
that the victim has evicted some of the attacker’s lines (e.g.,
Prime+Probe [31]).
Shared memory-based attacks. In shared memory-based
attack (like Flush+Reload [51]), an attacker shares its address
space with the victim (e.g., shared libraries). The attacker
flushes cache lines that are shared by both the attacker and

the victim and observe the victim’s access to the same cache
lines by observing memory access latency.
Occupancy-based attacks. An LLC occupancy-based attacker
observes the LLC space occupied by the victim application.
Recent attacks on website fingerprinting [36] exploit the
dynamic LLC usage between the attacker and the victim.
Flush-based eviction attack. A recent work [38] shows that
an attacker can mount an eviction-based attack by flushing
her private data while creating an eviction set. This method
is faster than conventional eviction attacks like Prime+Probe.
Note that this is different from shared memory-based flush
attacks where the attacker flushes shared and read-only LLC
lines.

C. Recent Advancements

CEASER [47]. CEASER provides randomization by en-
cryption. It encrypts a physical address, based on a key to get
the encrypted address on an LLC access. To mitigate eviction-
based attacks, CEASER remaps cache lines with a different
key after a fixed interval known as the remapping period.
During a remap period, CEASER remaps with a new key that
remaps cache lines into a new LLC set. As per a recent S&P
2021 paper [38], remapping based on LLC evictions instead of
LLC accesses is recommended. Even in the encrypted address
space, LLC contention-based attacks are still possible.
CEASER-S [48] and SCATTERCache [39]. CEASER-S and
SCATTERCache go one step ahead of CEASER and propose
randomization with a skewed associative LLC to mitigate an
agile eviction-based LLC attacker that can attack CEASER
with slow remapping rates.
MIRAGE [49]. MIRAGE is a fully-associative LLC that uses
multi-index randomization with a global eviction policy. It
provides a proxy for a fully associative LLC with the help of
random replacement. To enable global random replacement,
it decouples the tag array from the data array. MIRAGE
incurs 20% storage overhead at the LLC. LLC partitioning
techniques, on the other hand, provide isolation boundaries
(through way or set partitioning) and can mitigate all the
contention-based LLC attacks.
DAWG [26]. Dynamically Allocated Way Guard (DAWG) at
the LLC uses a software configurable mask to decide way
allocations among multiple security domains running on a
multi-core system. Through this way partitioning, DAWG pre-
vents cross-domain (cross-core) interference because of LLC
hits, LLC misses, and replacement policy updates because of
LLC hits and misses. DAWG allows sharing among multiple
domains by duplicating a shared cache line across security
domains. One of the limitations of DAWG is the upper limit
on the isolated domains that are bounded by the number of
LLC ways.
Page Coloring [15]. Page Coloring at the LLC creates isolated
regions at the LLC set level. LLC partitioning via page-
coloring creates different DRAM regions and uses DRAM
region bits with LLC index bits to access LLC. The usage of
DRAM region bits in the index bits guarantee that each DRAM
region gets non-overlapped sets at the LLC. MI6 [15] is one

3

of the recent techniques that use page coloring at the LLC for
isolation. MI6 statically partitions the DRAM and LLC space.
One of the limitations of page coloring technique is that it
cannot manage LLC space and DRAM space independently.
For example, if a security domain is allocated 3/4th of an LLC,
then page coloring also allocates 3/4th of DRAM space to the
same security domain, and vice versa.
BCE [34]. A recent LLC partitioning technique Bespoke
Cache Enclave (BCE), makes a case for flexible cache par-
titioning that provides isolation by creating partitions as small
as 64KBs. One of the key benefits of BCE is that the number
of partitions are not restricted by the number of LLC ways,
and LLC space allocation is independent of DRAM space
allocation, making it a scalable technique compared with
DAWG and page coloring.

D. LLC Contention Attack Detectors

In recent years, LLC attack detectors [18], [21], [38], [46]
have been proposed to detect malicious activity at the LLC.
A recent hardware detector [38] detects an eviction-based
attacker by observing LLC evictions and their distributions at
LLC set level. Most of these detectors use machine learning
(ML) to improve their precision. Out of all the hardware
detectors, we find Cyclone [21] to be the most robust and
agile.

Cyclone is a programmable hardware detector for
contention-based cache information leakage. It detects inter-
application (security domain) cyclic interference at shared
resources like LLC and DRAM. For detecting information
leakage due to shared LLC, each cache line is governed for
cyclic interference. Each cache line is associated with current
and previous application domain-ids. Note that the domain ID
is provided by the OS or the security monitor, whichever is
secure. Cyclone uses local detectors(LD) to track and count
cyclic interference counts at the LLC and DRAM. If the cyclic
events count exceeds the threshold within a time window, LDs
send cyclic interference summary to global detectors(GD).
Each LD has a set of counters shared among all the cache lines.
The GD can be designed as a classifier trained based on the
cyclic interference count of benign applications (e.g., SPEC
CPU 2017 benchmarks). Based on our experiments, we find
Cyclone provides an accuracy of 100% with a false-positive
rate of 0.0000001%.

E. Motivating observations

LLC randomization techniques do not mitigate all possible
LLC contention attacks. In contrast, LLC partitioning mitigate
contention-based attacks completely by allocating isolated
regions in LLC. However, the rigid creation of isolated regions
for each security domain leads to LLC utilization restrictions
that affect system performance and memory subsystem energy
consumption.
Why do state-of-the-art secure partitioning techniques
incur performance overhead? Figures 2 shows the perfor-
mance degradation for the workload mix2. As we can see,
there is significant reduction in performance (more than 70%

mcf perl0.1
0.3
0.5
0.7
0.9
1.0
1.1

No
rm

al
ize

d
Sp

ee
du

p

PAGE COLORING
DAWG

BCE
AVENGER

Fig. 2. Normalized IPC and average LLC MPKI for each benchmark in
workload mix2 (seven copies of mcf, eight copies of perlbench, and one
attacker) on a 16-core system.

