
Making the Case for Stealthy, Reliable,
and Low-overhead Android Malware

Detection and Classification

A thesis submitted

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy

by

Saurabh Kumar

15211267

to the

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

June 2022

https://skmtr1.github.io/
https://cse.iitk.ac.in/
https://www.iitk.ac.in/

Declaration

This is certified that the thesis entitled “Making the Case for Stealthy, Reliable,

and Low-overhead Android Malware Detection and Classification” has been au-

thored by me. It presents the research conducted by me under the supervision of Prof.

Sandeep K. Shukla (IITK) and Prof. Biswabandan Panda (IITB). To the best of

my knowledge, it is an original work, both in terms of research content and narrative, and

has not been submitted elsewhere, in part or in full, for a degree. Further, due credit has

been attributed to the relevant state-of-the-art and collaboration (if any) with appropriate

citations and acknowledgements, in line with established norms and practices.

Saurabh Kumar

Program: Doctor of Philosophy

Department of Computer Science & Engineering

Indian Institute of Technology Kanpur

Kanpur 208016

June 2022

iii

Department or School Web Site URL Here (include http://www.iitk.ac.in/cse)
https://www.iitk.ac.in/

Abstract

Name of the student: Saurabh Kumar Roll No: 15211267

Degree for which submitted: Doctor of Philosophy

Department: Computer Science & Engineering

Thesis title: Making the Case for Stealthy, Reliable, and Low-overhead

Android Malware Detection and Classification

Name of Thesis supervisors:

1. Prof. Sandeep K. Shukla, Professor, Dept. of CSE, IIT Kanpur

2. Prof. Biswabandan Panda, Assistant Professor, Dept. of CSE, IIT Bombay

Month and year of thesis submission: June 2022

The increased popularity and wide adoption of Android as a mobile OS platform have ren-

dered the platform a primary target for malware attackers. Because of the rapid increase

in malware numbers, variations, and diversity, detection and classification of Android mal-

ware have become challenging. In the recent years, a large number of automatic malware

detection and classification systems have been evolved to deal with the dynamic nature of

malware growth. Much of these are based on employing static, dynamic, or both analysis

methodologies. Even though a good number of malware analysis systems are available,

malware often finds its way to be unleashed into a device, bypassing the defense system

of the application store (Play Store). It is conceivable because the Play Store’s security

systems based on existing dynamic analysis frameworks have two fundamental flaws: they

lack flawless anti-emulation-detection protection and efficient cross-layer profiling capabili-

ties. Additionally, Android allows the installation of an application from unverified sources

auch as third-party markets or sideloading, enabling another way to infect a mobile device.

iv

v

Moreover, malware detection has received more attention than family identification in the

past, which is also essential to speed up recognizing and mitigating a known strain. This

thesis develops strategies for detecting and classifying Android malware that is stealthy

and reliable. These strategies when implemented are low-overhead.

We first present InviSeal, a comprehensive and scalable dynamic analysis framework

with low-overhead cross-layer profiling approaches and a detailed anti-emulation-detection

mechanism to protect the defense system of an application store. We empirically demon-

strate that InviSeal has a very low-overhead when compared to the existing approaches to

achieving cross-layer profiling. We also show the capability of InviSeal to thwart emulation-

detection by malware and detect collusion attacks through cross-layer profiling.

Next, we present an on-device malware detection system (DeepDetect). DeepDetect em-

ploys a machine learning model based on static features since a foolproof security system

of an application store does not stop users from installing applications from untrusted

sources. DeepDetect takes ∼5.32 seconds to identify an Android application as malware

on a real device while achieving a more than 97% malware detection rate. Furthermore,

DeepDetect consumes 0.45% of total device energy in analyzing 50 applications.

Finally, we present MAPFam, a malware family classification framework that learns a

machine learning model to categorize Android malware into families. The proposed family

identification framework achieves more than 97% accuracy for the top 60 malware families

with a 97.55% model reliability rate. Moreover, the MAPFam model can perfectly identify

36 malware families out of 60.

Acknowledgements

I would like to express my sincere gratitude to my thesis advisors Prof. Sandeep K. Shukla

and Prof. Biswabandan Panda for their constant support and guidance. Their inputs

throughout the course of the thesis work were extremely beneficial and constructive.

I would also like to thank Prof. Debadatta Mishra for his valuable comments and feedback,

which was extremely useful for improving my research work.

I would like to acknowledge my fellow graduate students and members of KD-222 lab for

their feedback.

I would also like to thank my family. Without their support and encouragement, this

accomplishment would not have been possible. I would also like to thank my friends for

always being there whenever I needed them.

vi

Contents

Acknowledgements vi

List of Figures xi

List of Tables xiii

Abbreviations xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem . 2

1.3 Our Goal . 3

1.4 Our approach . 4

1.5 Contributions . 5

1.6 Thesis Organization . 7

2 Background and Related Work 8

2.1 Android Background . 8

2.1.1 Android Platform Architecture . 8

2.1.2 Android Application Package (APK) 10

2.1.3 Android Security Architecture . 12

2.1.4 Base Transceiver Station (BTS) . 13

2.2 Android Malware . 14

2.2.1 Evolution of Mobile Malware . 15

2.3 Android Malware Analysis Approaches . 18

2.3.1 Static Analysis . 18

2.3.2 Dynamic Analysis . 18

2.3.3 Hybrid Analysis . 19

2.3.4 Analysis Techniques . 19

2.4 Countering the Malware Analysis Process 23

2.4.1 Obfuscation Techniques . 23

vii

Contents viii

2.4.2 Dynamic Code Loading . 25

2.4.3 Packed Malware . 26

2.4.4 Platform Sensing Malware (Emulation-Detection) 26

2.5 Observations . 27

2.5.1 Anti-Emulation-Detection Capabilities 27

2.5.2 Cross-layer Profiling . 27

2.5.3 On-device Malware Detection . 28

2.5.4 A Lack of Representative Dataset 28

2.5.5 Focus on Family Identification . 28

2.6 Summary . 29

3 Datasets and Tools 30

3.1 Tools and Libraries . 30

3.1.1 Emulation Detection Library (EmuDetLib) 30

3.1.2 Obfuscapk . 37

3.1.3 Androguard . 37

3.1.4 DexLib2 . 38

3.2 Datasets . 38

3.2.1 D1:Base-Dataset (2012-2018) . 39

3.2.2 D2:AndroZoo-2019 . 39

3.2.3 D3:Pegasus . 40

3.2.4 D4:Obfuscated . 40

3.2.5 D5:Biases-Free . 41

3.3 Summary . 42

4 InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 43

4.1 Introduction . 44

4.2 Relevant Background . 47

4.2.1 Xposed Framework . 47

4.3 Motivation . 49

4.3.1 Anti-Emulation-Detection . 49

4.3.2 System Call Monitoring . 52

4.3.3 Memory Forensics . 54

4.4 STDNeut: Design & Implementation . 55

4.4.1 Realistic Sensor Data Generation . 55

4.4.2 STDNeut Overview . 59

4.4.3 Extensions to the Android Emulator 61

4.4.4 STDNeut Controller . 62

4.5 ARTmon: Monitoring Framework APIs . 64

4.6 SysCallMon: System Call Monitor . 65

4.6.1 Implementation . 66

4.7 InviSeal: Building the System . 68

4.7.1 Why An Integrated Solution is Required? 68

4.7.2 An Overview . 69

Contents ix

4.8 Evaluation . 71

4.8.1 Performance Overhead Analysis . 71

4.8.2 Validation of Proposed Anti-Emulation-Detection Measures 72

4.8.3 InviSeal Use Cases . 76

4.9 Related Work . 79

4.10 Discussion and Future Directions . 81

4.10.1 Future Directions . 84

4.11 Summary . 85

5 DeepDetect: A Practical On-device Android Malware Detector 87

5.1 Introduction . 87

5.2 Feature Extraction . 91

5.2.1 Type of Features . 91

5.2.2 On-device Efficient Feature Extraction: 94

5.3 Feature Engineering . 95

5.3.1 Feature Selection and Encoding . 96

5.3.2 Category-wise Feature Reduction . 97

5.3.3 Feature Reduction from Combined Feature Set. 100

5.4 DeepDetect: Building the System . 102

5.4.1 Overview . 102

5.4.2 Learning Model . 103

5.4.3 On-device Detection . 103

5.5 Evaluation . 105

5.5.1 Performance Comparison of Features 105

5.5.2 Performance Against Known, Unseen, and New Samples 107

5.5.3 Evaluation Against Obfuscated Malware 108

5.5.4 Evaluation After Elimination of Experimental Biases Across Space
and Time . 109

5.5.5 Runtime Efficiency . 110

5.5.6 Discussion and Limitations . 111

5.6 Related Work . 113

5.7 Summary . 115

6 MAPFam: Android Malware Family Classification 116

6.1 Introduction . 116

6.1.1 The Hypothesis . 118

6.1.2 Testing the Hypothesis . 118

6.2 Android Malware Dataset (AMD) . 119

6.3 Design . 120

6.3.1 An Overview . 121

6.3.2 Feature Extraction and Encoding . 121

6.3.3 Feature Selection (RFECV): . 124

6.3.4 Learning Model . 124

6.4 Evaluation . 125

Contents x

6.4.1 Performance Comparison of Features 125

6.4.2 Evaluation Against Unknown Malware Family with Different Clas-
sifiers . 127

6.4.3 Detection of an Individual Malware Family 128

6.4.4 Discussion and Limitations . 129

6.5 Related Work . 130

6.6 Summary . 132

7 Conclusion and Future Work 134

7.1 Conclusion . 134

7.2 Future Directions . 136

A Additional Information of DeepDetect 138

A.1 Features Used in DeepDetect . 138

A.2 Additional Experiments and Results . 139

A.2.1 Performance Comparison of Features 140

A.2.2 Performance Against Known, Unseen, and New Samples 140

A.2.3 Performance of Restricted APIs and 2-Gram Opcode Sequence with
Multiple Classifier . 140

A.2.4 Run-time Efficiency . 141

A.2.5 Feature Importance . 142

B Additional Information of MAPFam 145

B.1 Features Used in MAPFam . 145

Bibliography 148

Publications 163

List of Figures

1.1 Development of new Android malware every year [1]. 2

1.2 Stack holders of the system that are benefiting from the different contribu-
tions of this thesis (Chapter-wise). 5

2.1 Android Platform Layered Architecture [2]. 9

2.2 Android application package (APK) and its components 10

2.3 Application sandboxing in Android . 12

2.4 Timeline of mobile malware . 16

4.1 Workflow of Xposed hook framework. 47

4.2 Droidmon design using Xposed framework hooks. 48

4.3 Storage overhead of strace based system call logging w.r.t. ideal (targeted)
logging using CaffeineMark (CM) along with background apps (BG) and a
web browser (WB). The lower the better. 53

4.4 An example of sensor’s dependency graph. Sensor S11 in shaded box repre-
sents a new sensor introduced in the system. 56

4.5 Architecture of STDNeut, an anti-emulation-detection system along with
the STDNeut controller. 60

4.6 ARTmon design using Xposed Framework. 64

4.7 Working of anti-emulation-detection using ARTmon 65

4.8 High-level view of SysCallMon module. 66

4.9 SysCallMon module work-flow. 67

4.10 Architecture of InviSeal, a stealthy dynamic analysis framework for Android
systems. 69

4.11 System slowdown w.r.t baseline (original Android emulator) due to the
profiling overheads in different settings using CaffeineMark-3.0 benchmark
score. The lower the better. 72

4.12 Effectiveness of InviSeal in neutralizing emulation detection using sensors
by providing random reading for accelerometer and magnetometer. 73

4.13 GPS latitude and longitude reading with anti-emulation measures by feeding-
in realistic data along with associated BTS. GPS denotes path trajectory
generated using the path patching algorithm. 74

4.14 Detecting collusion attack using cross layer profiling. Dotted lines separate
the framework and native layers. 76

5.1 Flow of feature engineering module. 96

xi

List of Figures xii

5.2 Category-wise feature reduction process. 97

5.3 Optimal #features Vs accuracy graphs for requested permissions. 99

5.4 AUC-ROC curve for the model build on various feature extracted from Dex
file. UP: Used Permission, SA: Sensitive APIs, RA: Restricted APIs and
USR: Combined features (UP, SA and RA). #Feat: Number of Features. . 106

5.5 Detection results after removing experimental bias (Space and Time). . . . 109

5.6 Estimation of feature extraction time and device battery consumption of (i)
1-Gram, (ii) 2-Gram, (iii) 3-Gram, (iv) Used Permissions (UP), (v) Suspi-
cious APIs (SA), (vi) Restricted APIs (RA), and (vii) USR (Combined UP,
SA and RA). 111

6.1 Architecture of learning malware family classification model. 121

6.2 Feature selection using RFECV. 124

6.3 Accuracy and Cohen’s Kappa score for the model build on different features
(i) restricted APIs (RAPI), (ii) requested permission (PER), and (iii) API
package (PKG). 126

6.4 Evaluation of final model against unknown malware family with different
classifiers. 128

6.5 Performance of final model for detecting individual Android malware family. 128

A.1 AUC-ROC curve for the final model evaluated against the known, unseen
and new samples. 140

A.2 Execution time of an app with different techniques (i) 1-Gram, (ii) 2-Gram,
(iii) 3-Gram, (iv) Used Permissions (UP), (v) Suspicious APIs (SA), (vi)
Restricted APIs, and (vii) USR (Combined UP, SA and RA). 141

A.3 Importance of features for malware detection. Figure A.3(a) shows impor-
tance of top 30 requested permissions while Figure A.3(b) shows importance
of 2-Gram opcode sequence. 142

A.4 Importance of features for malware detection with new sample (AndroZoo-
2019). Figure A.4(a) shows importance of top 30 requested permissions
while Figure A.4(b) shows importance of 2-Gram opcode sequence. 143

A.5 Importance of features for malware detection with obfuscated samples. Fig-
ure A.5(a) shows importance of top 30 requested permissions while Figure
A.5(b) shows importance of 2-Gram opcode sequence. 144

List of Tables

3.1 Classification of emulation-detection techniques. 31

3.2 Obfuscators implemented in Obfuscapk [3] tool. 37

3.3 Number of malware and benign samples collected from different sources for
base dataset D1:2012-2018, where hyphen (–) denotes that samples are not
available. 39

3.4 Category-wise obfuscated malware samples. 41

3.5 Quarter-wise statistics of the Biases-Free dataset. 41

3.6 Datasets Summary . 42

4.1 Defense mechanisms provided by existing dynamic analysis tools against
different types of emulation-detection methods EmuDetLib. 50

4.2 Evaluation of existing framework against real malware sample. 50

4.3 Device information provided by InviSeal with three different AVDs execut-
ing the same app. 75

4.4 Categories wise average difference between initial and final memory dump . 78

4.5 Dynamically loaded file extracted from the memory dump 79

5.1 Reduced instruction set with description. 93

5.2 Effect of feature selection & encoding on extracted features. 94

5.3 Terminology used in feature engineering. 98

5.4 Effect of Pearson coefficient threshold (CORt) on Accuracy (Acc) and #Fea-
tures (#Feat). 98

5.5 Effect of RFEt threshold on Accuracy (Acc) and #features. 100

5.6 Effect of combining different feature set. 101

5.7 Elimination of feature from combined feature set. 102

5.8 Evaluation of final model with known, unseen, new and Pegasus samples. . 107

5.9 Evaluation of final model against obfuscated malware. 108

5.10 Android apps used for runtime performance and device energy consumption. 110

6.1 Distribution of malware family in the dataset. 120

6.2 Encoding scheme of static features extracted from Manifest file and Dex code.122

A.1 Evaluation of various feature extracted from Dex file. UP: Used Permission,
SA: Sensitive APIs, RA: Restricted APIs and USR: Combined features (UP,
SA and RA). 140

A.2 Comparison of 2-Gram opcode sequence (2-Opc) with restricted APIs . . . 141

xiii

Abbreviations

Acc Accuracy

ADB Android Debug Bridge

AOSP Android Open Source Project

API Application Programming Interface

APK Android Package

App Application

ART Android Runtime

AT ATtention

AUC Area Under the Curve

AV AntiVirus

AVD Android Virtual Device

BTS Base Transceiver Station

DIFT Dynamic Information Flow Tracking

CID Cell ID

CM CaffeineMark

DT Decision Tree

DVM Dalvik Virtual Machine

ELF Executable and Linkable Format

ET Extra Tree

F1 F1 Score

FPR False Positive Rate

xiv

Abbreviations xv

GPS Global Positioning System

HAL Hardware Abstraction Layer

ID Identification

IDC International Data Corporation

IMEI International Mobile Equipment Identity

IMSI International Mobile Subscriber Identity

JNI Java Native Interface

JVM Java Virtual Machine

LAC Location Area Code

LiME Linux Memory Extractor

LR Logistic Regression

MCC Mobile Country Code

MNC Mobile Network Code

NDK Native Development Kit

NN Neural Network

NOP No Operation

Opc Opcodes

OS Operating System

PID Process ID

PM Package Manager

Pre Precision

RA Restricted APIs

Rec Recall

RF Random Forest

RFE Recursive Feature Elimination

RFECV Recursive Feature Elimination with Cross Validation

ROC Receiver Operating Characteristic

RP Requested Permission

SA Sensitive APIs

Abbreviations xvi

SC System Commands

SDK Software Development Kit

SIM Subscriber Identification Module

STDNeut Sensor, Telephony system, and Device state information Neutralizer

TAC Type Allocation Code

TPR True Positive Rate

UDI Unique Device Information

UID User ID

UP Used Permission

VH Voting classifier in Hard mode

VM Virtual Machine

VS Voting classifier in Soft mode

WB Web Browser

Chapter 1

Introduction

In recent years, Android has become one of the most popular operating systems (OSes) for

smartphones because of its open-source nature and large support for different applications

(apps). Recently, a report shared by the International Data Corporation (IDC) USA for

smartphone OSes shows that the Androids’ market share in the second quarter of 2021 was

83.8%, and predicts that it will acquire 84.9% of the market share by 2025 [4]. Because it is

open-source and easy to use, it has piqued the interest of manufacturers worldwide in pro-

ducing inexpensive mobile devices compared to other platforms. Furthermore, Android is

gaining popularity in devices other than smartphones, including Tablets, TVs, Wearables,

and, most recently, IoT devices. Moreover, the simplicity of the Android framework with

regard to app development has resulted in substantial growth in the number of mobile

apps developed worldwide. A study from Statista shows that every day more than 3.5K

Android apps were released in the year 2020 [5].