100

126

152 PAGE COLORING
DAWG
BCE
AVENGER
BASELINE

mcf perl0
1
2
3

LL
C

M
PK

I

Fig. 3. Average LLC MPKI for workload mix2(seven copies of mcf, eight
copies of perlbench (perl), and one attacker) on a 16-cores system.

in Figure 2) for memory-intensive applications like mcf. One
of the primary reasons for performance degradation is the
rigid design approach used by DAWG, page coloring, and
BCE. In the case of DAWG, each application (process) gets
2MB LLC space, 1-way per set for a 16-way, 32MB LLC (16
2MB LLC slices). With page coloring, each application gets
1MB LLC (maintaining the one-to-one dependency between
DRAM page and LLC space allocation). BCE allocates 2MB
LLC space per application (2048 LLC sets per application),
however, at an LLC set granularity. All the three techniques
incur significant LLC misses (conflict and capacity) for mixes
that contain applications with high LLC MPKIs. Figure 3
shows the average LLC MPKI for mcf and perlbench of
mix2. Ideally, we need a secure LLC partitioning technique
that can provide performance closer to the non-secure baseline
without compromising the security guarantee, and our proposal
Avenger delivers the same (Figure 2).

III. AVENGER: ISOLATING THE ATTACKER

System software (OS or security monitor) support.
Avenger relies on an allocation of a security domain ID

4

Non-
secure

Secure

Detector detects
the attacker

Attacker
exits

set A

set D

set B
set C

Non-secure LLC state

set A

set D

set B
set C

Isolation initiated

set A

set D

set B
set C

Secure LLC state

Initiate
isolation

Isolation boundary

①

②③

①

②

③

Domain AVictim Domain CAttacker Domain B

way

Purge
attacker

④

set A

set D

set B
set C

Purge the attacker’s way

④
Purged way

Purged lines

Fig. 4. An LLC with Avenger in action. Avenger starts with a non-secure state and isolates the attacker once the detector raise an alarm, and goes back to
the non-secure state once the attacker exits.

that Cyclone uses. The domain ID should be assigned by
trustworthy system software. It can be an OS or a security
monitor [16] in case the OS is not trustworthy. Domain ID
is assigned to each process that is running on a system.
For a virtual machine (VM) that runs multiple processes,
multiple domain IDs are assigned to ensure isolation within
and across VMs. In the case of a system with trusted execution
environments like Intel SGX and ARM Trustzone [4] [5], an
initiation of trusted execution code leads to assignment of a
new domain ID within a single process. An exit from a trusted
execution environment or when a process exits, the domain ID
is de-allocated by the system software. Page sharing between
processes that do not trust each other has been restricted and
allocated with different domain IDs; the OS or the security
monitor ensures no write sharing. For read-only pages, LLC
lines get duplicated for each domain ID, similar to [26], [34],
[39], [49]. This eliminates the flush-based LLC contention
attacks ensuring flush/hit of one domain on a shared LLC
line does not affect another, and as an attacker can only flush
its LLC line(s). Cache coherence directory based attacks are
mitigated by the zero directory eviction victim [13].
Attack detector extension. We use a modified version of
Cyclone that raises an alert after detecting an attack and
provides the domain ID of the attacker based on cyclic
interference count between two security domains, say domain
A and domain B. If domain A is the attacker then the cyclic
interference count from domain A to domain B is much higher
than from domain B to domain A. Compared to the original
Cyclone proposal, we use a relatively more agile version
of Cyclone that raises the alarm four times in 1500 cycles.
We also use interference counters based on the direction of

interference, such as A ≺ V ≺ A, and V ≺ A ≺ V. We store
two recent domain IDs per LLC tag. Note that for shared lines
(read-only pages), only one domain ID will be active for the
lifetime of an LLC line as shared lines are duplicated, similar
to [34], [39], [49].

We use buckets for monitoring cross-core cyclic interference
counters as part of the local detector of Cyclone. The bucketing
technique maps each LLC line to an interference counter
instead of keeping an interference counter for each cache set.
When a cyclic interference event occurs, a hash is used to map
the address to a bucket and increment the counter. We do not
use any counters at the DRAM as the shared memory-based
flush attacks are mitigated by design thanks to the system
software support. As mentioned in Section I, the detector is
implemented as a programmable hardware implemented using
systolic arrays [42]. Note that the detector has to be trained
for benign and non-benign applications as per the security
requirement of an organization or a cloud provider.
Avenger in a nutshell. At the LLC, Avenger provides LLC
isolation based on an LLC attack detector, thanks to 100%
accuracy provided by Cyclone [21]. Avenger provides high
performance and no security guarantee in the non-secure
LLC state and transitions into the secure LLC state that
offers a strong security guarantee with minimal performance
loss. The transition happens the moment Cyclone triggers an
alarm about a contention-based LLC attacker. The key idea
of Avenger is that it is a non-rigid and scalable approach that
does not isolate benign applications.

A. Avenger in Action
Process starts. When an application gets scheduled by

the OS or the security monitor, the domain ID is also com-

5

municated to the memory hierarchy. This is similar to prior
proposals [15], [26], [34]. Figure 4 illustrates the state of an
LLC with Avenger. An LLC with Avenger begins with the
non-secure LLC state, with Cyclone monitoring the LLC state
for a possibility of an attack. The OS or the security monitor
provides domain IDs for running processes to Cyclone and the
LLC controller. The moment Cyclone triggers an alarm to the
LLC controller about the possibility of an LLC attack (step 1
of Figure 4), Avenger kicks in and starts the isolation phase
(which is a transition phase in between the non-secure and the
secure LLC states).
Isolation for Secure LLC. Avenger makes sure the transition
phase does not leak information. To achieve the same, it
isolates the domain ID provided by Cyclone. Avenger uses
an LLC way-based isolation, and depending on the number of
concurrent domains; it allocates LLC ways. For example, for
a 16-way LLC with 16 different security domains, Avenger
isolates the attacker domain ID by providing only one LLC
way. Similarly, if a 16-way LLC is shared by two, four, or
eight co-running domains, Avenger allocates eight, four, and
two LLC ways to the attacker domain ID. For the sake of
simplicity, we explain Avenger for a 16-way LLC with 16
applications running concurrently. Before isolating an LLC
way (say way 0 for the attacker), the LLC controller purges
all the cache lines that are present in way 0. Similarly, the
controller purges attacker’s cache lines that are present at
way 1 to way 15. Purging is a process where the selected
cache lines are invalidated. If the purged lines are dirty, it
is written back to the DRAM. During the purging process,
applications are not allowed to access LLC. Once the purging
process completes, the LLC enters into the secure LLC state
(step 2 of Figure 4). Note that in the secure LLC state, the LLC
hits, misses, evictions, replacement policy metadata updates,
are restricted to isolated region of the attacker only and are
not shared between the attacker and the victim(s). Hence, in
the secure LLC state, the attacker can not infer the victim’s
information.
Attacker process exits, and transition from Secure to non-
secure LLC. Once the attacker exits, the OS or the security
monitor informs the LLC controller, and Avenger initiates a
transition from secure LLC to the non-secure LLC (step 3 of
Figure 4). Avenger purges the one LLC way allocated to
the attacker. Note that now there is no need to purge benign
application’s LLC ways as these are not shared by the attacker.
Once the purging process gets over, the LLC enters into the
non-secure LLC state (step 4 of Figure 4). Note that Cyclone
runs and monitors LLC irrespective of the LLC state. Note
that in the case of multiple attackers, Avenger isolates all the
attackers, for example by providing one LLC way for all 15
attackers on a 16-core system. This ensures, with Avenger,
there is no limit on the number of concurrent domains that
can be active at a given point in time.
DRAM Controller support. As Avenger assigns only one
LLC way to the attacker(s), the LLC contention attacker
can now mount a denial of service (DOS) attack at the
DRAM controller introducing significant LLC-DRAM read