1.1 Motivation

With the large-scale adaptation of Android OS and ever-increasing contributions in the

Android app space, security has become a non-trivial challenge recently. According to

the AV-TEST study, approx 3.39 million new Android malware (see Figure 1.1) were

1

Chapter 1. Introduction 2

discovered in 2021 [1]. This shows that more than 9.2K new malware for the Android

platform was created each day in 2021 [1]. Because of the rapid development in malware

numbers, variations, and diversity, detection and classification of Android malware have

become challenging.

2013 2014 2015 2016 2017 2018 2019 2020 2021
0.00

1.25

2.50

3.75

5.00

6.25

7.50

Ne
w

Sa
m

pl
es

 (m
illi

on
s)

0.
94 1.
02

2.
57

6.
13 6.
2

5.
54

3.
2

3.
13 3.
39

Figure 1.1: Development of new Android malware every year [1].

1.2 Problem

In recent years, a large number of automatic malware detection and classification systems

([6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]) have evolved to tackle the dynamic nature

of malware growth using either static, dynamic, or both analysis techniques [19]. These

systems generally operate offline on a server machine and are deployed on an app store like

Google Play Store. Even though a vast majority of malware analysis systems are available,

malware often finds a way to be unleashed into a device bypassing the defense system of

an app store. For example, Google Play Protect which is used to certify Android apps,

fails to detect malware that spread across 85 different apps affecting nine million Android

devices [20]. The possible reasons using which malware may infect a device are as follows:

(i) Defense systems built around existing dynamic analysis frameworks deployed on

the app store suffer from two major issues. First, they do not provide foolproof

anti-emulation-detection measures. Second, they lack efficient cross-layer profiling

capabilities. Malware generally exploits these vulnerabilities to bypass the defense

Chapter 1. Introduction 3

tactics adopted by the app stores to enter the market and subsequently into a device.

Therefore, a stealthy dynamic analysis system is needed so that malware writers find

it difficult to bypass the defense system of an app store.

(ii) Android allows the installation of an app from unverified sources (e.g., third-party

market and sideloading), which opens up other ways for malware to infect the smart-

phones. Therefore, deploying the security system only at the app store does not solve

the entire problem. Hence, there is a need for a low-overhead on-device malware de-

tection system.

(iii) Moreover, identifying the malware family is as important as detecting the malware.

Malware detection has traditionally received more attention than family identifica-

tion. Aside from detecting malware, classifying the malware’s family allows security

analysts to reuse malware removal techniques that have been proven to work for that

family of malware. Family information also helps in the articulation of the damages

done by malware. Therefore, we must pay equal attention to malware family iden-

tification as we do to malware detection.

1.3 Our Goal

We believe that if a stealthy, reliable, and low-overhead malware detection and classifi-

cation process are present. It will automatically address the present scale and dynamic

nature of malware growth. Therefore, we should concentrate on developing a process/sys-

tem that makes it difficult for a clever malware creator to infiltrate the app store and mobile

devices. Moreover, we would like to emphasize the need for a validation mechanism to

understand the effectiveness of the same.

Chapter 1. Introduction 4

1.4 Our approach

To make the case of stealthy, reliable, and low-overhead malware detection and classifica-

tion process, we use the following approach:

(i) Validation Mechanism: We design an emulation-detection library that can arm

several existing and new malware to study the efficacy of existing dynamic analysis

frameworks. Furthermore, with the outdated dataset, it is hard to measure the

efficiency of malware detectors with the current state of app design strategy and

evasion techniques. Hence, we create multiple datasets that reflect the current state

of evasion techniques and the app design paradigm.

(ii) Stealthy dynamic analysis system: As discussed earlier, malware detection is

generally performed by the app stores in an offline manner using the emulated plat-

form. We use emulation-detection library to arm several existing malware with

different levels of emulation-detection capabilities and study the efficacy of anti-

emulation-detection measures of well known dynamic analysis frameworks. Further,

using the findings of our analysis, we develop a stealthy dynamic analysis framework

with cross-layer profiling capabilities.

(iii) Low-overhead on-device malware detection: We carefully select relevant fea-

tures using a feature engineering framework to create a lightweight malware detec-

tion model to design a low-overhead on-device malware detector. Additionally, most

of the time-consuming steps in malware detection are feature extraction processes.

Hence, we design an energy-efficient feature extraction module for a real device.

Finally, we build an on-device malware detector and evaluate its efficacy against

multiple datasets, including obfuscated and Pegasus malware samples.

(iv) Reliable family classification framework: To create a reliable malware family

classification framework, we experimentally evaluate the efficacy and reliability of

Chapter 1. Introduction 5

different features. We then design an accurate and reliable malware family classifi-

cation framework by considering the best features, followed by an evaluation of the

final framework.
A

pp
 D

ev
el

op
er

s
m

al
ic

io
us

 o
r b

en
ig

n

G

at
e

K
ee

pe
rs

App Markets Malware Analyst

Chapter 3: Emulation-detection
library

Chapter 3: AndroOBFS Dataset

Chapter 4, 5, 6: InviSeal,
DeepDetect, and MAPFam
(both App Markets and
Analyst)

Chapter 5: DeepDetect

En
d-

us
er

 p
ho

ne

Stack Holders Thesis contribution
(Chapters)

Figure 1.2: Stack holders of the system that are benefiting from the different contribu-
tions of this thesis (Chapter-wise).

1.5 Contributions

In this thesis, we make four major contributions. Figure 1.2 shows the different stack

holders of the systems that benefit from the contributions of this thesis. The contribution

that we made are as follows:

(i) We design an emulation-detection library encompassing several advanced detection

techniques like distributed detection and GPS information. The library can be con-

figured with varying levels of emulation-detection methods and can be seamlessly

embedded into different malware. Furthermore, we create multiple datasets, includ-

ing an up-to-date obfuscated malware and all the potential biases-free dataset. We

also create a dataset that includes samples of Pegasus malware. (Chapter 3)

Chapter 1. Introduction 6

(ii) InviSeal, a stealthy dynamic analysis framework: We design InviSeal, a

comprehensive and scalable dynamic analysis framework that includes low-overhead

cross-layer profiling techniques and detailed anti-emulation-detection measures along

with the basic emulation features. While providing an emulator-based comprehensive

analysis platform, InviSeal strives to remain behind-the-scenes to avoid emulation-

detection. We empirically demonstrate that the proposed OS layer profiling utility

to achieve cross-layer profiling incurs very little performance overhead compared to

existing approaches. Further, we show the capability of InviSeal to thwart emulation

detection by malware and detect collusion attacks through cross-layer profiling by

using several use cases and experiments. (Chapter 4)

(iii) DeepDetect, low-overhead on-device malware detector: DeepDetect enables

on-device malware detection by employing a machine learning based model on static

features. With effective feature engineering, DeepDetect can be used on-device. To

classify an Android app as malware, it takes ∼5.32 seconds, which is 2.23X faster

than API based malware detector, while consuming 0.45% (for 50 apps) of total

device energy. DeepDetect provides a malware detection rate of 99.9% for known

malware with a 0.01% false-positive rate. For unseen/new samples, it detects more

than 97% malware with a false-positive rate of 1.73%. Further, in the presence of

obfuscated malware, DeepDetect correctly detects 95.57% of malware samples. We

also evaluate our model against the Pegasus malware sample and with a new dataset

after removing the potential biases across space and time. (Chapter 5)

(iv) MAPFam, malware family classification framework: The main aim of this

work is to classify an Android malware into its family. This work is premised on a

starting hypothesis that features extracted from API packages rather than API calls

lead to more precise classification. Our experiments indeed shows that API package

based model provides ∼1.63X more accurate classification compared to an API call

based method. Our machine learning based malware family classification system uses

API packages, requested permissions, and other features from the Manifest files. The

proposed family classification system achieves accuracy and average precision above

Chapter 1. Introduction 7

97% for the top 60 malware families by using only 81 features with 97.55% of model

reliability rate (Kappa score). The experimental results also shows that MAPFam

can perfectly identity 36 malware families. (Chapter 6)

1.6 Thesis Organization

This thesis is organized into seven chapters, including this one, which introduces the topic

and states the problem. The rest of the thesis is structured as follows.

Chapter 2 discusses the background of Android OS, Android application package, and

security architecture. After that, it introduces mobile malware, malware analysis tech-

niques, and limitations. Finally, it made some observations that serve as the foundation

key points for this thesis.

Chapter 3 elaborates on the design of the emulation-detection library and datasets created

to evaluate an analysis framework.

Chapter 4 shows the empirical analysis of the existing dynamic analysis framework against

the emulation-detection library. Then it presents InviSeal, a stealthy dynamic analysis

framework with cross-layer profiling capabilities.

Chapter 5 discusses the design of DeepDetect, an on-device malware detector. First, it

discusses the challenges of designing such a system and how to handle them. Finally, it

presents DeepDetect, followed by its evaluation.

Chapter 6 presents a malware family classification framework MAPFam, and why such a

system is required.

Finally, Chapter 7 concludes this thesis and provides directions for future work.

Chapter 2

Background and Related Work

Android is an open-source mobile OS based on the Linux kernel, which Google has devel-

oped. This chapter provides an overview of the Android OS & app, mobile malware &

their evolution, tools & techniques to analyze them, and counter analysis techniques. At

last, we provide some observations based on our study on malware analysis techniques.

2.1 Android Background

In this section, we discuss the Android platform architecture, security architecture of

Android, and Android application package. After that, we provide an overview of the

Base Transceiver Station (BTS) as a smartphone frequently communicates with it.

2.1.1 Android Platform Architecture

Android is a Linux-based open-source software stack for mobile devices. The Android

platform comprises of six major components (Figure 2.1): the Linux Kernel, Hardware

Abstraction Layer (HAL), native libraries, Android runtime, Application framework (Java

API Framework), and Application layer (default apps or third-party apps) [2]. Working

of each component is as follows:

8

Chapter 2. Background and Related Work 9

Linux Kernel (Modified)

Native Libs
(C/C++)

Android Runtime
(Dalvik/ART)

Application Framework

Default Apps

Contact
 SMS

Hardware Abstraction Layer

Third party Apps

linkedin
 paytm

Figure 2.1: Android Platform Layered Architecture [2].

(i) Linux Kernel: Linux OS (a.k.a. Linux Kernel) is the basis of the Android Platform.

The Android virtual machine (ART/DVM) depends on the Linux Kernel for essential

functions like managing memory, threads, power management, etc. Android uses many of

Linux’s key security features, such as process-level isolation, user-group-based file permis-

sions for separating privileges, etc.

(ii) Hardware Abstraction Layer (HAL): The HAL exposes device hardware capabil-

ities to the Application Framework through standard interfaces. The Linux kernel system

call APIs are used to implement the HAL layer. When a framework API makes its first

call to access the device hardware, the Android system loads the corresponding library

module.

(iii) Native Libraries: Many essential Android features and services, such as ART and

access to HAL APIs, rely on methods supplied by native C/C++ libraries. The Android

platform also has Java framework APIs that allow Apps to access the functionality of

some of these native libraries. Some of these Java framework APIs include media server

framework, SQLite Database, and Libs (bionic).

(iv) Android Runtime: It is the app runtime of the Android, a virtual machine similar

to JVM. The difference between Android Virtual Machine (ART) and JVM is as follows:

JVM is a stack based virtual machine whereas ART is a register based. Therefore, ART

incurs less performance overhead as compared to the JVM. Android uses two types of

Chapter 2. Background and Related Work 10

virtual machines: Dalvik virtual machine (Android version < 5) and ART (recent Android

releases).

(v) Application Framework: It provides the Java API to facilitate app development in

the Android mobile platform. For example, application framework provides APIs to use

view system objects like button, text view, list control etc. It also provides APIs to access

information from resource manager, activity manager etc.

(vi) Application Layer: This layer contains actual Android apps. There are two types

of apps available with Android: system (default) apps and third-party apps. System apps

are developed by device vendor and shipped with the device (e.g., contacts, browser). On

the other hand, third-party apps are the custom build apps and hosted on the market

(play store) from where a device user can install depending on her requirements (e.g.,

WhatsApp and Uber). Note that, system Apps have higher privileges compared to the

third-party apps.

2.1.2 Android Application Package (APK)

The Android application package is commonly known as an APK. An app developer uses

Android Studio or another toolchain (Cordova [21], Ionic framework [22], and others)

to create Android apps. The final result of the app development process is an APK. It

comprises of five major components [23], as illustrated in Figure 2.2. The description of

these components are follows.

Native Libs
 Resources META-INF Application
Manifest

Classes.dex

Figure 2.2: Android application package (APK) and its components

Chapter 2. Background and Related Work 11

(i) Dex File (Classes.dex): Dex file stores the main execution logic of an app. The

entire logic of an app can be kept in a single Dex file or split across multiple Dex files.

Generally, a Dex file is made up of four components, which are as follows:

• Activities: An activity represents a single screen through which a user can interact

with the app.

• Content Providers: A content provider supplies data from one app to another on

request.

• Services: These are the processes that keep running in the background without any

need for interaction with the user. These services work even when the app is not

running.

• Broadcast Receivers: A broadcast receiver listens for messages sent out by other

apps or the system itself. People often call these messages events or intents. For

example, if our phone receives a short message service (SMS), a broadcast receiver

can listen to it and do something in response to the SMS.

(ii) Native Libs: At times, a piece of code written in C/C++ is included in the native

library. To invoke a native function in an Android app, Java Native Interface (JNI) is

used.

(iii) Resources: Elements such as images, strings, color value, etc., used in an app fall

under the category of resources.

(iv) META INF: It contains meta-information about an app. It also holds the public

key of the signing certificate, which is used to verify the integrity of an app.

(v) Application Manifest: Each app contains an Application manifest file named as

AndroidManifest.xml [24]. It stores all the information about an app like receivers, content

providers, activities, permissions, capabilities used, etc. All components need to be regis-

tered in this file. If a component is not present in the Manifest file, then its functionality

would not be visible to Android.

Chapter 2. Background and Related Work 12

2.1.3 Android Security Architecture

In this section, we look into the security features provided by the Android OS regarding

Application Isolation (Sandbox) and the concept of Permissions and least privilege.

2.1.3.1 Application Sandbox

The Application Sandbox governs an app’s access right to the system resources. Each app

in Android executes in an isolated environment, so it cannot access the data of other apps.

Proper access rights are required if an app wants to access other app resources. Generally,

access rights to other resources are associated with the permission. Hence, individual

permissions must be declared in the Android manifest file.

Android uses the Linux user ID model for the app isolation. Each app runs as a sep-

arate user assigned to it during the installation. Android forks a new virtual machine

(ART/DVM) when an app is ready for execution, and the corresponding user ID is then

associated with the forked virtual machine. Figure 2.3 shows the Android sandbox archi-

tecture.

Kernel

syscalls

App Code

+ Library Code

Core Library
 Native Code

UID A

JN
I

Figure 2.3: Application sandboxing in Android

In Figure. 2.3, the Classes.dex file contains executable dex code that ART executes. This

code is generally written in Java/Kotlin and converted into the dex bytecode so that ART

can execute it. If an app contains native code, this code lies outside the virtual machine

boundary. The ART takes the help of Java Native Interface (JNI) to use the functionality

available in native code. JNI is the bridge between Java/Kotlin and native code.

Chapter 2. Background and Related Work 13

2.1.3.2 Permissions

To access other resources which do not belong to an app is provided on the basis of

permissions. In Android, each permission has a protection level, which describes a protocol

for granting permission to the app. Permissions protection level is classified into four

categories, as follows [25]:

• Normal: These permissions are given to an app when an app gets installed. These

permissions protect such resources that are not related to user privacy.

• Dangerous: These permissions pertain to resources that directly or indirectly in-

fringe on the privacy of end-users, such as GPS and SMS. For Android versions less

than 6.0, these permissions are granted to an app at the time of installation, but from

version 6.0 and above, a user can adjust these permissions after app installation.

• Signature: Android grants these permissions only if the app asking for them is

signed with the same certificate as the app that declared the permission.

• SignatureOrSystem: These permissions are similar to the signature protection

level, except that the app signing certificate is the same as the certificate used to

sign the Android OS image.

2.1.4 Base Transceiver Station (BTS)

BTS [26] is a piece of wireless communication equipment that establishes communication

between a mobile device and a network. The BTS is associated with a base station ID

that uniquely identifies a BTS worldwide. Base station ID comprises of four components:

(i) mobile country code (MCC), (ii) mobile network code (MNC), (iii) location area code

(LAC), and (iv) a cell ID (CID). A combination of these gives a unique identity to a BTS.

Several commercial and public services are available which provides the geo-location of a

cell by submitting its station’s unique ID [27].

Chapter 2. Background and Related Work 14

2.2 Android Malware

With the large-scale adaptation of Android OS and ever-increasing contributions in the

Android app space, the focus of attackers and malware authors on the Android platform

has also increased significantly. Android malware primarily targets smartphones to in-

filtrate users’ sensitive data or to cause inconvenience by remotely taking control of the

infected device and subscribing to premium services. It can also involve infected devices

in large-scale attacks such as Denial of Service (DoS). Another concern is ransomware,

which encrypts users’ data and demands a ransom payment to restore access. In Android,

the permissions system defines access rights to the resources (as previously discussed).

Most Android malware writers utilize phishing or social engineering to deceive users into

accepting permissions that are then misused by the malicious app. Furthermore, malware

writers are taking the task of creating malware to new heights. Nowadays, malware are

becoming more sophisticated and impactful. These malware are disguised as harmless and

useful apps. Following are some common types of malware [28]:

• Worm - Worms are a type of malware that replicates itself in order to infect other

devices. Worms do not require any user interaction to execute.

• Ransomware - Ransomware encrypts data, rendering it inaccessible and unusable. A

ransom is then demanded in order to gain access.

• Spyware - Spyware can secretly monitor a user’s activity, steal valuable information,

and send it to another entity that may harm the user.