and write traffic. We handle this attack by de-prioritizing
attacker’s requests at the DRAM controller so that it cannot
swamp the DRAM scheduler and cause a DOS attack as
mentioned in [43]. We also partition the LLC miss status
holding registers (MSHRs) so that attacker cannot observe
timing difference because of MSHR occupancy. Note that,
recent secure LLC partitioning techniques do not take care
of performance attacks at the DRAM that can happen as a
side-effect of LLC partitioning.

B. Design Choices

Why not an OS-based Avenger? It can be argued that
an OS based approach that can kill the attacker process is a
better approach than partitioning the LLC. We do not make
a case for an OS based approach for the following reason:
In case of a multi-process attack, once the OS kills one of
the attack processes, say P1 (after getting an alert from the
attack detector), a new attacker process can be spawned by
the attacker, say P2. P2 cannot access the addresses mapped to
P1. However, it can still probe the LLC and can deduce LLC
contention because of cyclic interference that has happened
just before the OS killed P1. Note that this is an extremely
difficult attack to mount but certainly not impossible. Avenger,
in its current form, instead makes sure no such information
can be deduced at the LLC. It can also be argued that an OS
can de-schedule the attacker core and can migrate it to another
core or another socket, and can clflush atacker’s cache lines
from the LLC. However, frequent descheduling, migrating, and
flushing cache lines will lead to a denial of service attack at
the LLC. We argue that we should not mitigate one form of
LLC attack by creating another.
Isolating LLC ways and not LLC sets. Avenger isolates
an attacker at the LLC ways and not at the LLC sets,
although both the designs are possible. Avenger uses way-
based isolation for two reasons: (i) Modern LLCs use data
direct IO technology (DDIO) [41] that reserves few LLC ways
for I/O accesses. With LLC set-based isolation, it will not be
possible to provide DDIO as the attacker process can cause
contention through I/O requests at the reserved LLC ways for
DDIO. (ii) Way-based isolation is simpler to implement than
LLC set-based as modern LLCs use slices for providing high
LLC bandwidth among concurrent applications, and providing
isolation at the LLC sets across LLC slices demands a change
in the LLC indexing.
Agility of the detector. Cyclone is an agile detector that
detects all kinds of LLC contention-based attacks as soon
as it detects a cyclic interference between the attacker and
victim(s). For our study, we use the fastest eviction-attack
algorithm like group elimination [48] and observe that Cyclone
detects all kinds of contention-based attacks within 1300 to
1500 cycles with at-least four alerts.
Uncertain future in terms of the LLC attacks. Cyclone can
detect all the possible LLC contention attacks proposed so far
as all the attacks cause cyclic interference, which is the key.
Based on the experiments, we find Cyclone provides 100%
accuracy in detecting a cross-core LLC attacker. However,

6

TABLE I
STORAGE OVERHEAD WITH AVENGER.

#entries Size
domain IDs two eight-bits per tag entry 2 bytes
cyclic-
interference
counters

16 10-bit counters × 16 LLC slices 2560 bits

direction-
interference
counters

32 10-bit counters × 16 LLC slices 5120 bits

Buckets four 6-bit register × 16 buckets 384 bits
Interval counter 9 bit × 16 LLC slices 144 bits
Global detector pre-trained SVM model 300 bytes
Total - 3.2% of the

LLC size

in the future if a new cross-core LLC attack emerges, then
Cyclone has to be retrained for cyclic interference thresholds.
As Cyclone is a programmable hardware, ideas similar to
post-silicon and fabrication [28] [30] microarchitecture can
be easily implemented with Cylcone to make it robust as and
when new cross-core LLC attacks emerge.
Benign detected as an attacker. Cyclone does not provide
false alarms with the benign SPEC CPU 2017 applications
thanks to a false positive rate of 0.0000001%. However, if
there is a future benign application that gets classified as an
attacker then the performance guarantee of Avenger will be
similar to prior proposals like DAWG and BCE. Also, the
Cyclone detector has to be re-trained keeping the new benign
application in mind.
Storage overhead. In terms of storage overhead, Avenger’s
primary storage requirement is because of the Cyclone. For
each cache line, Avenger stores a domain ID in the tag array.
For a 16-core system, we store the two recent domain IDs that
have accessed a particular LLC way. On a demand access to a
particular LLC set, we compare the domain ID of the request
that comes from the processor with the two domain IDs that
we store per LLC way. This helps in finding the direction of
interference (A ≺ V ≺ A or V ≺ A ≺ V).

Cyclone uses 16 10-bit cyclic interference counters that
store the most frequent inter-core interference counts. Cyclone
uses 16 buckets, each with four 6-bit history registers. We also
use 32 10-bit counters based on the direction of interference.
The global detector that we use is a pre-trained support vector
machine (SVM) model that takes around 300 bytes. Avenger
also uses hardware registers that store the LLC-way numbers
assigned to the attacker(s). For example, a 4-bit register for
a 16-way LLC with 16 applications running concurrently. In
total, Avenger incurs a storage overhead of 3.2%, which is
negligible and in the same order as the competing secure LLC
partitioning techniques like BCE that incurs a storage overhead
of around 2%. Table I provides the details of storage overhead
with Avenger.

C. Security Guarantee

Avenger, by design, provides a strong security guarantee as
it isolates the attacker when it observes a cyclic interference
between the attacker and victim(s). With Avenger, an attacker

TABLE II
SIMULATED PARAMETERS.

Core 16 Out-of-order cores, hashed perceptron branch predictor,
4GHz with 6 issue width, 4 retire width, 352 entry ROB

TLBs 64 entry 4-way at L1 DTLB/ITLB (1 cycle), 2048 entries 16-
way L2 STLB (8 cycles)

MMU
Caches

2 entry (PSCL5), 4 entry (PSCL4), 8 entry (PSCL3), 32 entry
(PSCL2), searched parallely, one cycle

L1 32KB 8-way L1I (4 cycles), 48KB 12-way L1D (5 cycles), 16
MSHRs

L2 512KB 8-way associative (10 cycles), RRIP, 32 MSHRs [23]
LLC 32 MB (2MB/slice), 16-way (20 cycles), RRIP [23], 64 MSHRs

per slice
DRAM 1 channel/4-cores, 6400 MT/sec per channel

TABLE III
BENCHMARKS WITH THEIR LLC MPKIS.

Benchmark LLC MPKI
mcf-1554B 127
mis-85B 56
lbm-4268B 55
roms-1390B 23
sssp-5B 20
xalan-202B 17
wrf-6673B 14
omnetpp-874B 9
gcc-734B 9
perl-570B 0.06
leela-1083B 0.01

cannot infer covert information from other domain IDs. For
read only shared memory pages, reads, writes, coherence
transactions, and flushes are restricted within a domain and
there is zero possibility of cross-domain interference. For
eviction-based attacks, Avenger isolates the attacker within
few thousand cycles mitigating cross-domain evictions. Note
that the replacement policy metadata update is also restricted,
and no cross-domain replacement policy updates are allowed.
LLC occupancy-based attacks are also mitigated as the at-
tacker cannot infer anything about victim’s working set. With
Avenger, the only information that an attacker can infer is the
presence of a co-running application(s) because of Avenger’s
isolation. However, an attacker cannot infer any side-channel
information about co-running application(s).

IV. EVALUATION

We use a modified version of ChampSim [10], a trace-
driven simulator used for the 2nd and 3rd Data Prefetching
Championships (DPC-2 [6] and DPC-3 [9]), and 2nd cache
replacement championship (CRC-2) [8]. Table II summarizes
our simulated parameters, mimicking an Intel Sunny Cove
microarchitecture [2].
Benchmarks and workloads. Table III shows selected bench-
marks with their respective LLC MPKIs. We make sure
we use benchmarks with different memory intensities (LLC
MPKIs varying from 0.01 for leela to 127 for mcf). For
our multicore evaluation, we use 18 16-core representative
multiprogrammed mixes created from SPEC CPU2017 [12]
and GAP [11] benchmarks with one core running an agile

7

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

m
ix

7

m
ix

8

m
ix

9

m
ix

10

m
ix

11

m
ix

12

m
ix

13

m
ix

14

m
ix

15

m
ix

16

m
ix

17

m
ix

18

gm
ea

n0.2

0.4

0.6

0.8

1.0
1.1

No
rm

al
ize

d
W

ei
gh

te
d

Sp
ee

du
p

High Medium Low

PAGE COLORING DAWG BCE AVENGER

Fig. 5. Normalized performance (in terms of weighted speedup of benign applications) for different LLC partitioning techniques on a 16-core system with
attacker running on one core. Bars below 1.0 represent performance slowdowns.

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

m
ix

7

m
ix

8

m
ix

9

m
ix

10

m
ix

11

m
ix

12

m
ix

13

m
ix

14

m
ix

15

m
ix

16

m
ix

17

m
ix

18

gm
ea

n0.2

0.4

0.6

0.8

1.0
1.1

No
rm

al
ize

d
Ha

rm
on

ic
Sp

ee
du

p

High Medium Low

PAGE COLORING DAWG BCE AVENGER

Fig. 6. Normalized performance (in terms of harmonic mean of speedups of benign applications) for different LLC partitioning techniques on a 16-core
system with attacker running on one core. Bars below 1.0 represent performance slowdowns.

95

125

155

40

59

78

LL
C

M
PK

I

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

m
ix

7

m
ix

8

m
ix

9

m
ix

10

m
ix

11

m
ix

12

m
ix

13

m
ix

14

m
ix

15

m
ix

16

m
ix

17

m
ix

18

gm
ea

n0

18

36

High Medium Low

PAGE COLORING DAWG BCE AVENGER BASELINE

Fig. 7. Average LLC MPKIs per mix for different LLC partitioning techniques.

eviction-based attacker that uses group elimination method
(GEM) [48]. Due to space constraints, instead of showing
results for more than thousands of mixes, we show detailed
results only for the representative mixes. We divide these
mixes into three bins (high, medium, and low) based on their
sensitivity to LLC partitioning ideas(refer Table IV). We label
a mix as high, medium, and low if the performance drop, with
partitioning, falls into these three respective categories: more
than 20%, in between 1 to 20%, and less than 1%. To ensure
a fair distribution of mixes among high, medium, and low, we
use six mixes from each category, 18 representative mixes.
Performance metrics. We evaluate Avenger on a 16-core
simulated system. For multi-core simulations, we warm-up the
caches for 30M instructions per core (480M instructions per

mix) and then report performance in terms of the normalized
weighted-speedup and fairness with performance (in terms of
harmonic mean of speedups) that are defined as follows:
weighted speedup =

∑i=N−1
i=0

IPCtogether(i)
IPCalone(i)

and harmonic
mean of speedup = N∑i=N−1

i=0

IPCalone(i)

IPCtogether(i)

. These speedups are

normalized to a non-secure baseline with no LLC partition-
ing for the instructions in the respective region of interests.
IPCtogether(i) is the instructions per cycle (IPC) of core i
when it runs along with other N–1 applications on an N-core
system. IPCalone(i) is the IPC of core i when it runs alone
on a multi-core system of N cores. We simulate a mix until
each benchmark has executed its region of interest instructions.
When a benchmark finishes, it gets replayed until all the