• Adware - These programs pop up unpleasant advertising banners on the user inter-

face to generate money based on clicks and downloads. Nowadays, malware writers

create malvertising codes that steal valuable information from infected devices and

root them, allowing them to do tasks like downloading particular adware.

• Trojan - A Trojan infiltrates a user’s computer by masquerading as a legitimate

program that the user willingly downloaded.

Chapter 2. Background and Related Work 15

• Virus - A virus is a type of malware which when executed infects other files by

inserting malicious code.

• Expander - Expander harms the user by increasing the billing amounts.

• Backdoor - Backdoor is a piece of malicious code that allows unauthorized access to

the infected devices.

One of the few ways to keep such malicious software out of smartphones is to install

apps only from trusted sources and avoid visiting suspicious emails and links. Another

important measure is to keep the Android OS up to date with all updates and security

patches. Each Android release brings a slew of new security features. In response to the

alarming increase in fraudulent apps, Google has launched Bouncer [29], a security service

that automatically scans apps in the background and is responsible for a 40% reduction

in harmful apps on the app store. Despite various attempts, they still make their way

to the mass market and frequently go unnoticed by traditional signature-based anti-virus

software. Next, we discuss the malware evolution in the mobile platform.

2.2.1 Evolution of Mobile Malware

Android’s popularity as a smartphone (mobile device) operating system makes it a pop-

ular target for mobile malware writers. Mobile devices can be accessed and exploited via

a variety of connections, including mobile networks, WiFi, Emails, Web Browsers, SMS,

and MMS. Mobile devices use a variety of technologies, including cameras, accelerometers,

Bluetooth, and GPS, all of which are vulnerable via device driver or firmware [30]. Many

malware programmes take advantage of a known vulnerability or infect a device via com-

munication endpoints. This section examines the history of mobile malware (Figure 2.4) to

identify the recurring vulnerability that the attacker has exploited to infect a device [31].

• Cabir, the first mobile malware discovered in the wild, targeted Symbian-based

mobile phones in June 2004. The main feature discovered was its ability to use

Chapter 2. Background and Related Work 16

2004 2014

2015

Boxer

2011 2013

Cabir

Commonwarrior Ikee

2006

FlexiSpy

2005

FakePlayer

2009

DroidDream

2010

FakeDefender

2012

Gazon

OldBoot Pegasus

Joker

2016

2017

Figure 2.4: Timeline of mobile malware

Bluetooth signals to spread to other mobile devices. The source code Cabir served

as the foundation for a wave of subsequent mobile malware.

• Commonwarrior, a computer worm that replicates via MMS and targets Symbian

OS, was reported in March 2005. Basic concepts of Cabir served as the foundation

for Commonwarrior. It was the first malware that harmed victims financially.

• In 2006, FlexiSpy was born. It was originally created for Symbian OS, but now

it is targetting Android and iOS as well. It has the ability to track locations, read

messages (SMS and WhatsApp), intercept phone calls, and perform other functions.

• Ikee, the first malware for the iOS platform, was discovered in 2009. It spread

between jailbroken iPhones using the Secure Shell Connections. Its code was later

used to create more malicious iPhone malware known as Duh.

• The first Android malware, FakePlayer, a Trojan horse, was discovered in August

2010 by the Kaspersky Lab. It took advantage of the SMS service by attempting to

send SMS messages to a hardcoded premium number without the user’s permission.

It spread under the guise of a manually installed movie player app.

• In 2011, the first malware discovered in the official Android market was DroidDream.

RootCager is another name for it. It was a Trojan with two exploit codes: rage-

against-the-code and exploid, which were generally used to gain root access on an

Android device. It granted the remote attacker root access to the Android device.

• Boxer, an SMS Trojan, was discovered in the official Android market in 2012. It

was repackaged in several legitimate Android apps. It poses as a legitimate installer

Chapter 2. Background and Related Work 17

for popular apps such as Skype, Anti-malware, Instagram, and so on. After being

installed on a device, it would send an SMS message, prompting the download of a

modified app that would continue to send messages to premium numbers.

• In 2013, FakeDefender was the first ransomware discovered for the Android operat-

ing system. Once installed on the device, the user had to pay a ransom of $99.99 to

regain access to the device, which was masked as Android Defender.

• OldBoot was the first bootkit designed for the Android operating system in 2014.

It had the unusual ability to reinstall itself every time it was uninstalled, making

complete removal difficult. During installation, OldBoot partially self-installed in the

boot partition and changed the initialization scripts that are in charge of installing

OS components. This allowed OldBoot to run every time a device was turned on.

• Gazon malware was discovered in 2015, masquerading as an app that provides Ama-

zon rewards and vouchers worth up to $200. It spreads through SMS messages that

promise the recipient a free Amazon gift card. Once the malware is installed on a

device, it sends SMS messages to all of the victims’ contacts in their contact list.

• Pegasus is spyware that was found in August 2016 when a human rights activists’

iPhone was tried to be hacked but failed. It was made by the Israeli cyber-arms

company NSO Group and can be installed covertly on iOS and Android phones by

exploiting zero-day or known vulnerabilities.

• Joker malware was discovered for the first time in 2017. It is aimed at mobile phones

that run the Android operating system. When Joker malware is installed on a phone,

it can steal user-specific information and sell it online, generate transactions, and

read OTPs in order to conduct financial transactions without the user’s knowledge.

Chapter 2. Background and Related Work 18

2.3 Android Malware Analysis Approaches

As statistics show, Android is the main target for malware authors, so Android mal-

ware analysis approaches are needed. This section reviews the existing malware analysis

approaches, techniques built around them, and their limitations. The malware analysis

approaches are classified into three categories: static analysis, dynamic analysis, and hy-

brid analysis [32]. The description of malware analysis approaches and techniques built

by using them are described in the following sub-sections.

2.3.1 Static Analysis

We can analyze an app/program in static analysis without executing it. The static analysis

process is faster and reveals all possible paths an app can take during execution. However,

obfuscation tactics that limit access to the code are threats to all types of static analysis

(whether source code or binary). Furthermore, network-related activities and code mod-

ification at runtime are often outside the scope of static analysis because they come into

the picture during the execution of a program.

In most cases, source code is not available for static analysis of Android malware. As a

result, multiple frameworks have been created to reverse engineer the APK and evaluate

various components of it (see Section 2.1.2). Androguard [33], Argus-SAF [34] (also known

as Amandroid [35]), and APKTool [36] are some of the reverse engineering tools available.

These tools have been widely used in static analysis and the development of new malware

detection systems.

2.3.2 Dynamic Analysis

The dynamic analysis examines an app’s behavior while it is running in real-time. This

method can discover harmful activities that static analysis cannot detect. However, the

dynamic analysis technique has a code coverage problem, which means that some code

Chapter 2. Background and Related Work 19

parts may not execute during the analysis. Furthermore, by recognizing the underlying

emulated platform, platform sensing malware can fool the dynamic analysis process.

Many dynamic analysis frameworks have been developed to examine an Android app dy-

namically. Droidbox [37], CuckooDroid [38], MobSF [39], and DroidScope [17] are exam-

ples of such frameworks. Several of these frameworks have been used to develop malware

detection systems. Often such security systems are meant to deploy on the app store to

analyze an app offline before distributing it to end-users.

2.3.3 Hybrid Analysis

The hybrid analysis takes advantage of the static and dynamic analysis to monitor the

malicious behaviour of the app. In this technique, static and dynamic analysis approaches

are combined to overcome the limitation of each other.

These are the analysis approaches that a security analyst can use to investigate Android

malware. Next, we focus on analysis techniques that use one or more analysis approaches

mentioned above to analyze an app.

2.3.4 Analysis Techniques

We have seen the analysis approaches that an analyst can use to investigate malware. This

section goes through the techniques designed for analyzing an app based on the approaches

discussed earlier [32].

2.3.4.1 Network Traffic

The majority of harmful and benign apps require network connectivity with an external

entity. For example, a malicious app can only leak sensitive information belonging to a

user if it has network access. Otherwise, sensitive data will remain in the device. As a

result, network traffic analysis can aid in the detection of malicious activities within a

Chapter 2. Background and Related Work 20

device. Many studies [6, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52] have proposed

to use network information for the detection and categorization of malware. Drebin [6]

is a malware detector based on static analysis that employs hardcoded URLs or IPs to

determine possible communication endpoints for an app. If the hardcoded URLs or IPs

are encrypted, this functionality will negatively influence the performance of Drebin.

Lever et. al [52] uses the Domain name to look at the malicious traffic in cellular carriers.

However, not all malware uses domain names to communicate with the server. In general,

malware use IP addresses instead of domain names. To test this argument, we took ∼53k

samples of malware from 2013 and extracted the communication endpoints (IP address

and domain name) from them. After extraction, we found that only about 32% (16,923)

of the samples communicate with the external servers and that only about 12.8% (2,162)

of the malware samples use domain names to communicate. So, looking only at domain

names does not solve the problem of finding the malicious application since most malicious

programs either do not communicate with external servers or use IP addresses instead of

domain names to communicate with them.

Similarly, many network traffic-based malware detectors like [43, 46, 49, 51] use virtual

devices to execute an app to capture network traffic, while some work [40] use real devices.

In the case of the virtual device, a platform sensing malware can detect the emulated

platform, which triggers malware action not to send any malicious traffic to its peer party.

However, the system running on real devices is immune to this attack which is possible by

placing a VPN connection to route the traffic through the monitoring entity.

2.3.4.2 Application Programming Interfaces (APIs)

The Android framework provides a diverse range of APIs that allows an app to com-

municate with the device effortlessly. Some of these APIs allow access to sensitive data

critical to some users and are protected with permissions. As a result, APIs can be an

excellent source of information for detecting malicious activities, as previously explored

[6, 50, 53, 54, 55, 56, 57].

Chapter 2. Background and Related Work 21

2.3.4.3 System Call

The Kernel in Android provides access to the hardware via system calls. When an app

uses a system API to access hardware, the APIs make calls to the system call internally.

As a result, system call-centric analysis has been implemented, which tracks system calls’

use to determine whether an app is malicious [58, 59, 60, 61].

2.3.4.4 Dependency Graph

The dependency graph depicts the relationship between two statements of the program.

If there are two statements, S1 and S2, and S2 is executed after the S1. In this scenario,

an edge connecting S1 and S2 demonstrates their inter-dependency. How these edges

are created decides the type of a graph. For example, if an edge is drawn to show the

invocation of the function one after another, called the function call graph. A dependency

graph can be analyzed to find the similarity to detect malicious behavior. Xu et al. [62]

utilize the control flow graph (CFG) and data flow graph (DFG) for the classification and

characterization of the Android malware family.

2.3.4.5 Information Flow Tracking

In this technique, information of interest is tainted with the tracking information as soon

as it is originated and remains in the monitoring state until it reaches the destination

(sink). It is generally used to detect leaked data either statically or dynamically. Flow-

Droid [63] is a static analysis tool to identify information leaks, while TaintDroid [64] and

TaintART [65] detect information leaks dynamically. Taint analysis in TaintDroid and

TaintART is performed only at the framework level. However, these systems may fail

when an information leak happens below the framework layer, i.e., using native code.

Chapter 2. Background and Related Work 22

2.3.4.6 Opcode

Opcode is a lower-level code found in every software binary. In Android, APK file con-

tains the Dalvik opcode which is generally executed by the Android virtual machine i.e.,

DVM/ART. The Dalvik opcode can also be used to identify malicious apps. TinyDroid

[50] is an example of a tool that detects Android malware using opcode information.

2.3.4.7 Machine Learning Model

Machine learning methods are becoming increasingly popular for detecting and categoriz-

ing malware. Many studies [6, 7, 8, 18, 66, 67, 68, 69, 70, 71] have advocated using infor-

mation from the aforementioned analytical methodologies as a feature and attempting to

develop a machine learning model based on past data (datasets) to predict forthcoming

malware. Drebin [6] uses static features from application manifest file and Dex code and

learn support vector machine to detect malware that may come in the future. Similarly,

EC2 [18] employs both static and dynamic characteristics to detect malware families and

builds a voting classifier-based ensemble machine learning model. Machine learning based

malware detection and classification systems require a dataset with ground truth values

to train a machine learning model and evaluate its efficacy.

It has been seen that most of them use an older dataset that does not reflect the current

state of the apps. Furthermore, for the testing purpose, they split the dataset randomly to

separate testing samples from the training set, which may result in an incorrect time split,

means the testing sample might be older than the training set. It might be possible that

the performance of these malware detectors degrades when tested on a new sample with

realistic conditions. A similar experiment has been done by TESSERACT [72] shows that

the performance of Drebin and MaMaDroid [71] dropped by 50%. Therefore, a machine

learning based malware detector should be evaluated against the right dataset, free from

all the experimental biases.

Chapter 2. Background and Related Work 23

2.4 Countering the Malware Analysis Process

Because malware writers are aware of the malware analysis process, they are constantly

looking for novel ways to disguise malware from detection. For this purpose, many meth-

ods/techniques have been created to counter the malware analysis process. This section

provides an overview of counter analysis methods in the context of static and virtual

device-based dynamic analysis processes.

2.4.1 Obfuscation Techniques

Obfuscation is a popular way to avoid static analysis. There are two types of static

obfuscation techniques: trivial and non-trivial. In the following part, we examine both

obfuscation methods.

2.4.1.1 Trivial Obfuscation

These are the most straightforward techniques that do not have a real obfuscation effect

on an APK. However, they can fool signature-based malware detectors. This obfuscation

technique transforms the APK file structure without altering its semantics. However, it

does not deal with the code of the APK. In simpler words, the hash of the resulting

APK file differs while preserving the same original functionality of the App. The possible

obfuscations in this category are as follows:

(i) Re-align: Aligning an APK file entails improving its structure in order to efficiently

map the final archive in memory. Aligning an archive has the unintended consequence of

creating a slightly different file with the same functionality as the original.

(ii) Re-signing: A digital certificate must be used to sign an Android app so that its

integrity can be checked during installation. When we re-sign an app with a different

certificate, we get a new file with a different hash than the original, but the functionality

Chapter 2. Background and Related Work 24

remains the same. Some anti-malware programs cannot detect transformed malware that

uses message digest as a detection mechanism.

(iii) Repackaging: As previously stated, an Android app is a compressed file similar

to a jar file. Suppose we uncompress the APK file and add a new dummy or empty file,

followed by repackaging. This process generates a new APK with a different structure and

message digest.

(iv) Randomize Manifest: Rearranging the Android Manifest file entries without mod-

ifying the XML tree structure results in a different hash of the Manifest file. As a result,

we get a new APK file while preserving the original functionality of the app.

2.4.1.2 Non-trivial Obfuscation

Non-trivial approaches are more difficult to implement, but they provide a better return

in terms of detection rate and robustness. This method targets both the bytecode and

the resources of an APK. Renaming, Encryption, Code, and Reflection are the four sub-

categories of non-trivial obfuscation techniques. The following are the details of these

categories:

(i) Renaming: The names of classes, functions, fields, activities, packages, and a variety

of other resources can all be utilized to detect malware on Android. For example, one

of the elements used by Drebin [6] is the name of activities, services, content providers,

and others. Drebin can fail to detect malware if this information is renamed in an APK.

The renaming obfuscation technique can be used to obfuscate both code and non-code

resources.

(ii) Encryption: AV signatures are mostly based on the sequence of bytes acquired from

an app’s various resources. Native libraries, data, strings, and assets files are examples of

resources that an app can use at runtime. An app can encrypt and decrypt such resources

at execution time in encryption-based obfuscation. This obfuscation technique is not only

Chapter 2. Background and Related Work 25

limited to fooling signature-based AV products, but it can also fool flow-based and ML-

based detectors.

(iii) Code: This obfuscation technique mainly affects the instruction code inside the Dex

files. It is the most advanced obfuscation techniques that alters the Dex file by using one

or more different methods listed below:

Junk code insertion

Removal of debug symbols

Call indirection

Adding new method by exploiting method overloading

Adding Nop instruction

Reordering of code

Unconditional jump

Dummy Arithmetic and Branch instruction

This obfuscation technique targets all types of static malware detection techniques as

discussed earlier.

(iv) Reflection: It is a process of examining and changing a class’s runtime behavior

during execution time. In reflection-based obfuscation, the invocation of a function is

diverted to a bespoke function that calls the original function. Most static analysis tools

often fail to capture such behavior because the actual function invocation is determined

at execution time.

2.4.2 Dynamic Code Loading

It is a method that allows an app to load a binary or library during execution. This binary

or library can be saved as an asset inside the app or can be an external source that an app

downloads during runtime. In any case, it is not visible to a static analysis tool because

of its dynamic nature, which eventually fails the analysis process [32].

Chapter 2. Background and Related Work 26

2.4.3 Packed Malware

To hide a malicious behavior from being caught by the static analysis tool, malware writers

encrypt (packed) the entire code except for the unpacking logic. First, this type of malware

at runtime unpacks the encrypted code. Later, they use dynamic code loading techniques

to execute this unpacked code to perform its designated task. As the malicious behavior

of the app is stored in the form of encrypted code, none of the static analysis tools can

reveal its malicious nature [73].

2.4.4 Platform Sensing Malware (Emulation-Detection)

The primary issue with an emulated system is its inability to replicate a complete sys-

tem that matches the exact configuration and characteristics of a physical device. The

core idea of emulation-detection is to observe the differences between virtual and physi-

cal machines using a program to identify the underlying infrastructure. Vidas et al. [74]

and Morpheus [75] have shown that such differences can be used to detect underlying

emulated platforms through a stand-alone app. Vidas et al. [74] propose a few generic

detection methods based on the device characteristics, e.g., differences in hardware com-

ponents (like sensors and CPU information) and software components (like Google apps

are not present). Morpheus [75] presents more than 10000 heuristics to detect the underly-

ing emulated platform has broadly classified it into three categories viz. i) Files, ii) APIs,

and iii) System Properties related detection which are similar to the techniques proposed

in [74]. The emulation-detection methods shown in [74, 75] fall in the category of basic

emulation-detection, and most of the dynamic analysis systems are capable of bypassing

them.

Chapter 2. Background and Related Work 27

2.5 Observations

As previously stated, Android is becoming the most popular target for malware writers

because it is open source and has the largest share of the global smartphone market.

We have studied Android malware analysis and detection technologies to analyze their

performance to grasp the current malware threat better. This section presents our findings

from this study, which will serve as the foundation for this thesis.

2.5.1 Anti-Emulation-Detection Capabilities

Offline security system deployed on app stores heavily relies on the emulated platform

for dynamic analysis. Platform sensing malware can easily bypass the dynamic analysis

process by detecting the underlying emulated platform and subsequently entering into the

mobile device. For example, Google Play Protect, which is used to certify Android apps,

fails to detect malware that spreads across 85 different apps affecting nine million Android

devices [20].

We believe, a dynamic analysis system should provide a configurable anti-emulation-

detection mechanism, so that a smart malware developer could find it difficult to evade

the dynamic analysis by studying the analysis framework. Moreover, we would like to em-

phasize the need for a validation mechanism to understand the anti-emulation-detection

measures incorporated by a dynamic analysis framework.

2.5.2 Cross-layer Profiling

Android apps can be developed using Java and native code, which crosses the layers

of Android. Most dynamic analysis frameworks profile an app at the framework layer

(i.e., only a single layer). A malware writer can split the malicious behavior of an app

across multiple layers. In that case, the existing dynamic analysis framework can fail to

capture the malicious behavior of such malware. Therefore, a dynamic analysis framework

Chapter 2. Background and Related Work 28

should provide the capability to profile an app across multiple layers while introducing low

profiling overhead.

2.5.3 On-device Malware Detection

Malware may get unleashed into the device, bypassing the defense system of Google Play

Store or from unverified sources (e.g., third-party market, sideloading). As a result, mal-

ware detection on real devices is critical for preventing malware infection. One option is

to install the existing offline system on the device. However, these systems require high

resources and processing time, which can reduce the device’s battery life. Hence, there is

a requirement for a lightweight malware detection system that we can deploy on resource

constraint mobile devices.

2.5.4 A Lack of Representative Dataset

As discussed earlier, existing datasets used to test how well machine learning-based mal-

ware detectors work are old and do not reflect the current state of malware. The efficiency

of malware detectors evaluated against these datasets is questionable due to the lack of a

representative dataset. Therefore, we focus on creating the right and biased free dataset

that depicts the state of current malware.

2.5.5 Focus on Family Identification

Malware analyst has given a minor focus on automatic identification of malware family,

which is crucial to identify the damages caused by malware and how to get rid of it.

Therefore, we also put our focus on the identification of malware families.

Chapter 2. Background and Related Work 29

2.6 Summary

This chapter has covered the basics of Android OS and its components. We next went over

multiple malware analysis and detection approaches for Android. We have also looked at

how mobile malware evolves to evade detection and obfuscate analysis. By analyzing both

malware threats and solutions, we have made several observations that are the key points

for this thesis work. From here onwards, we concentrate on our observations, starting with

creating tools and datasets that we use to assess the efficacy of an analysis framework.

Chapter 3

Datasets and Tools

Some tools and a dataset with ground truth values are required to construct and assess

a malware detection system. In general, tools are used to extract relevant information

from a sample to discover harmful activity in an app, if any. The dataset, on the other

hand, aids in the evaluation of a malware detection system’s performance. The tools and

libraries that have been utilized to extract important information to construct an effective

malware detection system are introduced in this chapter. We then go over the datasets

we use and where they came from.

3.1 Tools and Libraries

This section outlines the tools and libraries we employ to design an effective malware

detection system, whether we create them ourselves or use existing ones.

3.1.1 Emulation Detection Library (EmuDetLib)

To study the effectiveness of the existing dynamic analysis frameworks, we require a tool

with varying levels of the emulation-detection method. We have developed a flexible

emulation-detection library (EmuDetLib). The detection techniques in this library can be

30

Chapter 3. Dataset and Tools 31

broadly classified into five categories (refer Table 3.1): (i) Unique device information, (ii)

Sensors’ reading, (iii) Device state information, (iv) GPS information, and (v) Distributed

detection.

Table 3.1: Classification of emulation-detection techniques.

Detection
Description

Categories
Unique device Detection by observing unrealistic device information
information (basic) values (e.g., IMEI value is 00000)
Unique device Detection based on fixed reading of unique device
information (smart) information (e.g., IMEI value is constant)

Sensors’ reading
Absence of sensor or observing static values from
fluctuating sensors (e.g., fixed reading of Light sensor)

Device State No change to the device state w.r.t. telephony signal,
information battery power.
GPS information No change on GPS location data or fake location change
Distributed Observing identical unique information for multiple
detection devices in a network.

3.1.1.1 Unique Device Information

As many Android devices are smartphones, Android provides a comprehensive API that

includes the interfaces to query telephony information along with unique data per device

like IMEI, IMSI, and phone number. These details may help in identifying a device

uniquely. For example, on querying Device ID (IMEI) from an emulator, it returns all

‘0’, which is unrealistic and indicates that the device is an emulator. Similarly, other

information related to a SIM card like SIM serial number, phone number, and IMSI can

reveal the identity of the underlying platform, i.e., whether the platform is emulated or

not.

To hide the emulated platform against the emulation-detection based on the unique device

information, a sandbox designer can supply more realistic data when queried by an app.

Most of the dynamic analysis framework such as CuckooDroid, Droidbox, and MobSF

provides similar anti-emulation-detection measures by feeding-in realistic device informa-

tion. However, a smart malware author can analyze this data and find that they are static

(fixed) to successfully detect the underlying platform.

Chapter 3. Dataset and Tools 32

3.1.1.2 Sensors’ Reading

Today’s smartphones have various sensors for different purposes that can be broadly clas-

sified into two categories—motion sensors and environmental sensors. The motion sensors

help to detect the motion on a device. Such sensors can measure the acceleration, magnetic

field, rotation, and others along the three dimensions, i.e., X, Y, and Z, which indicates

that the smart-phone user has made some motion. Similarly, the environmental sensors

observe the changes in the operating environment so that an app can alter its behavior

based on the readings. For example, a light sensor provides the luminosity information of

the environment which can be used by a smartphone to adjust the display brightness.

For an Android app, the use of these sensors do not require any permission and an app

can take full advantage of these sensors. As the data observed on these sensors fluctuate

continuously, this insight can be used to detect the underlying emulated environment. A

recent example of sensor-based detection is the observation of TrendMicro where malware

(in Play Store) make use of the motion-detection feature to evade the dynamic analysis [76].

This is an indicator that the dynamic analysis framework on the play store is not secure

against the advanced emulation-detection techniques.

Identifying such sophisticated malware is not trivial; hence, we have incorporated sensor-

based detection functionalities in our library for emulation-detection. Our library provides

the detection mechanism based on the motion sensors as well as on the environmental

sensors.

3.1.1.3 Device State Information

In reality, a device state gets changed due to some internal/external events such as changes

in telephony signal strength, battery power, and incoming SMSes/Calls. However, such

state changes behavior is missing in an emulated environment. Therefore, information

related to a device state can also be queried by malware to detect the emulated environment

as described below:

Chapter 3. Dataset and Tools 33

(i) Telephony signal: As the signal strength of the telephony system cannot remain

constant for a long time, malware can observe such information over a period. The malware

can flag the underlying operating environment as emulated if it finds that the signal

strength is constant.

(ii) Battery power: Similar to the telephony signal, the batterys’ power strength which

is the standard behavior of every mobile device. If such behavior is absent, and battery

power remains constant, it indicates that the operational machine is virtual.

(iii) Incoming SMS/call: A malware can register a notification for every incoming

SMS/Call, and wait for the event. In an emulated environment, malware may not observe

such an event and will thus remain dormant without performing any malicious activities.

3.1.1.4 Using the GPS Location Information

GPS (Global Positioning System) is also a sensor and the malware can use similar methods

(as explained above) that are used for other sensors to detect emulated platforms. However,

the emulation-detection based on the GPS is somewhat different from other sensors, as

explained below.

Android provides rich APIs to perform various tasks, one such API gives the power to

generate a mock location that can be used by an app to introduce a fake location when

queried. An Android app requires ACCESS MOCK LOCATION permission to use the mock

location API. The other source for geo-location is BTS ID. Android provides API to

query BTS ID, and we can get its geo-location by using publicly/commercially available

services (https://opencellid.org). Hence, the geo-location-based emulation-detection

technique only works when one of the following conditions is satisfied: (i) there is no

change in the geo-location of the device, (ii) the mock location API is used to set the

geo-location of the device, or (iii) BTS geo-location is not collaborating with the GPS

location.

https://opencellid.org

Chapter 3. Dataset and Tools 34

Detection in case of condition (i) is easy; since we do not see any changes in geo-location,

we can directly infer that a device is an emulator. However, exploiting (ii) or (iii) condition

is non-trivial as fluctuating GPS data can be a result of fake location app or real change in

location. Detecting emulation in the (ii) condition requires a mechanism to differentiate

between real location data and mock location data. In contrast, the (iii) condition assumes

that the distance between GPS location and BTS geo-location can not be more than x

meters. The value of x may differ depending on the density of the area where BTS is

located.

The Location module of the Android framework provides explicit methods to differentiate

the location data w.r.t. its source i.e. whether the data is a mock location or a real GPS

device reading. Malware can use this method to detect emulation platforms. However,

this check may fail if the mock location generation app is either closed or running as a

service. In this scenario, the Location module returns the GPS data (probably set by

a fake location app executing before) without the fake location indicators. Therefore,

the mock location detection feature provided by the Location module doesn’t help and

requires a more fine-grained mechanism to differentiate mock locations from real location

data.

Another possible approach to be sure about the location data being fake is to identify active

apps that can generate fake location information. As discussed earlier, a fake location

generation app requires special ACCESS MOCK LOCATION permission. Upon querying the

package manager, we can get a list of the apps and services that have been granted this

permission and subsequently checking them against the list of running processes. If we

find a running app or service, then we can say that the current location is most probably

fake and can consider it to be an emulated environment.

Algorithm 1 detects such apps and returns true or false based on the status of the

fake location apps currently executing on the device (if any). The algorithm queries the

Android package manager for the permissions granted to individual apps, and identifies

Chapter 3. Dataset and Tools 35

Algorithm 1: Fake Location App Detector

1 returnV alue← false
2 RunningApppkgName ← ϕ
3 RunningAppsprocess ← getRunningAppProcesses()
4 foreach Appprocess in RunningAppsprocess do
5 PackageName← getPackageName(Appprocess)
6 append(RunningApppkgName, PackageName)

7 RunningServices← getRunningServices()
8 foreach service in RunningServices do
9 PackageName← getPackageName(service)

10 append(RunningApppkgName, PackageName)

11 for i← sizeof(RunningApppkgName) to 1 do
12 PackageName = getItemAt(RunningApppkgName, i)
13 if not hasMockLocationPermission(PackageName) then
14 removeItemAt(RunningApppkgName, i)

15 if sizeof(RunningApppkgName) > 0 then // Checks if there is any process running

with MOCK location permission

16 returnV alue← true
17 return returnV alue

those with the ACCESS MOCK LOCATION permission. If at least one app/service is active

with the permission, the algorithm returns true.

3.1.1.5 Distributed Emulation-detection

So far, we have discussed the emulation-detection techniques that can be employed by

a standalone app to detect the emulated environment. Nowadays, most apps require

communication with a centralized server to share their status or get new information. To

identify a device uniquely at the server, an app typically generates a unique ID called

an AppID. Apart from the AppID, a smartphone also contains device-related unique IDs

namely IMEI, IMSI, SIM Serial number, and others. This information can also help in

identifying a device uniquely at the server as explained below.

It is trivial to see that a slightly different malware in terms of its signature can be generated

easily by changing its package name, altering the function name and variable naming

convention, or by introducing dummy code while retaining the overall functionality and

the server address. Such malware can communicate the unique device information to

Chapter 3. Dataset and Tools 36

a remote server to identify the emulated environment remotely. In this situation, the

emulation-detection can happen at the server by querying the device information from

the connected devices. If a server detects that multiple devices have identical information

(expected to be unique), it can flag those devices as emulated environment. As this

emulation-detection is carried out in the context of multiple connected devices, we classify

this detection technique as a distributed emulation-detection.

To detect emulation using the distributed emulation-detection mechanism, we need a server

where the emulation-detection mechanism is deployed. A candidate emulation-detection

procedure that can be deployed on the centralized server is described in Algorithm 2. As

shown in the emulation-detection algorithm, the devices identified as an emulated platform

are added to the blocked device list. The server can execute this detection process either on

a new device connection request or on every request received from the client. On detection

of the emulated device, the server can either stop serving the client or can notify the client

about the emulation-detection.

Algorithm 2: Blocking Emulated Device (server)

1 Devicesblkd ← getBlockedDevices()
2 Devicescon ← getConnectedDevices()
3 Properties← {IMEI, IMSI,} // Unique device information
4 Devicesemu ← ϕ
5 foreach Prop in Properties do
6 Devices← Devicesblkd ∩prop Devicescon
7 Devicesemu ← Devicesemu ∪Devices

8 foreach Prop in Properties do
9 Devices← groupByProperty(Devicescon, P rop)count>1

10 Devicesemu ← Devicesemu ∪Devices

11 foreach device in Devicesemu do
12 addToBlockedDevice(device)

3.1.1.6 Ethical Concern

EmuDetLib is designed for malware analysts, vulnerability assessment and penetration

testing (VAPT) engineers, and in general, cybersecurity researchers who are interested in

Chapter 3. Dataset and Tools 37

checking vulnerabilities in emulator-driven dynamic analysis framework. However, there

is a concern that such a library might also be misused by unethical hackers for finding

vulnerabilities in already released popular analysis frameworks and use the knowledge

to bypass the dynamic analysis process. We also note that this ethical concern is often

present in all research publications that presents a VAPT tool or disclose a vulnerability

in products.

3.1.2 Obfuscapk

Obfuscapk [3] is a Python-based black-box obfuscation tool for Android apps that do

not require source code. Ofuscapk employs APKTool to decompile an APK. It then uses

obfuscation techniques on the decompiled smali code, manifest file, and other resources

to make a new app. The obfuscated app still works the same way as the original app,

but the code changes can make the new app look different from the original. Obfusapk

includes advanced obfuscation features divided into five categories. Table 3.2 lists the

possible obfuscators implemented in Obfuscapk’s various obfuscation categories. We use

this tool to create a new obfuscated dataset to evaluate the efficacy of static Android

malware detectors.

Table 3.2: Obfuscators implemented in Obfuscapk [3] tool.

Category Obfuscators
trivial Randomize manifest file, rebuild, new alignment, re-signing
renaming Renaming the class, fields and methods
encryption Encryption of library, resource strings, assets, and constant strings
reflection Invoke user defined and framework APIs using the reflection APIs

code
Junk code insertion, instruction re-ordering, calls redirection,
removing debug data, insertion of goto instruction, adding new
method by exploiting method overloading.

3.1.3 Androguard

Androguard [33] is a reverse engineering tool for Android apps that is written in Python.

It takes raw APK files of an app and disassembles them for analysis. Androguard is

commonly used to perform malware penetration testing and to identify vulnerabilities in

Android apps.

Chapter 3. Dataset and Tools 38

3.1.4 DexLib2

DexLib2 [77] is a Java library for processing Dalvik executable code, which is used by

several APK processing frameworks, such as APKTool, to undertake reverse engineer-

ing. DexLib2 makes use of smali/backsmali, an assembler/disassembler for the Dex file

format used by DVM/ART. On an actual mobile device, we use DexLib2 to extract the

functionality.

3.2 Datasets

A dataset with ground truth values is necessary to measure the malware detection system’s

effectiveness. There are a plethora of such datasets that have been utilized in the past

work. Malgenome [78], Drebin [6], Praguard [79], and AMD [80] datasets fall within this

category. The Malgenome and Drebin datasets contain outdated malware samples as of

October 2012. As a result, these datasets are insufficient to evaluate a malware detection

system. Aside from these datasets, there are a number of online repositories where the

most recent malware samples can be found. VirusShare.com [81] and the AndroZoo [82]

project are two such repositories.

VirusShare.com repository contains live malware samples that they provide to security

researchers, incident responders, and forensic analysts. It contains malware samples for

all platforms, including Windows, Linux, and Android.

The AndroZoo project is a growing collection of both good and bad Android apps that

can be used to study Android malware. It has more than 19 million apps that have been

marked as malware or benign by more than one AV engine.

Aside from these online repositories, the Google Play Store, the official Android apps

market, can also be considered a source of Android samples. We use samples from

VirusShare.com, AMD dataset, AndroZoo project, and Google Play Store in our work.

We created a number of datasets to test the malware detection system. Malware samples

Chapter 3. Dataset and Tools 39

were obtained from VirusShare.com, AMD, and AndroZoo, while benign samples were

obtained from Google Play and AndroZoo. We also use Pegasus malware samples to eval-

uate the efficacy of malware detection system. Subsections following this one describes

the created multiple datasets.

3.2.1 D1:Base-Dataset (2012-2018)

This is a class balanced dataset consisting of 96,748 apps. The dataset contains 40,402

unique malware samples spread across more than 70 different families. This distributed

set of malware assists the classifier in learning more about different variants in order to

identify previously unseen malicious apps. Malware samples were collected from AMD and

VirusShare.com for inclusion in the dataset. We crawled the Google Play Store for benign

apps and collected 65,806 samples. These samples were submitted to VirusTotal.com to

ensure that they were benign. Apps that have been identified as malicious by even one

antivirus engine on VirusTotal are discarded, yielding 56,346 benign samples. The AMD

dataset contains 24,553 malware samples collected between 2012 and 2016, distributed

across 71 families, whereas the malware from VirusShare and benign apps from Google

Play were collected in April 2018. Table 3.3 displays the statistics of malware and benign

samples collected from various sources.

Table 3.3: Number of malware and benign samples collected from different sources for
base dataset D1:2012-2018, where hyphen (–) denotes that samples are not available.

Source Malware Benign Year-Range
AMD [80] 24,553 – 2012 – 2016
VirusShare [81] 20,979 – Till April 2018
Play Store – 56,346 Till April 2018

Total Samples 45,532 56,346 2012 – 2018

Unique Samples 40,402 56,346 2012 – 2018

3.2.2 D2:AndroZoo-2019

It is also a class-balanced dataset with 10,760 distinct samples. It contains 5,380 malware

samples, with the remainder being benign. Both the malware and benign samples were

obtained from the AndroZoo project, where the Dex file’s last modification date is of

Chapter 3. Dataset and Tools 40

2019. We consider samples from this dataset to be new samples in comparison to the

Base-Dataset because they were born after the Base-Dataset.