8

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

m
ix

7

m
ix

8

m
ix

9

m
ix

10

m
ix

11

m
ix

12

m
ix

13

m
ix

14

m
ix

15

m
ix

16

m
ix

17

m
ix

18

gm
ea

n0.9

1.0

1.1

No
rm

al
ize

d
 L

LC
 D

yn
am

ic
En

er
gy

High Medium Low

PAGE COLORING DAWG BCE AVENGER

Fig. 8. Normalized dynamic energy at the LLC for different LLC partitioning techniques normalized to non-secure baseline. Bars above 1.0 represent energy
overhead.

m
ix

1

m
ix

2

m
ix

3

m
ix

4

m
ix

5

m
ix

6

m
ix

7

m
ix

8

m
ix

9

m
ix

10

m
ix

11

m
ix

12

m
ix

13

m
ix

14

m
ix

15

m
ix

16

m
ix

17

m
ix

18

gm
ea

n0.5

1.0

1.6

2.7

No
rm

al
ize

d
 D

RA
M

 D
yn

am
ic

En
er

gy High Medium Low

6.4
4.4

4.8
23

16.5
17.6

10 7 7.6 PAGE COLORING DAWG BCE AVENGER

Fig. 9. Normalized dynamic energy at the DRAM for different LLC partitioning techniques normalized to non-secure baseline. Bars above 1.0 represent
energy overhead.

TABLE IV
REPRESENTATIVE MIXES GROUPED INTO THREE BINS DENOTING HIGH,
MEDIUM, AND LOW SENSITIVITY TO PARTITIONING TECHNIQUES, WITH

ONE CORE RUNNING THE ATTACKER.

Mix Composition Bin
mix1 mcf(15) High
mix2 mcf(7)-perl(8) High
mix3 mcf(7)-xalan(2)-omnetpp(2)-wrf(2)-perl(2) High
mix4 xalan(7)-mcf(2)-omnetpp(2)-wrf(2)-perl(2) High
mix5 wrf(7)-mcf(2)-xalan(2)-omnetpp(2)-perl(2) High
mix6 sssp(7)-mcf(2)-xalan(2)-omnetpp(2)-wrf(2) High
mix7 xalan(15) Medium
mix8 omnetpp(15) Medium
mix9 wrf(15) Medium
mix10 mis(15) Medium
mix11 wrf(7)-perl(8) Medium
mix12 sssp(7)-perl(8) Medium
mix13 gcc(15) Low
mix14 lbm(15) Low
mix15 perl(15) Low
mix16 leela(15) Low
mix17 roms(7)-perl(8) Low
mix18 gcc(7)-perl(8) Low

benchmarks finish their respective regions of interest.
Energy model. We report the dynamic energy consumption
of the LLC and DRAM. We obtain the energy consumption of
tag accesses, reads, writes, and fills to LLC and DRAM with
PCACTI [1] and Micron DRAM power calculator [7]. Then,
we compute the total energy expenditure by accounting for the

number of accesses of each type at the LLC and DRAM. We
use 7nm process technology for our energy calculations.
Evaluated LLC partitioning Techniques. We compare the
effectiveness of Avenger with three secure LLC partitioning
techniques: page coloring, DAWG, and BCE, normalized to a
non-secure non-partitioned LLC. We compare these techniques
based on performance (weighted speedup), performance with
fairness (harmonic mean of speedups), and dynamic energy
consumption at the LLC and the DRAM. As static energy can
be correlated with the performance slowdown;we do not show
static energy overhead, explicitly.

A. Performance and energy overhead

Weighted and Harmonic mean of speedups. Figure 5
shows the performance overhead with the Avenger along
with the competitive LLC partitioning techniques. On average,
Avenger provides performance closer to the non-secure base-
line (less than 1% overhead) than the competitive secure LLC
partitioning techniques that lead to an average performance
overhead of more than 17%. The maximum performance
overhead with Avenger is 6% (for mix1), whereas competing
techniques provide performance overheads as high as 72%.
Figure 6 shows the performance overhead, keeping perfor-
mance and fairness in mind. Even with harmonic mean of
speedups, Avenger significantly outperforms all the competing
techniques. One of the primary reasons for showing both
weighted and harmonic mean of speedups is that Avenger is
effective with performance and fairness consistently across all

9

2 Attackers 4 Attackers 8 Attackers 15 Attackers
0.5

0.7

0.9

1.0

1.1

1.3
No

rm
al

ize
d

W
ei

gh
te

d
Sp

ee
du

p

BCE
DAWG
PAGE COLORING

AVENGER(one attacker - one LLC way)
AVENGER (all attackers - one LLC way)

Fig. 10. Normalized speedup with multiple attackers.

the mixes. However, that is not the case for other techniques.
For example, for mix12, BCE is better than DAWG, and
page coloring in terms of weighted speedup (Figure 5) and
DAWG is better than BCE if we consider performance along
with fairness (Figure 6). Figure 7 shows the average LLC
MPKI per mix, which correlates strongly with the performance
improvement as shown in Figure 5.

In summary, for mixes, not sensitive to LLC space and
partitioning decisions (the mixes labeled as low), there is no
difference or marginal difference in performance among all the
partitioning techniques. However, for mixes labeled as medium
and high, there is a significant difference in performance
primarily because of an increase in LLC conflict misses as
shown in Figures 1 for mix2. Page coloring fails to provide
enough LLC space because LLC allocation is driven by the
page allocation at the DRAM. DAWG and BCE provide an
equal amounts of space (2MB per application) but due to the
rigid and fix allocation of LLC space for each application,
these techniques increase LLC misses compared to a non-
secure non-partitioned LLC. Avenger, on the other hand,
provides LLC misses closer to the non-secure baseline as only
one LLC way is reserved by the attacker.
Memory sub-system energy. Figures 8 and 9 show the effect
of LLC partitioning techniques on the dynamic energy at the
LLC and DRAM. Note that the static energy consumption
correlates strongly with the performance overhead. So, we
show the dynamic energy per LLC and DRAM accesses
normalized to a non-secure baseline. Mixes labeled as highly
sensitive to LLC partitioning with high LLC MPKI incur
significant DRAM energy overhead as high as 23 times for
mix2. Note that DRAM energy is a function of both DRAM
read and DRAM write energy. For write-intensive benchmarks
(lbm) with more than 40% of the LLC blocks that are dirty,
frequent LLC misses causing frequent write-backs increasing
the write energy.

Compared to DRAM energy, LLC energy overhead is within
9% and mixes with high MPKIs incur high LLC energy
overhead primarily because of increase in LLC fills. Note that
we include the energy consumed by the cyclic interference
counters of Cylone at the LLC. On average, BCE, DAWG, and
page coloring incur an energy overhead of more than 63% and

m
ix

1
m

ix
2

m
ix

3
m

ix
4

m
ix

5
m

ix
6

m
ix

7
m

ix
8

m
ix

9
m

ix
10

m
ix

11
m

ix
12

m
ix

13
m

ix
14

m
ix

15
m

ix
16

m
ix

17
m

ix
18 Av

g0.00
0.02
0.04
0.06
0.08

Pu
rg

in
g

 O
ve

rh
ea

d
(in

 %
)

High Medium Low

Fig. 11. Purging overhead on performance.

1% at the DRAM and LLC, while Avenger incurs an overhead
of 4% and 2% for DRAM and LLC, respectively. There is an
outlier in the form of mix 16 in Figure 8 where the LLC energy
improved a lot with page coloring. One of the primary reasons
for this trend is that mix 16 has extremely low LLC MPKI, and
with page coloring, the page allocation changes at the DRAM
providing more L2 hits, causing relatively lesser LLC accesses.
The energy overhead of Avenger at the LLC is primarily
because of the extended tag entry that stores last two domain
IDs. Overall, Avenger is the most energy-efficient and secure
LLC partitioning technique among competing techniques.

Table V summarizes performance, performance with fair-
ness, memory subsystem energy, and storage overhead with
Avenger, page coloring, DAWG, and BCE. Avenger provides
security guarantee with minimal performance, energy, and
storage overheads.
Effect of Multiple attackers. So far, we have shown Avenger
with a single-threaded attacker. However, for mounting a
cross-core LLC attack, an attacker process can use mul-
tithreading where multiple cores execute attacker code or
multiple independent attackers to perform DOS or occupancy-
based attacks. In the case of a multi-threaded attacker, all the
threads get one LLC way as all the threads will be part of
one domain ID. However, for multi-attacker scenario, Avenger
has two choices: (i) allocate one LLC way per attacker
and (ii) allocate one LLC way for all the attackers. Figure
10 shows the effect of multiple attackers on performance
(weighted speedup). For eight and 15 attackers, BCE, DAWG,
and page coloring provide eight different isolated chunks of
LLC, effectively hampering performance of co-running benign
applications. Avenger, on the other hand, allocates one LLC
way for all the attackers to improve the performance of
benign applications. With Avenger, when we move from eight
attackers to 15 attackers, the performance improvement goes
down as the baseline performance of the benign application
improves thanks to inter-attacker interference at the shared
resources like LLC and DRAM.
Purging Overhead on performance. While transitioning
from a non-secure LLC state to the secure LLC state, Avenger
purges LLC lines of interest, ensuring an isolation boundary
with strong security guarantee. Figure 11 shows purging
overhead in terms of LLC stalls, which is less than 0.1%.
Note that purging happens only twice (once in the beginning
while transiting from non-secure LLC to secure LLC and again
while transitioning from secure LLC to non-secure LLC). We
also quantify the purging overhead by varying DRAM write

10

TABLE V
SUMMARY OF PERFORMANCE, ENERGY, AND STORAGE OVERHEADS (IN %) AVERAGED ACROSS 18 MIXES.

Technique Performance Fair performance DRAM energy LLC energy Storage
Page coloring 22% 23% 89% 2% < 0.5%
DAWG 18% 17% 66% 1% < 0.5%
BCE 17% 18% 63% 1% 2%
Avenger 1% 1% 4% 2% 3.2%

queue sizes and find that the overhead is marginal.
Effect of hardware prefetchers. Modern processors use
hardware prefetchers to hide costly DRAM access latency.
We evaluate competitive secure LLC partitioning techniques
in the presence of state-of-the-art hardware prefetchers like
IPCP [44], SPP [25], and Bingo [14] at L1 and L2 caches,
respectively. All the techniques show similar performance
overheads (with minor performance change of less than 2%)
for the baseline with prefetching as compared to the baseline
with no prefetching. BCE and Avenger are equally effective
in the presence of hardware prefetchers. However, DAWG
and page coloring lose their effectiveness primarily because
of prefetcher caused LLC pollution.

V. RELATED WORK

In this Section, we make a qualitative comparison with
relevant related works.
LLC partitioning. CATalyst [32] partitions the LLC into inse-
cure and secure partitions. Also, within the secure partition, it
prevents the replacement of cache blocks that store the secure
data. CATalyst demands changes to the programming language
and run-time. With CATalyst, The number of partitions is
limited by the number of DRAM pages in a partition, and
limitations are similar to a page coloring approach. Also,
CATalyst does not prevent LLC hit-based replacement policy
attack as the underlying partitioning is motivated by Intel CAT
[22] (DAWG prevents hit-based replacement policy attack).
Secure DCP [37] NoMo [17] isolate an attacker, which is
similar to Avenger. However, these techniques do not mitigate
cache occupancy attacks because of dynamic LLC partitioning.
Also, the scalability of SecDCP is limited by the number of
LLC ways. In contrast, Avenger is not limited by the number
of LLC ways as all the attackers get only one LLC way
instead of multiple ways. Jumanji [50] isolates VMs at the
LLC, another rigid approach. Jumanji does not mitigate attacks
like occupancy-based attacks and cross-domain flush-based
attacks. Also, it does not differentiate between processes that
are part of the same VM.
Other approaches. SHARP [40], BITP [45], RIC [24], and
Seclusive cache [20] provide probabilistic security guarantees
and do not mitigate all kinds of contention-based cross-core
LLC attacks. The SHARP policy has a lot of loopholes and is
not secure [27]. HybCache [19] proposes a fully associative
LLC for mitigating conflict-based attacks. However, the ap-
proach incurs implementation complexity, especially for large
LLCs. For example, implementing a fully-associative mapping
for one-way LLC would require concurrent access to thousand

of cache lines per LLC access that would considerably in-
crease the cache energy consumption. Also, HybCache cannot
mitigate the occupancy-based attack.