3.2.3 D3:Pegasus

Pegasus malware is currently in the spotlight in all countries due to its use in mass surveil-

lance to gather intelligence. As a result, we use the Pegasus samples to assess the efficacy of

malware detection systems. This dataset includes five samples obtained from the CloudSek

organisation. The collected Pegasus malware samples are of earlier than 2019.

3.2.4 D4:Obfuscated

Performance of malware detectors degrades in the presence of obfuscated malware sam-

ples. Most of the malware detectors like DroidSieve use the PRAGuard [79] dataset to

evaluate their efficiency against obfuscated malware. PRAGuard dataset contains malware

till March 2013. These samples are outdated and do not represent the current state of

apps. Also there may be overlapping samples with our Base-Dataset. Therefore, to avoid

inclusion of known obfuscated malware samples in the training data, we created a new

obfuscated malware dataset by obfuscating the malware samples of D2:AndroZoo-2019

dataset (5,380 samples of year 2019). To obfuscate malware samples, we have utilized the

Obfuscapk tool that can obfuscate sample with five obfuscation techniques (see Section

3.1.2). Out of the 5,380 malware samples, we have successfully obtained 4,993 obfuscated

samples in six categories. Five categories are the same as provided by the Obfuscapk,

whereas the sixth category comprises a mix of two or more obfuscation techniques (re-

ferred to as mix). The number of obfuscated samples in each category are shown in Table

3.4.

Chapter 3. Dataset and Tools 41

Table 3.4: Category-wise obfuscated malware samples.

Category #Samples
trivial 160
renaming 570
encryption 1,135
reflection 252
code 2,429
mix 447

Total 4,993

3.2.5 D5:Biases-Free

Many Android malware detectors ([71, 7, 6, 83, 84]) are available that publish high de-

tection results of up to 99%. However, there are two potential experimental biases in the

experiment (shown by TESSERACT [72])–(i) Spatial bias and (ii) Temporal bias. Spatial

bias occurs due to the incorrect distribution of malware and benign samples in the dataset,

whereas temporal bias refers to the incorrect time splits of training and testing samples.

Therefore, to evaluate appropriately against potential biases, we have downloaded 87,632

(with ∼10% malware) unique samples from AndroZoo spanning over four years (2016

to 2019). In this dataset, each quarter of every year contains ∼10% malware, and the

remaining are benign. Table 3.5 shows the quarter-wise statistics of the dataset.

Table 3.5: Quarter-wise statistics of the Biases-Free dataset.

Year Quarter #Malware #Benign Total

2016

Q1 1,885 16,968 18,853
Q2 1,263 11,365 12,628
Q3 1,354 12,185 13,539
Q4 608 5,470 6,078

2017

Q1 562 5,007 5,569
Q2 340 3,001 3,341
Q3 251 2,224 2,475
Q4 271 2,392 2,663

2018

Q1 240 2,120 2,360
Q2 259 2,301 2,560
Q3 363 3,210 3,573
Q4 320 2,813 3,133

2019

Q1 237 2,088 2,325
Q2 190 1,696 1,886
Q3 314 2,786 3,100
Q4 362 3,187 3,549

Overall 8,819 78,813 87,632

Chapter 3. Dataset and Tools 42

3.3 Summary

This chapter has introduced an Emulation-Detection library EmuDetLib. Emulation-

detection capabilities in EmuDetLib are configurable and can easily integrate with any

app to measure the anti-emulation-detection capability opted by any dynamic analysis

framework. Later, we created multiple datasets to evaluate the efficacy of machine learning

based malware detectors in all possible scenarios. Table 3.6 shows the summary of the

created datasets.

Table 3.6: Datasets Summary

Dataset #Malware #Benign Total Year-Range
D1:Base-Dataset 40402 56346 96748 2012 – 2018

D2:AndroZoo-2019 5,380 5,380 10,760 2019
D3:Pegasus 5 – 5 before 2019

D4:Obfuscated 4,993 – 4,993 2019
D5:Biases-Free 8,819 78,813 87,632 2016 – 2019

In the next chapter, we empirically evaluate the anti-emulation-detection capabilities of

the well-known dynamic analysis framework. Later we design a stealthy dynamic analysis

framework using the insights learned from the empirical evaluation.

Chapter 4

InviSeal: A Stealthy Dynamic

Analysis Framework for Android

Systems

With wide adaptation of open-source Android into mobile devices, sophisticated mal-

ware are developed to exploit security vulnerabilities. As comprehensive security anal-

ysis on physical devices is impractical and costly, emulator-driven security analysis has

gained popularity in recent times. Existing virtual device-based dynamic analysis frame-

works suffer from two major issues. (i) they do not provide foolproof anit-emulation-

detection measures, and (ii) lack efficient cross-layer profiling capabilities. This chapter

presents InviSeal, a comprehensive and scalable dynamic analysis framework that includes

low-overhead cross-layer profiling techniques and detailed anti-emulation-detection mea-

sures along with the basic emulation features. Firstly, we empirically evaluate the anti-

emulation-detection capabilities of existing dynamic analysis frameworks. Secondly, we

design a stealthy dynamic analysis framework InviSeal using the insights learned from the

empirical evaluation. Lastly, we evaluate the efficacy of InviSeal, followed by some usage

scenarios.

43

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 44

4.1 Introduction

Existing offline analysis methods that deal with security issues caused by the rapid growth

of Android malware can be roughly put into two groups: static analysis and dynamic anal-

ysis/detection techniques [19, 85]. As discussed earlier, techniques based on only static

analysis [8, 33, 34, 35] are insufficient to address the security issues presented by the

malware especially designed to bypass the static analysis based defenses. For example,

advanced malware employ techniques such as dynamic code loading, native code exploita-

tion, Java-reflection mechanisms, and code encryption to bypass the static analysis based

detection [32, 86]. Dynamic analysis and detection techniques are the most commonly

used and researched in the contemporary mobile security arena and is the scope of this

chapter.

Existing dynamic analysis and detection techniques address specific security issues like

information leakage through device channels, untrusted mobile activities through different

apps in a secure environment. For example, dynamic information flow tracking (DIFT)

based malware detection techniques like taintDroid [64] and taintART [65] track the in-

formation flow from the source (sensitive information) to sink (device channel), to detect

information leakage while behavior graph based techniques [87] identify potential malware

based on call graphs. Other techniques are based on network traffic monitoring [88] and

cloud usage monitoring [89] to detect potential malware. However, all of the above tech-

niques are limited to specific security risks and do not provide a comprehensive platform for

malware analysis and detection. For example, taintART [65] provides information track-

ing only at the framework layer that cannot detect malware leaking information through

native code. Moreover, techniques like taintART when used on a real device result in

significant performance overheads (∼10%) and increased energy usage.

Generic sandbox based techniques (Droidbox [37], CuckooDroid [38], DroidScope [90],

MobSF [39]) provides a sandboxed virtual environment to perform malware analysis and

detection by executing apps inside the sandboxes and collecting various event logs.

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 45

The problem: Even though a wide variety of Android sandboxes are available for app

analysis, malware can bypass the dynamic analysis process running on these frameworks

by employing one or more techniques listed below.

(i) Many malware [74] employ techniques to detect the underlying emulation platform

before showing their true behavior. As far as we know, none of the existing emulator driven

dynamic analysis frameworks make claims regarding their effectiveness towards nullifying

possible emulation-detection adopted by malware. For example, CuckooDroid [38] provides

fixed data when different device specific information (e.g., GPS and IMEI) is queried

from the app which allows a malware to observe them and evade the dynamic analysis

defenses [91].

(ii) CuckooDroid and taintART based sandboxes depend on the profiling information

collected from the framework layer, therefore cannot detect information leakage through

the native code and the OS level system call APIs. For example, two colluding malicious

apps can use system calls (like mmap()) to setup a shared memory communication channel

without being detected by the above techniques.

(iii) Strace [92] is a widely used utility to profile system call information to enable cross

layer profiling. However, strace incurs high overhead and slows down the app execution,

opening another way to detect the monitoring environment. Also, strace based profiling

system can be detected from the malware using a simple detection method where the

malware launches strace on itself. In this scenario, given that the strace based dynamic

analysis system is already tracing the malware app, the strace instance launched by the

malware will fail which will expose the dynamic analysis process.

Our goal: Ideally a desirable mobile emulator platform for security analysis should pro-

vide the following features: (i) it must have cross-layer (application layer to OS layer)

profiling capabilities, (ii) built-in anti-emulation-detection measures for robust malware

analysis, and (iii) incur low profiling overheads. Apart from the above mentioned features,

memory dump and packet capture features should also be supported which may be used

if required for offline analysis.

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 46

Our proposal: In this chapter, we present InviSeal, a stealthy, low-overhead and compre-

hensive dynamic analysis framework for apps in the ART execution environment. Firstly,

we develop Sensor, Telephony system, and Device state information Neutralizer (STD-

Neut) to bypass the sensors based emulation-detection strategy that is fully designed using

Qemu [93] based Android emulator [94]. Secondly, we design ARTmon using Droidmon

module (based on Xposed framework) to bypass file and system properties based emulation-

detection along with the ability to instrument framework level API. Furthermore, we de-

velop an OS-level system call interposition technique to profile the system call activities

in an efficient manner. We provide a one-place log storage system for further analysis and

detection of malware. Overall, our contributions are as follows:

(i) We design STDNeut that remain undetected even if the emulation-detection is per-

formed at any layer of the Android OS w.r.t. sensors, telephony system and device state

(Section 4.4).

(ii) We modify the Droidmon module to support file and system properties based anti-

emulation-detection (referred to as ARTmon, Section 4.5). We develop SysCallMon (Sec-

tion 4.6), a configurable low-overhead OS-level utility to monitor system calls invoked

from apps.

(iii) We propose a comprehensive Android security audit framework based on the above

utilities that provides a single-point dynamic profiling and analysis support (Section 4.7).

(iv) Our evaluation of InviSeal shows that on an average the profiling overheads is ∼1.04X,

which is better than contemporary techniques. Moreover, SysCallMon is ∼1.26X faster

than strace-based system call profiling. Further, we show the benefits of cross-layer

profiling, anti-emulation-detection measures, and other features in practical usage scenarios

(Section 4.8).

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 47

4.2 Relevant Background

In this Section, we explain the working of Xposed framework and Droidmon module that

are the base for some module to design robust dynamic analysis framework.

4.2.1 Xposed Framework

Xposed [95] is a widely used generic hook framework for the Android platform. To work

appropriately, Xposed requires a rooted device. It has mainly four components: Xposed,

XposedBridge, XposedInstaller [96], and XposedMods. Xposed and XposedBridge pro-

vides support to accommodate the hook framework inside an app. XposedInstallers

main responsibility is to manage the Xposed framework and modules developed by other

developers on top of Xposed. XposedMods are the modules designed to perform a spe-

cific task such as changing the behavior of an existing device. Figure 4.1 illustrates the

workflow of the Xposed framework.

Modified App
at Runtime

Xposed Framework
(app_process)

Handle Loaded
Package

beforeHooked
Method

Execute
Original Method

afterHooked
Method

BOOT_COMPLETE
Broadcast

XppsedBridge
On App Load

Android Runtime

Zygote Process

Init

Boot Loader

Figure 4.1: Workflow of Xposed hook framework.

When an Android phone starts, boot-loader calls the kernel, which loads the first process

called init at the end of OS boot. Init process is responsible for setting up all the daemon

processes and components of the Android platform. After the successful start of the init

process, it invokes the core Android component called Zygote, which is responsible for

loading other apps. In a Xposed-hooked system, a modified Zygote process is loaded by the

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 48

Xposed framework to hijack the overall control of the system. After this step, whenever any

app is executed, the modified Zygote loads the app by setting up the execution environment

for them. At the beginning of the app execution, Xposed loads XposedBridge library as

part of the app executable. The XposedBridge library provides necessary API used by

the Xposed module to change the app behavior. An Xposed module registers the API to

be hooked with the Xposed framework along with the handler methods, invoked before

and after a hooked API executes. As a result, Xposed module can be used to change the

behavior of any app at run time.

Other Xposed like hook-based frameworks such as ARTist [97] and ARTDroid [98] are also

proposed. However, these frameworks are not as popular as Xposed as they lack necessary

software support.

afterHooked
Method Handle

Hooking Engine

Hooks
Config

File

API Logs

afterHooked
Method

registerAPIHooks

onPackageLoad

Modified App
at Runtime

Xposed Framework

Droidmon

Figure 4.2: Droidmon design using Xposed framework hooks.

4.2.1.1 Droidmon

Droidmon [99] is an Xposed module designed for monitoring the framework level API used

by apps in CuckooDroid [38] in a configurable manner. Figure 4.2 shows the design of

Droidmon module leveraging the hook support provided by Xposed framework. When an

application package loads, hook engine of Droidmon parses the hooks configuration file and

provides the details of the API to the Xposed framework for instrumentation. The Xposed

framework (explained before) enables hooks at different app execution points. Droidmon

primarily makes use of the afterHooked method (refer Figure 4.1 to record information

related to the invoked API (e.g., return value and arguments). Droidmon is used to monitor

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 49

the API in a non-intrusive manner without modifying the original app methods during

the monitoring phase.

4.3 Motivation

This Section motivates our proposal and discusses the limitations of the existing sandbox-

based profiling techniques.

4.3.1 Anti-Emulation-Detection

Virtual environment-based dynamic analysis techniques described before can provide ef-

fective detection against potential malware. However, smart malware developers can evade

dynamic analysis in the virtual environment by detecting the emulator. Dynamic anal-

ysis tools must provide anti-emulation-detection defense mechanisms to out-smart the

emulation-detection techniques employed by the malware. Malware can detect emulated

devices by employing one or more emulation-detection techniques available in emulation-

detection library EmuDetLib [100] (see Section 3.1.1).

In an ideal dynamic analysis framework, malware should not be able to detect the under-

lying emulated environment. To understand the defense measures opted by well known

existing dynamic analysis tools along with vanilla Android emulator (referred to as em-

ulator), we have evaluated them against the EmuDetLib. Apart from the EmuDetLib,

we have randomly selected 1000 malware samples from the D2:AndroZoo-2019 dataset

(see Section 3.2.2) and also downloaded motion sensor’s malware disclosed by the Trend

Micro [76] (referred to as RealMal) to evaluate the existing frameworks.

Further, to evaluate GPS information based detection and distributed detection, we need a

different environment. For GPS, we require a fake GPS location generation App inside an

emulated device. For distributed detection, we need a server where the emulation-detection

method is deployed and requires multiple instances of the same sandbox running at the

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 50

same time. We utilize the command and control server of the real malware Dendroid [101]

by employing the emulation-detection Algorithm 2. Table 4.1 shows the evaluation result of

the emulation-detection of candidate sandbox against all the detection methods available in

EmuDetLib. As shown in Table 4.1, in distributed detection, when the server is configured

with the emulation-detection method, none of the frameworks can hide their emulated

environment. Similarly, in GPS-based detection, only with a fake app installed emulated-

platform can bypass the detection mechanism. In other cases of GPS, the sandbox is

flagged as an emulated platform by the detection library.

Table 4.1: Defense mechanisms provided by existing dynamic analysis tools against
different types of emulation-detection methods EmuDetLib.

Detection Type Emulator Droidbox CuckooDroid MobSF DroidScope
UDI Basic × ✓ ✓ ✓ ✓
UDI Smart × × × × ×
Sensors × × × × ×
Device State × × × × ×
GPS × × × × ×
Distributed × × × × ×
Note: ✓ represents successful in bypassing the emulation-detection attack by underline emulated, whereas ×
represents failure in bypassing the emulation-detection attack. UDI represents Unique Device Information.
We use this notation in the rest of the tables.

Table 4.2: Evaluation of existing framework against real malware sample.

Detection Type #Sample Emulator Droidbox CuckooDroid MobSF DroidScope
No emulation-detection 284 ✓ ✓ ✓ ✓ ✓
UDI 137 × ✓ ✓ ✓ ✓
File Info / SysProp 303 × ✓ ✓ ✓ ✓
Device State 19 × × × × ×
Sensors 3 × × × × ×
Mix 257 × ✓ ✓ ✓ ✓
Note: ✓ represents successful in bypassing the emulation-detection attack by underline emulated, whereas × represents failure
in bypassing the emulation-detection attack. UDI represents Unique Device Information. SysProp represents the system
properties. The Mix represents the malware sample that uses more than one detection method from Unique Device Information,
File Info and System Properties.

Similarly, on executing samples of RealMal (see Table 4.2), Android SDK emulator cannot

hide its emulated environment against malware samples with emulation-detection capa-

bility. Simultaneously, other sandboxes get detected by the malware samples under the

category of device state and sensors. To reason about such behavior, we have investigated

the malware sample (RealMal) under sensor category. Listing 4.1 shows the code snip-

pet from BatterySaverMobi (a real malware), which uses accelerometer (line 5) reading

to observe motion on a device. If any motion takes place, then it executes the malicious

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 51

code (line 15). Hence, Such malware can bypass the dynamic analysis job performed on

existing sandboxes.

1 public void onSensorChanged(SensorEvent paramSensorEvent) {

2 this.k.registerListener(this , this.l, 3);

3 Sensor sensor = paramSensorEvent.sensor;

4 this.k.registerListener(this , sensor , 3);

5 if (sensor.getType () == 1) {

6 float[] arrayOfFloat = paramSensorEvent.values;

7 float f1 = arrayOfFloat [0];

8 float f2 = arrayOfFloat [1];

9 float f3 = arrayOfFloat [2];

10 long l = System.currentTimeMillis ();

11 if (l - this.m > 100L) {

12 long l1 = this.m;

13 this.m = l;

14 if (Math.abs(f1 + f2 + f3 - this.n - this.o - this.p)

/ (float)(l - l1) * 10000.0F > 600.0F)

15 a();

16 this.n = f1;

17 this.o = f2;

18 this.p = f3;

19 }

20 }

21 }

Listing 4.1: Code snippet from motion sensor malware.

Summary of Anti-Emulation-Detection: Some key observations regarding the effec-

tiveness of anti-emulation-detection measures of the existing analysis platforms against

EmuDetLib are shown below.

(i) Existing analysis frameworks are able to bypass the basic emulation-detection tech-

niques based on unique device information. However, they fail to defend when the emula-

tion detection attacks are performed by analyzing the underlying defense mechanism. The

main reason being either the data is unrealistic (basic detection) or the data is realistic

but static (smart attack).

(ii) Every framework fails to defend against the emulation-detection attacks based on

fluctuating sensors and GPS data since the data does not represent the realistic behavior

of a device.

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 52

(iii) Similar to the detection methods based on UDI, existing frameworks are also not

able to defend against distributed emulation-detection. The observation of similar data

for unique device-related information across multiple devices helps in raising the red-flag

regarding the underlying emulated environment.

(iv) Detection methods based on the device state (e.g. telephony system, battery power)

also successfully detects the underlying emulated environment due to the absence of defense

mechanisms in the analysis frameworks.

In short, the extended emulation-detection techniques show that the existing publicly

accessible dynamic analysis frameworks do not provide foolproof anti-emulation-detection

measures. Therefore, there is a need for a robust anti-emulation-detection approach that

can hide the underlying platform from smart emulation-detection measures. Our proposal

(STDNeut, Section 4.4 and ARTmon, Section 4.5) bridges this gap by employing intelligent

anti-emulation-detection measures in the emulation platform.

4.3.2 System Call Monitoring

Tracking app interaction with the OS through system calls can provide useful insights

regarding the app behavior. Strace [92] is a well known Linux utility available in all

flavor of Linux based operating systems including Android OS. A typical usage of strace

is to execute an app using strace to capture all the system calls used by the app from

the beginning. However, this is not the case with the Android OS due to the following

reasons.

Unlike application on traditional computer systems where application entry point is fixed

(e.g., the main() function), an Android app has multiple entry points. Execution of An-

droid app starts from one of the multiple entry points by sending an intent (a.k.a. the

message passing technique in Android) from the package manager. In such a scenario,

strace is unable to capture the system calls used by an app from its start.

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 53

To capture system calls invoked by an app from the beginning of its execution, one can

apply strace on the Zygote process, which is responsible for setting up the runtime

environment for the apps and create new processes. When strace is applied on the

Zygote process, it not only captures the system calls made by apps of interest, but also

the system calls made by other apps not of interest. System-wide system call logging

results in a lot of overheads, both in terms of storage and processing power. Moreover,

all system calls are not useful for malware detection, so researchers are more interested

in profiling a set of system calls for further analysis. Eventhough strace is capable of

profiling a selected set of system calls, it also profiles the same set of system calls made

by other apps. This results in unwanted system call in the log file and requires parsing

to extract app specific system calls which can be a lot of overheads and efforts. To show

the overheads of strace when used in Android platform we have performed the following

experiment.

net+file net+mem mem+file net+mem+file all
Captured system call

0
1

10

100

1000

10000

100000

Lo
g

fil
e

siz
e

(in
 K

B)

24 17 30 37

12
6

24

61 74 80

51
20

16
8

22
9 35
2

37
9

63
49ideal

strace: (CM+BG)
strace: (CM+BG+WB)

Figure 4.3: Storage overhead of strace based system call logging w.r.t. ideal (targeted)
logging using CaffeineMark (CM) along with background apps (BG) and a web browser

(WB). The lower the better.

We executed Java based micro benchmark CaffeineMark [102] and captured system call

information using strace. We have executed CaffeineMark with two scenarios: (i) Caf-

feineMark with background processes and, (ii) CaffeineMark with a browser app along

with other background processes. We repeated the experiments to capture combinations

of different categories of system calls in the above scenarios and compared the capture log

size with the ideal capture log size. The ideal capture log size represents the size of the log

file when the system call tracing is performed in a targeted manner (similar to proposed

solution). Figure 4.3 compares the ideal log file size with size of the log file generated

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 54

by strace in different setups. When all system calls are profiled, the ideal log file size

is ∼40X and ∼50X smaller than the log generated by strace when CaffeineMark is ex-

ecuted along with background processes and with browser app, respectively. Even when

a subset of system calls are captured with only background processes, strace results in

up to 3.5X increased log file size (Figure 4.3) compared to ideal profiling. Therefore, a

sophisticated and low-overhead system call profiling utility can improve the efficiency of

dynamic analysis in emulated platforms.

Apart from the logging overheads associated with strace-based technique, there are some

other challenges to analyze logs generated by strace. In strace, process ID is the only

available filter that can be directly applied to parse the log files. However, the process ID

cannot be mapped to a specific app from the log file itself and requires support from other

utilities like ps, top etc. Further, when strace is used to follow child processes (which is

the case with Zygote), there are incomplete log entries because of overlapping system calls

from multiple processes.

Furthermore, a malware can easily bypass the strace based analysis process by launching

strace on itself. In this case, given that the strace based dynamic analysis system is

already tracing the malware, the strace launched by the malware will fail, which exposes

the dynamic analysis process.

To address these issues related to system call profiling, as part of InviSeal, we propose

SysCallMon (Section 4.6), a Linux kernel extension (kernel module), for low-overhead

targeted system call profiling.

4.3.3 Memory Forensics

Memory forensics plays an essential role in finding evidence from the volatile memory in

investigating Cyber Crime. Nowadays, malware authors use advanced techniques such

as code packing, dynamic code loading, etc., to bypass static analysis. In the dynamic

code loading method, malware loads the code at runtime, which we can obtain from the

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 55

volatile memory. Similarly, a packed malware first requires the unpacking of packed binary

to perform a malicious action. This unpacked code and decryption keys are available in

the memory during the execution of malware. The memory forensics approach can be

useful in such a scenario to retrieve the evidence (unpacked code, dynamically loaded

code) from the volatile memory, and further analysis can be performed on such code to

capture the behavior of malware. Keeping this in mind, the researcher has started working

on the memory forensics-based malware analysis [103]. In [104], authors have presented

the effectiveness of memory forensics in the malware analysis process. Hence, a dynamic

analysis tool must support an on-demand functionality to capture volatile memory for

further analysis.

4.4 STDNeut: Design & Implementation

First, in this section, we talk about how to make realistic sensor data and the challenges

associated with it. Then, we give an overview of STDNeut, a detailed anti-emulation-

detection system, and elaborate the design of its various components. STDNeut aims to

neutralize emulation-detection using different sensors, telephony system, and device state

data.

4.4.1 Realistic Sensor Data Generation

A smartphone contains multiple sensors (e.g., accelerometer, GPS, and others) or interacts

with an external entity like BTS. A malware can use these sensors to detect an emulated

environment. To nullify the effect of sensors based emulation-detection, we have identified

three main challenges as follows:

(i) Existing sensors value should fluctuate with respect to time.

(ii) Detection of emulation environment through sensor correlation.

(iii) Model should be flexible to incorporate new sensors and sensor relations.

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 56

S2 S10

S4 S5 S6 S7

S8S9

S1 S3

S11

Figure 4.4: An example of sensor’s dependency graph. Sensor S11 in shaded box repre-
sents a new sensor introduced in the system.

To better understand these challenges, let us take a directed graph shown in Figure 4.4

that represents eleven sensors (S1 to S11), and influence of one sensor on others in terms

of driving the sensor’s values. An arrow from sensor Si to sensor Sj denotes that the

value of sensor Sj depends on the value of sensor Si. If we see an update in the value of

sensor Si, then sensor Sj ’s value should also be seeking an update according to Si’s value.

As shown in Figure 4.4, some sensors do not depend on other sensors (sensor with zero

in-degree); we name them as independent sensors, whereas sensors with in-degree ≥ 1 are

called dependent sensors because the value of these sensors depends on the value of others.

Challenge (i) is easy to understand, which states that the value of the sensor should

fluctuate concerning time. For example, let us consider sensor S10 (assuming as a light

sensor) in Figure 4.4, the value of this sensor should be updated according to the operating

environment lighting condition. Similarly, other sensor’s value should also be updated

w.r.t. time or working environment condition.

To understand challenge (ii), consider two sensors S4 (assuming as GPS) and S5 (assuming

as BTS). As shown in Figure 4.4, sensor S5’s value depends on the value of sensor S4. This

dependency is based on the distance between the values of S4 and S5, which cannot be more

than x meters. This x may vary depending on the area density (population and obstacles)

of the BTS. Further, to be more clear about challenge (ii), let us include two more sensors

S1 (as time) and S2 (as an accelerometer). The value of sensor S4 depends on both the

sensors, i.e., S1 and S2. If we consider time and GPS, then there is a correlation between

the current GPS location and the previous location w.r.t. time elapsed. For example,

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 57

if the current GPS location is Washington DC, a person cannot reach New York in five

minutes. Similarly, when considering accelerometer and GPS, then the measurement of

the distance travel through accelerometer should match with the distance between two

consecutive GPS locations. Hence, a sensor-based anti-emulation-detection system should

be compliance to all these scenarios so that the use of sensor’s value in an innovative way

(as described above) cannot reveal the identity of the underlying system.

Challenge (iii) is related to the introduction of a new sensor into the system. If a new

sensor is included in the system, either it is an independent or dependent sensor (sensor

S11 as shown in Figure 4.4), the system should be flexible to reprogram so that new sensors

can also be adopted for providing anti-emulation-detection capability.

To emulate realistic values for sensors, one should consider all the scenarios, as discussed

above. Hence, a fine-grained method is needed to emulate sensors reading while maintain-

ing the dependencies between them along with the re-programmable capability to adopt

new sensors in the system.

To address all the challenges as mentioned above, we present Algorithm 3, which takes

two lists. One list holds the available sensor object (sensorsobj) and the other is related to

the dependency between sensors (dependSensobj). A sensor’s object comprises of sensor’s

identity (like accelerometer, GPS), a default handle and the initial value. The default

handle is useful when a sensor does not depend on others (independent sensors), and the

initial value is used to initialize the sensor. On the other hand, a dependency object

comprises the identity of two sensors Si and Sj , and a dependency function Fij , which

represents the dependency between Si and Sj . These two lists have to be provided by

a user, and Algorithm 3 generates an ordered list of sensors handle (sensorshndl), which

can be executed at the analysis time to emulate the sensor’s value while preserving the

relationship between them.

In Algorithm 3, Unprocessedchld denotes a queue of sensors whose immediate child needs

processing w.r.t. its handle to emulating the sensor value, whereas Processedchld holds the

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 58

Algorithm 3: Generate Handle for Sensors

Input : sensorsobj , dependSensobj // List of sensors and dependencies objects

Output: sensorshndl // Ordered list of handles to generate realistic sensors values

1 sensorshndl ← ϕ
2 Unprocessedchld ← ϕ // Sensors queue whose child is not processed

3 Processedchld ← ϕ // List of sensors whose child is already processed

4 Dependecygraph ← generate graph(dependencyobj , sensorsobj)
5 Independentsensors ← getZeroInDegreeNodes(Dependecygraph)
6 foreach S in Independentsensors do
7 Shndl ← defaulthndl(sensorsobj , S)
8 append(sensorshndl, (S, Shndl))
9 append(Unprocessedchld, S)

10 while ¬(empty(Unprocessedchld)) do
11 S ← dequeue(Unprocessedchld)
12 childs← getChilds(Dependecygraph, S)
13 foreach C in childs do
14 depfunc ← getDepfunc(dependencyobj , (S,C))
15 Chndl ← generatehndl(sensorsobj , C, depfunc)
16 if C not in sensorshndl then
17 append(sensorshndl, (C, Chndl))
18 else if C is in Processedchld then// Handling cyclic dependency

19 depfunc ← getDepfunc(dependencyobj , (S̄, C))
20 Chndl ← generatehndl(sensorsobj , C, depfunc)
21 updatehndl(sensorshndl, (C, Chndl))

22 else
23 updatehndl(sensorshndl, (C, Chndl))
24 if C not in Unprocessedchld and C not in Processedchld then
25 append(Unprocessedchld, C)

26 append(Processedchld, S)

27 return sensorshndl

list of sensors whose child has already been processed. Apart from storing processed sen-

sors, the algorithm utilizes this list to break any cyclic dependency (see dependency among

sensors S6 to S9 in Figure 4.4), which is a rare case for sensors. As shown in line 4, the

algorithm generates a dependency graph among sensors by using the list of dependSensobj

and sensorsobj . Line 5 gets the list of independent sensors from the dependency graph

from where actual learning of sensor handle starts. From lines 6 to 9, the algorithm ob-

tains a handle for each independent sensor, which is equivalent to the default handle in

sensor object. The default handle is used to generate the value for a sensor, which does

not depend on other sensors. Apart from the sensor handle, independent sensors are then

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 59

appended in the Unprocessedchld queue, because the children of these sensors may require

a handle.

From lines 10 to 26, the algorithm generates the handles for the dependent sensors. The

algorithm terminates when the Unprocessedchld queue does not contain any sensor for

processing. Line 14 gets the dependency function between parent sensor S and the child

sensor C by using the dependSensobj and a handle gets generated at line 15. At line 16, it

checks if the sensor is not in the list of sensorshndl, algorithm directly adds this handle into

sensorshndl. In other cases, it updates the already learned handle based on the current

dependency and the dependency learned earlier. For updating an already learned handle,

there can be two possibilities, one is related to cycle (see cyclic dependency in Figure 4.4

among sensors S6 to S9) and the other is when a sensor depends on more than one sensor

(See sensor S4 in Figure 4.4). A cyclic dependency is resolved at line 18 in Algorithm 3,

where a new dependency function is calculated between parent S and child C. To obtain

the new dependency function, we utilize the last value of S (referred to as S̄ in line 19)

to update the handle of C. At last, when all the children of a sensor S are processed, S

is added to the Processedchld at line 26. Finally, the algorithm returns an ordered list of

sensorshndl, which is then used to emulate the sensor’s value at run-time. This algorithm

handles the challenge (i) and (ii). For challenge (iii), if the user updates the list of sensor

objects and dependency objects, then it re-generates the sensor handles for all the sensors,

including the new sensors.

4.4.2 STDNeut Overview

STDNeut provides robust support for anti-emulation-detection that can be used to design

an efficient framework for malware analysis. Figure 4.5 shows the architecture of STDNeut

along with the design of its controller. As shown in Figure 4.5(a), there are two main

subsystems of the STDNeut: (i) Extended Android Emulator and (ii) STDNeut Controller

(see Figure 4.5(b)). We describe the design of the subsystems in this section.

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 60

Extended Android
Emulator

STDNeut
Controller

config.ini

(a) STDNeut design overview.

Sensor
manager

GPS
manager

GPS to
BTS

Open
Cell-ID

config.ini
generator

.

STDNeut
configutation

config.ini Fluctuating data to
emulator

(b) Design of STDNeut controller.

Figure 4.5: Architecture of STDNeut, an anti-emulation-detection system along with
the STDNeut controller.

Extended Android emulator: It is responsible for spoofing the information related to

sensors, telephony systems, and device data. The STDNeut controller and config.ini

file govern this spoofing information to the Android emulator. Most of the device-specific

information, like IMEI, remains constant during the execution time, while the values

for sensors and telephony signal fluctuates over the time. During the boot time, the

Android emulator reads config.ini file and configures a virtual device with device-specific

information that is unique to it, while the STDNeut controller handles the fluctuating

values at run-time.

STDNeut controller: It is responsible for launching an app inside the emulator and

feeding essential information for anti-emulation-detection. For example, the controller

generates a config.ini file that is being used by the Android emulator to configure a

virtual device with unique values. The controller also manages the hardware/environment

generated events that alter the state of an Android device such as available sensors, tele-

phony signal, and many more. This is achieved by frequently feeding-in realistic sensor

data while maintaining the correlation with other sensors (as described in Section 4.4.1

by utilizing Algorithm 3) and other hardware related events into the emulator. To feed

the sensor data and hardware-related events, the controller uses the emulator console

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 61

APIs [105]. Other than the core features mentioned above, the controller also enables and

configures other functionalities which simulate incoming calls/SMSes, manipulates signal

strength, and many more. We discuss the extension made to Android emulator in the next

section.

4.4.3 Extensions to the Android Emulator

A smartphone contains multiple sources of information that are either unique to a device

and does not change during its life or information may get changed over time due to the

operating environment that alters the state of it. Mostly, a device gets a unique identity

from the telephony system that includes IMEI, IMSI, phone number, and many more. To

interact with the telephony system, AT commands [106] are being utilized. To provide a

unique identity to a virtual device, we intercept the AT command request at the emulator

layer for spoofing the response. For example, a smartphone makes “AT+CGSN” and

“AT+CIMI” commands to query IMEI and IMSI numbers, respectively. This spoofed

information is fed to the AT command by concerning the config.ini file. Similarly, other

values are also being fed in response to the AT commands that remain constant but unique

to a device. Apart from the config.ini file, these values can also be supplied to a virtual

device using command line arguments. For the hardware/environment events that alter

the device state, we use the emulator console to supply realistic data periodically. The

Android emulator itself provides most of the hardware like sensors, GPS, signal strength,

and others; the data for them can be fed by using emulator console at run-time. Android

emulator does not provide any interface to change the BTS information with whom a

device is currently associated. To provide a realistic GPS location, the information about

the BTS associated with the device should collaborate. In this observation, we have

added the BTS information alteration interface through the emulator console, and the

STDNeut controller is supplying the realistic BTS identity. We discuss the detailed design

of STDNeut controller in the next section.

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 62

4.4.4 STDNeut Controller

The primary responsibility of STDNeut controller is to generate config.ini file and feed-

in the realistic values for the fluctuating sensors and other hardware events. As shown in

Figure 4.5(b), the STDNeut contains four core components: (i) config.ini generator, (ii)

sensors manager, (iii) GPS manager, and (iv) GPS to BTS.

config.ini generator: It generates the config.ini file to spoof device-specific unique

information.

Sensor manager: It manages the device sensors by feeding-in realistic data periodically.

To generate the value of sensors, it uses the same handles which are obtained through

the Algorithm 3. The sensor manager manages all the sensors and other hardware events

except the GPS. However, it gathers the next GPS coordinate to be projected by GPS

manager so that the sensors on which GPS depends, can generate appropriate values.