VI. CONCLUSION

We proposed Avenger, an LLC partitioning technique that
isolates the attacker with the help of an attack detector.
Avenger is driven by the design principle that the attacker
should be isolated and not the victims, which is in contrast to
the recently proposed secure LLC partitioning techniques that
isolate all the applications, incurring performance and energy
overhead. Avenger is a flexible and non-rigid LLC partitioning
technique that uses a hardware programmable attack detec-
tor. The detector can be trained by organizations and cloud
providers as per the security requirements. Avenger outper-
forms the state-of-the-art secure LLC partitioning techniques
and provides performance closer to a non-secure baseline.
Overall, Avenger is a lightweight, secure, high performing,
and energy-efficient LLC partitioning technique that provides
a sweet spot in terms of security, and overheads in terms of
performance and energy.

VII. ACKNOWLEDGEMENT

We would like to thank Mainak Chaudhuri, Gururaj Sailesh-
war, and CARS members for their feedback on the draft.

REFERENCES

[1] Pcacti tool, Online. Available: https://sportlab.usc.edu/downloads/.
[2] “Examining intel’s ice lake processors: Taking a bite of the sunny

cove microarchitecture,” Available at https://www.anandtech.com/show/
14514/examining-intels-ice-lake-microarchitecture-and-sunny-cove.

[3] “Examining intel’s ice lake processors: Taking a bite of the sunny
cove microarchitecture,” Available at https://www.anandtech.com/show/
14514/examining-intels-ice-lake-microarchitecture-and-sunny-cove.

[4] “Intel sgx,” Available at https://www.intel.com/content/www/us/en/
developer/tools/software-guard-extensions/overview.html.

[5] “Intel sgx,” Available at https://developer.arm.com/ip-products/
security-ip/trustzone.

[6] “The 2nd data prefetching championship (dpc-2),” Jun. 2015. [Online].
Available: https://comparch-conf.gatech.edu/dpc2/

[7] “Micron dram power calculator,” https://www.micron.com/-/media/
client/global/documents/products/technical-note/dram/tn4007 ddr4
power calculation.pdf, Dec. 2015.

[8] “The 2nd cache replacement championship (crc-2),” Jun. 2017. [Online].
Available: https://crc2.ece.tamu.edu/

[9] “The 3rd data prefetching championship (dpc-3),” Jun. 2019. [Online].
Available: https://dpc3.compas.cs.stonybrook.edu/

[10] Online. Available: https://github.com/ChampSim/ChampSim, Champsim
Simulator.

[11] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[12] p. y. Bucek et al., booktitle=Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, “Spec cpu2017:
Next-generation compute benchmark.”

11

https://sportlab.usc.edu/downloads/
https://www.anandtech.com/show/14514/examining-intels-ice-lake-microarchitecture-and-sunny-cove
https://www.anandtech.com/show/14514/examining-intels-ice-lake-microarchitecture-and-sunny-cove
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://comparch-conf.gatech.edu/dpc2/
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://crc2.ece.tamu.edu/
https://dpc3.compas.cs.stonybrook.edu/
https://github.com/ChampSim/ChampSim

[13] M. Chaudhuri, “Zero directory eviction victim: Unbounded coherence
directory and core cache isolation,” in 2021 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA), 2021, pp.
277–290.

[14] B. et al., “Bingo spatial data prefetcher,” in 2019 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2019,
pp. 399–411.

[15] B. et al., “Mi6: Secure enclaves in a speculative out-of-order processor,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 42–56.

[16] C. et al., “Sanctum: Minimal hardware extensions for strong
software isolation,” in 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, Aug. 2016,
pp. 857–874. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/costan

[17] D. et al., “Non-monopolizable caches: Low-complexity mitigation of
cache side channel attacks,” vol. 8, no. 4, jan 2012. [Online]. Available:
https://doi.org/10.1145/2086696.2086714

[18] F. et al., “A noise-resilient detection method against advanced cache
timing channel attack,” in 2018 52nd Asilomar Conference on Signals,
Systems, and Computers, 2018, pp. 237–241.

[19] G. et al., “HybCache: Hybrid Side-Channel-Resilient caches
for trusted execution environments,” in 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Aug. 2020,
pp. 451–468. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/dessouky

[20] G. et al., “Seclusive cache hierarchy for mitigating cross-core cache and
coherence directory attacks,” in 2021 Design, Automation Test in Europe
Conference Exhibition (DATE), 2021, pp. 637–640.

[21] H. et al., “Cyclone: Detecting contention-based cache information
leaks through cyclic interference,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, 2019, pp.
57–72.

[22] H. et al., “Cache qos: From concept to reality in the intel® xeon®
processor e5-2600 v3 product family,” in 2016 IEEE International Sym-
posium on High Performance Computer Architecture (HPCA). IEEE,
2016, pp. 657–668.

[23] J. et al., “High performance cache replacement using re-reference
interval prediction (rrip),” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ser. ISCA ’10.
New York, NY, USA: Association for Computing Machinery, 2010, p.
60–71. [Online]. Available: https://doi.org/10.1145/1815961.1815971

[24] K. et al., “Ric: Relaxed inclusion caches for mitigating llc side-channel
attacks,” in 2017 54th ACM/EDAC/IEEE Design Automation Conference
(DAC), 2017, pp. 1–6.

[25] K. et al., “Path confidence based lookahead prefetching,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2016, pp. 1–12.

[26] K. et al., “Dawg: A defense against cache timing attacks in speculative
execution processors,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2018, pp. 974–987.

[27] K. et al., “How sharp is SHARP ?” in 13th USENIX Workshop
on Offensive Technologies (WOOT 19). Santa Clara, CA: USENIX
Association, Aug. 2019. [Online]. Available: https://www.usenix.org/
conference/woot19/presentation/kumar

[28] K. et al., “Post-silicon microarchitecture,” IEEE Computer Architecture
Letters, vol. 19, no. 1, pp. 26–29, 2020.

[29] K. et al., “Damaru: A denial-of-service attack on randomized last-level
caches,” IEEE Computer Architecture Letters, vol. 20, no. 2, pp. 138–
141, 2021.