GPS manager: The main reason behind the separate manager for the GPS is the cor-

relation between the current GPS location and the previous location. For example, if the

current GPS location is Washington DC, then it is impossible that a person can reach

New York in five minutes. Hence, a random GPS location alerts an app about the emu-

lated environment. So a precise method is required to feed GPS location to an emulated

environment, and GPS manager provides the same. The GPS manager reads the source

and destination geo-location along with the travel time from the STDNeut configuration

file and generates a route by using a path patching algorithm, as shown in Algorithm 4.

This algorithm takes source and destination geo-locations along with the number of steps

required to move from source to destination, and returns the route trajectory.

GPS to BTS: A realistic GPS location alone is not strong enough to hide an emulated

environment. It must be assisted by the BTS location that correlates with the current

GPS location. This correlation is based on the maximum distance between the BTS and

GPS locations that may vary from 1 km to 3 km depending on the area density in terms of

population and obstacles. There are several commercial and public services that provides

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 63

Algorithm 4: Path patching for GPS trajectory

Input : Latsrc, Longsrc, Latdst, Longdst, nSteps
Output: trajectory

1 trajectory ← ϕ
2 LatStepmax ← |Latsrc − Latdst| / nSteps× 2
3 LongStepmax ← |Longsrc − Longdst| / nSteps× 2
4 Directlat ← +1 if Latdst > Latsrc else −1 // direction
5 Directlong ← +1if Longdst > Longsrc else −1
6 (lat, long)← (Latsrc, Longsrc)
7 append(trajectory, (lat, long))
8 foreach i in range(0, nSteps) do
9 lat← lat + rnd.uniform(0, LatStepmax)×Directlat

10 long ← long + rnd.uniform(0, LongStepmax)×Directlong
11 append(trajectory, (lat, long))

12 return trajectory

the GPS location by using a BTS ID. Still, no one provides the reverse mapping of it,

i.e., providing a BTS ID based on GPS location and the SIM operator that is closer

to the current GPS location. GPS to BTS module bridges this gap with the help of

the OpenCellID database [107]. The OpenCellID database contains information for the

already installed BTS, worldwide, which is publicly available for research purposes. As

this database stores BTS information worldwide, an efficient search mechanism is needed

to retrieve BTS ID that operates based on the current GPS location and SIM operator.

With this observation, we first filter the database based on the mobile country code (MCC),

followed by the mobile network code (MNC). MCC and MNC reduce the search space to

a specific operation within a country. Now we only need location area code and cell-ID

to get the desired BTS ID, and that is retrieved by calculating the distance with stored

BTS location in the database and the current GPS location, which is compared against

the maximum distance allowed. We have used haversine [108] to measure the distance

between the BTS location and the current GPS location. The main reason for separate

module for GPS to BTS correlation is because it requires to interact with external database

for retrieving the BTS ID according to the GPS location. In next section, we discuss the

design of ARTmon that is designed on the top of STDNeut with extended anti-emulation-

detection capabilities that is not supported by the STDNeut.

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 64

4.5 ARTmon: Monitoring Framework APIs

ARTmon design is based on the Droidmon that is developed using the Xposed frame-

work. At a high level, ARTmon can be considered to be an enhanced Droidmon with a lot

of configurability and inbuilt anti-emulation-detection techniques related to the files and

system properties. Figure 4.6 illustrates the design of ARTmon using the Xposed frame-

work. ARTmon modifies the hooking engine and the hooks config file used by Droidmon

(Section 4.2.1.1) to incorporate anti-emulation-detection measures. In ARTmon, hook-

ing engine and associated config file will not only provide the information to instrument

framework level APIs, but also modifies the return value of an API call as per the con-

figuration. This is useful to provide non-detectable values when system properties and

files information is queried from the apps. To provide anti-emulation-detection measures

related to system properties and files, ARTmon provides configuration files through which

the controller can dictate the values provided to serve app queries. For example, system

property manager configuration can contain settings to serve run-time information queries

(e.g., whether the platform is a debugger) from the app. Similarly, the file manager can

be configured to conceal file related information when queried through APIs like Exists

and Open.

afterHooked
Method Handle

Hooking
Engine

System Prop
Manager

File
Manager

Hooks
Config

File

System
Prop
File

FileList

API Logs

afterHooked
Method

registerAPIHooks

onPackageLoad

Modified App
at Runtime

Xposed Framework

ARTmon

Figure 4.6: ARTmon design using Xposed Framework.

A user can modify the three configuration files mentioned above to control the app pro-

filing behavior and enable different anti-emulation-detection measures. At runtime, the

afterHooked Method Handle, invoked from the modified apps, consults with all managers:

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 65

system prop manager, file manager and hooking engine: to substitute the app behavior as

specified in the respective configuration files. For some APIs (e.g. open), beforeHooked

method is also used.

File
Manager

afterHooked
Method Handle

Modified Application at
Runtime

file = File("/dev/qemu_pipe")

file.exists()

false

FileListFile : return_value
/dev/qemu_pipe : false

Figure 4.7: Working of anti-emulation-detection using ARTmon

Figure 4.7 shows a working example of the anti-emulation-detection techniques supported

by ARTmon. As shown in Figure 4.7, when a modified app (using Xposed) requests to

check the existence of /dev/qemu pipe file (with the intention of detecting emulation), the

afterHooked method handle consults the file manager to check the configuration settings.

The file manager checks the file name by looking up the configuration file for the available

measures related to anti-emulation-detection through file operations. If the requested

file is present in the FilesList config file, it provides the configured return value to the

file manager (in our case: false) which is then communicated back to the afterHooked

method handle. According to the response received from the file manager, afterHooked

method handle substitutes the behavior of the FileExists method. Similarly, ARTmon

provides defense mechanisms against the emulation-detection attacks through different

app methods using user provided configuration files.

4.6 SysCallMon: System Call Monitor

SysCallMon is a configurable kernel module designed to monitor and profile the system

calls used by apps in an efficient manner. As shown in Figure 4.8, the SysCallMon con-

troller provides a list of system calls to be profiled for different apps to the SysCallMon

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 66

through ADB. One of the design challenges is to filter system calls of interest from pro-

filed apps to reduce overheads mentioned in Section 4.3.2. Process ID (PID) comes as the

first choice for this purpose, but fails in this case as process ID is allocated on a fork()

system call from the parent process. By implication, the complete process tree hierarchy

is required to be profiled resulting in unnecessary overheads.

Android Emulator

SysCallMon

Install
Application

get user ID

User IDs and
System Call List

SysCallMon
Controller

Ap
pl

ic
at

io
ns

Sy
st

em
 C

al
ls

to
 M

on
ito

r

Figure 4.8: High-level view of SysCallMon module.

In Android systems, apps can be identified easily through user IDs as different apps are

associated with different user IDs. Each app is assigned a unique user ID at the time of

installation by the Android system. The SysCallMon controller communicates the user

ID to the SysCallMon for targeted system call profiling. Next we discuss implementation

aspects including the subtle challenges to design SysCallMon.

4.6.1 Implementation

As discussed earlier, the SysCallMon is a kernel module designed to profile the system calls

invoked by apps in a configurable manner. Figure 4.9 shows, SysCallMon takes the list

of user IDs corresponding to the apps of interest along with the list of system calls to be

monitored as input at the time of module initialization. To filter apps under observation,

SysCallMon initializes a list containing the user IDs of monitored apps during initialization.

Note that, the controller leverages the one-to-one correspondence between apps and the

user IDs, and configures the SysCallMon depending on the end-user requirements. Further,

during the module initialization, SysCallMon modifies the system call handler table of the

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 67

Linux kernel to insert modified system call handlers (used as profiling hooks) for configured

system calls and stores the original system call handler functions in a mapping table.

Insert
Module

Insert hooks for
Configured System

Calls

for each hooked
System Call

Is
Monitored

App?

Log the
information

Execute
System Call

Original System
Call Mapping

Applications user
IDs and System

Call List

Create

Initialize

Yes

No

Filtered
Applications
User ID List

Figure 4.9: SysCallMon module work-flow.

Whenever any app invokes a system call, which is monitored (by modifying the system

call handler entry), the modified handler in SysCallMon module is invoked. If the user

ID of the current context does not match any of the configured user IDs, the original

system call handler is invoked. Otherwise, the system call details including the arguments

are logged before executing the original handler. Note that, any system call which is

not profiled, SysCallMon does not introduce any change to its original behavior in an

unmodified system. Further, for monitored system calls originating from apps that are

not of interest, very minimal check (UID check) is required before passing them on in the

normal execution path.

To use SysCallMon module on an Android emulator platform, there are several challenges

as mentioned below.

Loadable kernel module support: Android emulator kernel provided by the Android

SDK does not support loadable kernel modules. Therefore, we cannot load our SysCallMon

module to profile system calls. To overcome this issue, we have downloaded the Android

emulator kernel (Goldfish/Ranchu) source code and compiled it after enabling the loadable

kernel module support.

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 68

Visibility of system call table: In the recent Linux kernel releases, system call table

address is not visible from the user space because of security reasons. Earlier, one could

read the address of system call table from the System.map file which is located in the boot

partition. Android emulator does not have a separate boot partition and we could not get

the address of the system call table. In our custom built kernel, we extract the system

call table address by reading the System.map file generated during the build process.

System call table page is write protected: In recent Linux kernel, the system call

table is mapped as write-protected even for the kernel mode access to avoid accidental

overwrite of the original system call handlers. Therefore, write protection does not allow

our module to modify system call handlers with our hooks for monitoring system calls.

To overcome with this problem, we temporarily disable write protection and reinstate it

after modifying the system call handlers for configured system calls. Note that, the same

process is repeated to reinstate the original system call handlers during module unload.

4.7 InviSeal: Building the System

So far, we have designed the anti-emulation-detection techniques using the STDNeut (Sec-

tion 4.4) and ARTmon (Section 4.5) to bypass majority of emulation-detection attacks, in-

cluding sensors, files, and system properties. Further, we have designed an OS-level system

call interposition technique (SysCallMon, Section 4.6) to profile the system call activities

while incurring low profiling overhead. In this section, first we discuss the requirement

of an integrated solution to analyse malware. After that, we provide an overview of the

InviSeal, a comprehensive Android security audit framework designed based on STDNeut,

ARTmon and SysCallMon (Section 4.6).

4.7.1 Why An Integrated Solution is Required?

Malware analysts can perform multiple types of analysis ranging from cross-layer profiling

to memory forensics to identify malicious behavior of an app while hiding the underlying

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 69

emulated environment. However, none of the solutions which we have designed earlier

(i.e., STDNeut, ARTMon, and SysCallMon) can provide all functionality in one place.

For example, STDNeut alone cannot provide framework-level profiling information. It

only protects the emulated environment from being detected as an analysis platform by

using sensors, telephony systems, or device state information. Similarly, ARTmon alone

cannot be used for profiling such malware that includes malicious behavior inside the

native code. Moreover, SysCallMon alone neither protects emulated platforms from being

detected as an analysis environment nor profile framework-level APIs. Furthermore, none

of these solutions provides the ability to perform malware analysis based on memory

forensic techniques. Hence, an integrated solution is required that can be used in many

malware analysis scenarios without being detected as an emulated platform.

STDNeut with InviSeal
Extensions

InviSeal
Scheduler

Xposed Framework

ARTmon

SysCallMon LiME
Android Kernel

InviSeal
Controller

STDNeut

Controller

SysCallMon
Controller

config
file

Figure 4.10: Architecture of InviSeal, a stealthy dynamic analysis framework for An-
droid systems.

4.7.2 An Overview

InviSeal provides an efficient and easy to use end-to-end Android analysis platform with

comprehensive support for anti-emulation-detection. Figure 4.10 shows, there are three

main subsystems of InviSeal: (i) STDNeut with InviSeal extensions, (ii) InviSeal Con-

troller, and (iii) InviSeal Scheduler. This section describe the design of the subsystems.

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 70

STDNeut with InviSeal extensions is responsible for providing cross-layer profiling

capability including the framework layer and the system call layer. ARTmon is one of the

essential modules in the InviSeal, which we have designed using the Xposed framework to

profile the framework layer APIs. ARTmon along with the STDNeut provides compre-

hensive anti-emulation-detection functionality to bypass majority of emulation-detection

tricks employed by the malware developers. We introduce Linux kernel modifications

through a kernel module (referred to as SysCallMon) to profile the system calls in a tar-

geted manner. We also use LiME (Linux Memory Extractor) [109] to capture the entire

memory of an Android device, which can be further analyzed to extract useful information

such as dynamically loaded code or unpacked code from a packed malware.

InviSeal Controller’s responsibilities include launching apps inside the Android virtual

device by providing necessary information for app execution and profiling. For exam-

ple, InviSeal controller provides the hooks configuration file required by ARTmon, system

call profiling filters like app user IDs and system call numbers to SysCallMon with the

help of SysCallMon controller. To control the profiling characteristics the InviSeal con-

troller makes use of the Android Debug Bridge (ADB) [110]. Apart from launching apps,

InviSeal controller also manages the sensors, telephony systems and device state infor-

mation in Android virtual device with the help of the STDNeut controller. Note that,

the ARTmon provides most of the anti-emulation-detection mechanisms except for sensor,

telephony system and device state information related emulation-detection that is han-

dled by the STDNeut (see Section 4.4). This is achieved by frequently feeding-in realistic

sensor data from the STDNeut controller to the emulator. To feed the sensor inputs,

the STDNeut Controller uses the emulator console [105] APIs. Hence, ARTmon along

with STDNeut provides comprehensive anti-emulation-detection functionality to bypass

majority of emulation-detection attacks. Other than the core features mentioned above,

the InviSeal controller also enables and configures other functionalities like screen-shots,

screen recording, network capture, memory dump etc.

InviSeal Scheduler provides a single-point dynamic profiling and analysis support to the

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 71

end-user. The end-users submit different apps for security analysis (referred to as analysis

jobs) through external APIs. The main responsibility of the scheduler is to schedule

analysis jobs on available computing resources by downloading the apps and provisioning

InviSeal controller as per the configuration mentioned in the ‘config’ file. This configuration

file ‘config’ is the master ‘config’ file for InviSeal, which is used to configure STDNeut and

SysCallMon. The computing resources are managed in the units of Android Virtual Device

(AVD), provisioned before an analysis job is scheduled and released when the job finishes.

It also captures the profiling information from the InviSeal controller and stores them for

further analysis.

4.8 Evaluation

We use Android Open Source project (AOSP-7.1) to evaluate InviSeal. To overcome the

compatibility of apps on x86 emulators having native code (a piece of code written in

C/C++), we use ARM address translation library (Houdini) [111]. We use custom built

Android goldfish kernel (v3.10) to integrate and test SysCallMon. For the experiments,

Android Virtual Device (AVD) instances were configured with two CPU cores, 1.5 GB of

RAM, 2GB of internal storage and a 512 MB of SD card along with all the sensors

4.8.1 Performance Overhead Analysis

To empirically analyze performance overhead of InviSeal, we ran CaffeineMark-3.0 [102]

with and without ARTmon where baseline refers to original emulator without any mod-

ifications and ARTmon refers to emulator with the proposed framework-level API profiling

(Figure 4.11). Further, we enabled features like strace-based profiling and SysCallMon

in both the baseline system and with ARTmon to study the additional overheads due

to system call monitoring. Note that, baseline+Strace refers to a scenario without

ARTmon-based profiling but with strace-based system call profiling. The other settings

are to be interpreted in a similar manner. We repeated each experiment on a single AVD

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 72

for ten times and record the average score reported by CaffeineMark, where higher score

represents lower overheads.

Seive
score

Loop
score

Logic
score

String
score

Float
score

Method
score

Overall
score

CaffeineMark workloads

0

1

2

3

4

5

6

7

Sl
ow

do
wn

 w
.r.

t b
as

el
in

e

1.
0

1.
03

5

1.
0

6.
16

1

1.
05

7

1.
0 1.

36
8

1.
13

6

1.
05

6

1.
01

4

1.
38

5

1.
01

1

1.
0 1.
08

5

1.
0 1.
05

6

1.
0

1.
00

5

1.
00

2

1.
00

4

1.
00

5

1.
00

8

1.
05

7

1.
0

6.
33

7

1.
05

3

1.
00

5

1.
39

1

1.
04

7

1.
10

1

1.
01

4

1.
17

5

1.
00

7

1.
0 1.
04

8

baseline
baseline+Strace
baseline+SysCallMon
ARTmon
ARTmon+Strace
ARTmon+SysCallMon

Figure 4.11: System slowdown w.r.t baseline (original Android emulator) due to the
profiling overheads in different settings using CaffeineMark-3.0 benchmark score. The

lower the better.

Figure 4.11 shows that InviSeal with ARTmon and SysCallMon incurs 1.04X slowdown

compared to the baseline system. Only ARTmon without any system call profiling results

in similar slowdowns compared to the baseline system. We believe that, Droidmon will also

result in similar overheads as that of ARTmon as the underlying Xposed framework remains

the same. When strace-based system call profiling is enabled, the additional overhead

due to strace is 1.36X and 1.38X with baseline and ARTmon, respectively. SysCallMon is

∼1.26X faster than the strace in both the cases. This shows that, InviSeal provides cross-

layer profiling (using SysCallMon) without incurring any significant additional overheads.

Moreover, for benchmark workloads issuing high-volumes of system calls, strace-based

profiling results in significant overheads (e.g., 5.39X overheads in String-score) compared

to SysCallMon.

4.8.2 Validation of Proposed Anti-Emulation-Detection Measures

InviSeal vs. EmuDetLib: We evaluated the effectiveness of the InviSeal against the

EmuDetLib (see Section 4.3.1) and found that InviSeal remains undetected against all

the attacks performed by EmuDetLib to detect the underlying emulated environment.

Similarly, when the malware sample RealMal is used, InviSeal also remains undetected

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 73

against all the real malware samples. After evaluating the efficacy of the InviSeal against

the EmuDetLib and RealMal, we attempt to understand the reasoning behind this strong

defense mechanism by performing various experiments. In the remaining part of this

section, we discuss the reasons for the efficacy of InviSeal by analyzing different sensor

readings and device information during the experiments.

[0
-1

0]

[1
0-

20
]

[2
0-

30
]

[3
0-

40
]

[4
0-

50
]

[5
0-

60
]

[6
0-

70
]

[7
0-

80
]

[8
0-

90
]

Range (m/s2)

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

Fr
eq

ue
nc

y

AccelX AccelY AccelZ

(a) Distribution of accelerometer readings with anti-emulation measures.