[30] K. et al., “Post-fabrication microarchitecture,” in MICRO ’21: 54th
Annual IEEE/ACM International Symposium on Microarchitecture,
Virtual Event, Greece, October 18-22, 2021. ACM, 2021, pp. 1270–
1281. [Online]. Available: https://doi.org/10.1145/3466752.3480119

[31] L. et al., “Last-level cache side-channel attacks are practical,” in 2015
IEEE symposium on security and privacy. IEEE, 2015, pp. 605–622.

[32] L. et al., “Catalyst: Defeating last-level cache side channel attacks in
cloud computing,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2016, pp. 406–418.

[33] R. et al., “Hey, you, get off of my cloud: Exploring information leakage
in third-party compute clouds,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security, ser. CCS ’09.
New York, NY, USA: Association for Computing Machinery, 2009, p.
199–212. [Online]. Available: https://doi.org/10.1145/1653662.1653687

[34] S. et al., “Bespoke cache enclaves: Fine-grained and scalable isolation
from cache side-channels via flexible set-partitioning,” in 2021 Interna-
tional Symposium on Secure and Private Execution Environment Design
(SEED). IEEE, 2021, pp. 37–49.

[35] S. et al., “Effective mimicry of belady’s min policy,” in Proceedings of
the 28th IEEE International Symposium on High-Performance Computer
Architecture, ser. HPCA ’22. South Korea: Association for Computing
Machinery, 2022, p. 1–15.

[36] S. et al., “Robust website fingerprinting through the cache occupancy
channel,” in 28th {USENIX} Security Symposium ({USENIX} Security
19), 2019, pp. 639–656.

[37] W. et al., “Secdcp: Secure dynamic cache partitioning for efficient timing
channel protection,” in 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), 2016, pp. 1–6.

[38] W. et al., “Randomized last-level caches are still vulnerable to cache
side-channel attacks! but we can fix it,” in Proceedings - 2021 IEEE
Symposium on Security and Privacy, SP 2021, ser. Proceedings - IEEE
Symposium on Security and Privacy. United States: Institute of
Electrical and Electronics Engineers Inc., May 2021, pp. 955–969.

[39] W. et al., “Scattercache: Thwarting cache attacks via cache set random-
ization,” in 28th {USENIX} Security Symposium ({USENIX} Security
19), 2019, pp. 675–692.

[40] Y. et al., “Secure hierarchy-aware cache replacement policy (sharp):
Defending against cache-based side channel atacks,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
ser. ISCA ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 347–360. [Online]. Available: https://doi.org/10.
1145/3079856.3080222

[41] Y. et al., “Don’t forget the i/o when allocating your llc,” in 2021
ACM/IEEE 48th Annual International Symposium on Computer Archi-
tecture (ISCA), 2021, pp. 112–125.

[42] C. Kyrkou and T. Theocharides, “A parallel hardware architecture
for real-time object detection with support vector machines,” IEEE
Transactions on Computers, vol. 61, no. 6, pp. 831–842, 2012.

[43] T. Moscibroda and O. Mutlu, “Memory performance attacks:
Denial of memory service in Multi-Core systems,” in 16th
USENIX Security Symposium (USENIX Security 07). Boston,
MA: USENIX Association, Aug. 2007. [Online]. Available:
https://www.usenix.org/conference/16th-usenix-security-symposium/
memory-performance-attacks-denial-memory-service-multi

[44] S. Pakalapati and B. Panda, “Bouquet of instruction pointers: In-
struction pointer classifier-based spatial hardware prefetching,” in 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA), 2020, pp. 118–131.

[45] B. Panda, “Fooling the sense of cross-core last-level cache eviction based
attacker by prefetching common sense,” in 2019 28th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT),
2019, pp. 138–150.

[46] M. Payer, “Hexpads: A platform to detect ”stealth” attacks,”
in Engineering Secure Software and Systems - 8th International
Symposium, ESSoS 2016, London, UK, April 6-8, 2016. Proceedings,
ser. Lecture Notes in Computer Science, J. Caballero, E. Bodden, and
E. Athanasopoulos, Eds., vol. 9639. Springer, 2016, pp. 138–154.
[Online]. Available: https://doi.org/10.1007/978-3-319-30806-7 9

[47] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2018,
pp. 775–787.

[48] M. K. Qureshi, “New attacks and defense for encrypted-address cache,”
in Proceedings of the 46th International Symposium on Computer
Architecture, ser. ISCA ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 360–371. [Online]. Available:
https://doi.org/10.1145/3307650.3322246

[49] G. Saileshwar and M. Qureshi, “{MIRAGE}: Mitigating conflict-
based cache attacks with a practical fully-associative design,” in 30th
{USENIX} Security Symposium ({USENIX} Security 21), 2021.

[50] B. C. Schwedock and N. Beckmann, “Jumanji: The case for dynamic
NUCA in the datacenter,” in 53rd Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2020, Athens, Greece,
October 17-21, 2020. IEEE, 2020, pp. 665–680. [Online]. Available:
https://doi.org/10.1109/MICRO50266.2020.00061

[51] Y. Yarom and K. Falkner, “Flush+ reload: A high resolution, low noise,
l3 cache side-channel attack,” in 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014, pp. 719–732.

12

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://doi.org/10.1145/2086696.2086714
https://www.usenix.org/conference/usenixsecurity20/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity20/presentation/dessouky
https://doi.org/10.1145/1815961.1815971
https://www.usenix.org/conference/woot19/presentation/kumar
https://www.usenix.org/conference/woot19/presentation/kumar
https://doi.org/10.1145/3466752.3480119
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/3079856.3080222
https://doi.org/10.1145/3079856.3080222
https://www.usenix.org/conference/16th-usenix-security-symposium/memory-performance-attacks-denial-memory-service-multi
https://www.usenix.org/conference/16th-usenix-security-symposium/memory-performance-attacks-denial-memory-service-multi
https://doi.org/10.1007/978-3-319-30806-7_9
https://doi.org/10.1145/3307650.3322246
https://doi.org/10.1109/MICRO50266.2020.00061

	Introduction
	Background
	Threat Model
	LLC Contention Attacks
	Recent Advancements
	LLC Contention Attack Detectors
	Motivating observations

	Avenger: Isolating the Attacker
	Avenger in Action
	Design Choices
	Security Guarantee

	Evaluation
	Performance and energy overhead

	Related Work
	Conclusion
	Acknowledgement
	References