[-4
5

to
 -3

5]

[-3
5

to
 -2

5]

[-2
5

to
 -1

5]

[-1
5

to
 -5

]

[-5
 to

 5
]

[5
 to

 1
5]

[1
5

to
 2

5]

[2
5

to
 3

5]

[3
5

to
 4

5]

Range (T)

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

Fr
eq

ue
nc

y

magX magY magZ

(b) Distribution of magneto-meter readings with anti-emulation measures.

Figure 4.12: Effectiveness of InviSeal in neutralizing emulation detection using sensors
by providing random reading for accelerometer and magnetometer.

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 74

4.8.2.1 Non-detectability through sensors

To evaluate the efficacy of InviSeal against potential malware exploiting sensor readings,

we have developed an app to record and store the values of accelerometer, magnetome-

ter, and GPS readings periodically which are shown in Figure 4.12 and Figure 4.13. In

this evaluation, we have set two dependencies for sensors, one for time & GPS, and an-

other for GPS & BTS. We make rest of the sensors as independent. The accelerometer

reading represents the movement of the device in a three-dimensional space (referred to

as AccelX, AccelY, and AccelZ) where the value in each dimension ranges from zero to

ninety (0, 90). Figure 4.12(a) shows the distribution of accelerometer readings where the

X-axis represents ranges (total of nine ranges) of sensor values and the Y-axis represents

the frequency. We have collected the values by executing an experiment for 150 seconds

and reading the sensor values every second. The data shows that all the sensor read-

ings are almost equally likely and approximates a random distribution. Therefore, any

emulation-detection technique based on accelerometer reading is nullified by our system.

For the magnetometer (Figure 4.12(b)), the magnetic field readings on each axis in a three-

dimensional system are represented as magX, magY and magZ with a range between −45

to +45. As shown in the Figure 4.12(b), the distribution is random, thus it does not

allow an emulation-detection scheme using magnetometer data to succeed in detecting the

underlying emulation platform.

0.0055 0.0060 0.0065 0.0070 0.0075 0.0080
Latitude +2.8630000000e1

0.001

0.002

0.003

0.004

0.005

0.006

Lo
ng

itu
de

+7.7180000000e1
Vodafone cell Airtel cell GPS

Figure 4.13: GPS latitude and longitude reading with anti-emulation measures by
feeding-in realistic data along with associated BTS. GPS denotes path trajectory gen-

erated using the path patching algorithm.

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 75

Another source of emulation-detection is performed by reading GPS data. Unlike ac-

celerometer and magnetometer, GPS data cannot be a random value. Depending on the

location of the system, the GPS data should be provided with very slight variations in lat-

itude and longitude. As shown in Figure 4.13, InviSeal anti-emulation-detection measure

can provide valid latitude and longitude values along with the associated BTS. In Figure

4.13, GPS denotes the path trajectory generated using path patching algorithm 4 whereas

Vodafone cell and Airtel cell denotes the BTS location in the network of Vodafone and

Airtel, respectively.

Table 4.3: Device information provided by InviSeal with three different AVDs executing
the same app.

Queried Information retrieved
Information AVD1 AVD2 AVD3

PhoneNumber 9876543210 9856543410 9876573213
SimSerialNumber 89914105611117910720 89914145211132510720 89914111219018510720
IMSI 405541385237906 405521385237806 405511385238906
IMEI 359470010002931 359470010302943 359470010002949
SimOperator 40554 40552 40551

4.8.2.2 Non-detectability through device information

Device information is useful in differentiating between an emulated device and a real

smartphone. In emulator platforms, device information such as IMEI, IMSI, phone number

etc. are either absent or hold fixed values. To demonstrate the effectiveness of InviSeal’s

anti-emulation-detection measures, we have used an app called SIMCardInfo [112], which

extracts the information related to telephony services. We created three instances of

this app in three different AVDs and executed all the instances simultaneously for one

minute with and without InviSeal. The output of the app queries related to the device

information is logged for all instances. We analyzed the log to extract information like

IMEI and IMSI. Table 4.3 shows the captured device information with InviSeal. We are not

showing the results other than the proposed system as the device readings were the same

for all the instances. As shown in Table 4.3, InviSeal is capable of providing a unique

device identity in a multi-instance setup. This is particularly useful to avoid detection

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 76

when analyzing potential malware running in separate devices designed to operate in a

collaborative manner as all malware sees same device identity. However, the values of

PhoneNumber, IMEI, and IMSI are generated manually in the experiment which can be

configured through the InviSeal’s configuration file without any modification in the Qemu.

4.8.3 InviSeal Use Cases

We present three use cases of InviSeal to show its effectiveness as a security analysis

platform.

Fr
am

ew
or

k
La

ye
r

N
at

iv
e

C
od

e
/ S

ys
te

m
C

al
l L

ay
er

App-A: ReadDevInfo (UID=10059) App-B: SendInfo (UID=10060)

openat(-100, /sdcard/myfile.txt,
33858, 438) = 35

write(35,"IMSI : xxxx, IMEI : yyyy,
SIM Number : zzzz",)

getSubscriberId() : xxxx
getDeviceId() : yyyy
getSimSerialNumber() : zzzz

/sdcard/m
yfile.txt

openat(-100, /sdcard/myfile.txt,
32768, 0) = 36

read(36,"IMSI : xxxx, IMEI : yyyy,
SIM Number : zzzz",)

socket() = 40
connect(40,)

write(40,"IMSI : xxxx, IMEI : yyyy,
SIM Number : zzzz",)

Figure 4.14: Detecting collusion attack using cross layer profiling. Dotted lines separate
the framework and native layers.

4.8.3.1 Detection of collusion attacks using cross-layer profiling

To show the effectiveness of cross-layer profiling in detection of potential malware, we

have developed two apps—ReadDevInfo and SendInfo. ReadDevInfo has permissions to

read device information and can write to external storage (in our case the SDCard),

whereas SendInfo has permissions to access internet and read from external storage (Fig-

ure 4.14). During execution, ReadDevInfo queried device information (IMEI, IMSI and

Sim Serial Number) using framework level APIs and wrote these information to a file

/sdcard/myfile.txt using native APIs. SendInfo read the same file and established a

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 77

network connection using socket APIs (part of native library). Note that, SendInfo did

not use any framework level APIs to read from file or send data across the network.

In this scenario, to detect information leakage through multiple apps, cross-layer profiling

is required. Emulator platforms like Droidmon provides only framework level activity

profiling which is insufficient to successfully tackle this scenario. In this case, Droidmon

like profiling techniques can follow the device information trail within the framework layer

and get constrained because of their inability to extend the monitoring into the lower

layers. However, with cross-layer profiling support of InviSeal, we can follow the lead into

the captured system calls (by SysCallMon) and flag the malware in a collusive manner. For

example, openat("/sdcards/myfile.txt") followed by write() system call with device

information as argument from ReadDevInfo is captured by SysCallMon. Additionally, the

framework layer also captures the device information API invocation event. When the

same file is read from the SendInfo app (using openat and read), the SysCallMon profiles

these system calls. A malware analyst becomes suspicious at this point and tracks the other

system calls made by SendInfo to not only detect the malware, but also the remote entity

involved in this activity by monitoring socket system calls (socket, connect). Similar

information leakage through shared memory and other native IPC mechanisms can also

be easily detected by InviSeal.

4.8.3.2 Evading distributed emulation-detection

To show the effectiveness of the anti-emulation-detection measures against emulation-

detection using multiple clients along with a central server, we used Dendroid [101], a

real Android botnet. We integrated EmuDetLib [100] into the Dendroid malware. We

modified the Dendroid control server [101] not to send further instructions to the clients

that seem to be running on emulated platforms by observing identical device information

like IMEI from multiple clients. Apart from hosting the control server, we also designed

a victim site where the malware-infected devices perform a denial of service attack in a

distributed manner when instructed from the control server. We created two instances

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 78

for each of the CuckooDroid and InviSeal, and then executed Dendroid malware with

integrated EmuDetLib. The control server instructs the infected devices to perform an

HTTP flood on the victim site mentioned above only if the control server does not detect

emulation. In our evaluation, we found that the control server is sending instructions

only to the InviSeal system instances and not to the CuckooDroid instances. This was

primarily because, the phone number, IMEI, etc. provided to the control server by the

CuckooDroid were identical for both the instances, which was not the case with InviSeal.

Therefore, we can conclude that the proposed InviSeal system can prevent emulation-

detection orchestrated in a distributed setup.

4.8.3.3 Experiments with Memory Dumps

In this experiment, we have selected a set of 50 random malware detected in year 2018.

InviSeal is configured to capture the strace and ARTmon logs. Also, two memory dumps

were captured for each sample. One dump (initial) was taken before the installation of

the sample on AVD, while another one (final) was after executing the sample on the

device. We have analysed both the memory dump (i.e., initial and final) by obtaining the

difference between them with the help of volatility [113] framework and shown in Table

4.4. During the experiment, 45 samples were able to finish their execution successfully

while the remaining 5 samples could not due to the exceeding time limit, hence the final

dump has not been collected. Results shown in Table 4.4 represents the average difference

in each category. We have not shown such categories whose differences are zero, but they

can be obtained from the captured memory dumps, if required.

Table 4.4: Categories wise average difference between initial and final memory dump

Category Average number of difference
Process List 7.289
Process XVIEW 3.578
PID hash Table 325.2
NETSTAT 3.11
Libraries 1
Hidden DLLs (ldrmodule) 2340.31
PLT Hooks 0.022
API Hooks 0.022

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 79

Further, memory dump feature can also be used to extract useful evidences/information

like app loading dynamic binaries into the memory at execution time i.e., dynamic loaded

code or unpacked code of a packed malware. To show the ability to extract such informa-

tion, we have randomly selected two apps where the information about the dynamically

loaded code has been captured by the ARTmon. From the ARTmon log, we found that

these apps are loading two files, one is the shared library (.so file), and another one is

dex/jar file. To extract these files from the memory dump, we have used volatility tool,

and extracted from the final memory dump. The path for these files inside the memory

dump and the starting virtual memory address (VMA area) is shown in Table 4.5. An

analyst can further perform static analysis to extract more useful information towards the

identification of malicious behaviour.

Table 4.5: Dynamically loaded file extracted from the memory dump

App Package Name File Path VMA

com.gwjppa.LZstory
/data/app/com.gwjppa.LZstory-1/lib/arm/libSecShell.so 0xc156000
/data/user/0/com.gwjppa.LZstory/.cache/classes.jar 0x946f1000

com.kuman.comic
/data/user/0/com.kuman.comic/.cache/classes.jar 0x97866000
/data/app/com.kuman.comic-1/lib/x86/libSecShell.so x98a62000

Evaluation summary: In a nutshell, InviSeal can be used to effectively analyse and

detect stand-alone and colluding malware in an efficient manner without being detected

as an emulated environment.

4.9 Related Work

Dynamic analysis techniques for Android app analysis have been drawing the interest

of researchers for a long time due to the high use of dynamic code loading and other

techniques in the app [32]. Because of these techniques, static analysis fails to capture the

behavior of an app.

Dynamic analysis tools based on taint analysis such as taintDroid [64] and taintART [65]

are capable of identifying the leakage of sensitive information through the framework level

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 80

API. However, such dynamic analysis techniques are not able to capture the information

leak that happen through lower level APIs like native code or system calls.

Apart from the taint analysis, framework level API monitoring based dynamic analysis

tools have also evolved. Such tools can be designed either by modifying the framework

level APIs in Android Open Source Project (AOSP) or by using hooking frameworks like

Xposed [95]. Hooking framework based approaches are flexible and are easily extendable

in comparison to the modification in framework level APIs.

DroidBox [37] is a highly popular and widely used dynamic analysis tool for the Android

app, and is based on the framework level API modification in AOSP. Droidbox also pro-

vides the functionality of taint analysis by including the taintDroid in it. However, it has

been used by most of the researchers. It can only analyse an app that can run till Android

version 4.4. On the other hand, the dynamic analysis tools like CuckooDroid [38] and

MobSF [39] are based on the Xposed (hooking framework) and are capable of hooking

the framework level APIs at runtime. These tool use the Droidmon [99] module (Sec-

tion 4.2.1.1) to enlist the APIs used by an app. MobSF provides a virtual machine for

Android x86 version 4.4.2 and can execute only those apps that do not contain native

code or requires Android version 5.0 and above. On the other hand, CuckooDroid can

be used to run on x86 based virtual machine as well as on ARM-based emulated device.

CuckooDroid can be utilized and configured for Android app analysis when used with the

Android version 4.4. However, for the Android version 5.0 and above, setting up Cuck-

ooDroid sandbox is not easy due to the secure boot verification in android emulator. Apart

from the configuration, it can only capture the information at the framework level and

fails to capture transactions happening through the lower level.

Other than the hooking and framework level API modification, virtual machine introspec-

tion (VMI) [114] techniques have also been employed for dynamic analysis like Droid-

Scope [90], Ndroid [115]. DroidScope provides functionality to trace native instruction,

dalvik instructions and taint tracking. It is built on top of the QEMU emulator and tar-

geting the Android version 4.3 (Jelly Bean). On the other hand, Ndroid is a VMI based

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 81

taint analysis tool and can run an app that uses ART as the default runtime. However,

the overhead incured by this approach makes the system more than 10X slower [90, 115].

Apart from profiling an app, analysis tools must provide the ability to hide an emulator

from the running sample. However, the tools mentioned earlier also use anti-emulation-

detection techniques to hide the emulator, but a smart malware author can bypass such

a defense mechanisms against VM detection. For example, motion sensors can be used to

evade dynamic analysis when running on emulated devices [91].

4.10 Discussion and Future Directions

This research presents a new dynamic analysis framework called InviSeal. It uses the

emulated platform to profile an application to find malicious intentions while hiding the

underneath emulated platform. To validate the efficacy of InviSeal, we use an emulation-

detection library (EmuDetLib) and real malware samples from the year 2019. From the

evaluation, we found that InviSeal remains undetected against the emulation-detection

attacks, while other frameworks cannot hide from one or more than one attack. Now, we

discuss more details of InviSeal related to the usage, impact of the rapid evolution of the

Android ecosystem, application and malware, and others, followed by the future directions

to extend InviSeal.

Ability to generate realistic data for sensors: InviSeal aims to thwart platform

sensing malware that utilizes sensor data to evade dynamic analysis. To make this possible,

InviSeal generates realistic sensor values while maintaining their dependencies (Figure 4.12

and Figure 4.13). To ensure proper correlation among sensors, InviSeal uses a sensor data

generation algorithm (Algorithm 3). However, to generate realistic data, analysts need to

define a list of sensors and their dependencies. A sensors-based emulation-detection attack

can be avoided in many other ways, such as by using symbolic execution or recording the

sensor data from a real device and playing it back on the emulated platform. Symbolic

execution requires the interruption in the execution of a program to substitute appropriate

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 82

value by calculating it on the fly. As a result, symbolic execution slows down the system’s

performance and opens it up to new forms of evasion attack. The record and replay strategy

is still efficient and does not incur extra overhead during analysis. However, it requires

recording data for sensors after some time before replaying. Otherwise, an intelligent

malware developer may use this information and arm their new malware to thwart the

analysis process, which does not happen with our solution. Because in our solution, a

user needs to provide two lists, one for available sensors and the other for dependencies

among them. Based on these two lists, the sensor data generation algorithm generates the

actual data that InviSeal feed to the emulator at runtime. Therefore, our solution does

not need to change the values repeatedly. In case of any alteration in the available sensors

list, like adding a new sensor or deleting an existing one, it requires changes in both lists.

If dependencies among sensor are not defined properly, InviSeal fail to defend against the

sensor based emulation-detection attacks.

Impact of evolution on Android ecosystem and application: The rapid evolution

of the Android ecosystem [116] and application [117] design paradigm always imposes

new challenges for application developers and security researchers. Moreover, malicious

developers also arm malware with advanced techniques [32, 118] such as dynamic code

loading, reflection, native code, or emulation-detection to bypass the analysis processes

running on existing systems. This may also be true to some extent with InviSeal. To get

around these problems, any analysis system, whether it is static or dynamic, should be

able to adapt quickly to such rapid change. As InviSeal is made up of several separate

modules, such as STDNeut (which runs Android OS), ARTmon, SysCallMon, and the

LiME module, to profile an application across multiple layers. It can easily adapt to

the rapid evolution of the Android ecosystem and applications. For example, ARTmon

can work on any version of Android OS that is higher than version 7.1, as long as the

Xposed framework can be used on that version. In the same way, SysCallMon will also

work on another version but requires rebuilding the appropriate Android kernel and the

SysCallMon module. However, STDNeut does not need any changes because it is designed

using the Qemu-based Android emulator, which can run any version of Android OS.

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 83

Impact of ARMv9’s ARM Confidential Compute Architecture (CCA): With

ARMv9’s ARM CCA [119] similar to SGX, an app developer can create an app that

can run part of its code or the whole app in a secure environment. A secure enclave

application usually does not use predefined APIs (like system calls) because doing so can

reveal runtime information about the application. Since the functionality of an Android

app comes from predefined APIs, InviSeal can easily extract runtime features from an app.

However, let us say an Android app does not use framework layer APIs or System calls.

It might be possible if all the functions are built into the app. In that case, InviSeal can

not capture runtime features. Also, InviSeal can not get runtime information if the entire

OS (guest OS) is running inside the secure enclave, which is possible with ARM CCA but

not with SGX.

Ability to profile collusive malware with cross-layer profiling: One of the use cases

of InviSeal is to profile/detect collusive malware that uses either single layer or multiple

layers to infiltrate sensitive information in a collusive manner (Section 8.3.1). Many stud-

ies [120, 121] effectively target the detection/identification of collusive applications using

static or dynamic analysis techniques. The techniques that use only static analysis [120]

fail to detect collusive malware that uses both Java framework APIs and native code for

collusion attacks. Furthermore, techniques based on model checking [121] by considering

the execution state of the application can effectively detect collusive as compared to In-

viSeal. InviSeal aims to use it in multiple use cases while hiding the underlying emulated

platform. It might be that InviSeal is not effective for collusive malware detection as com-

pared to other techniques. However, it can also be used in multiple other scenarios, which

is not the case with other collusive malware detection work.

Ability to mitigate new attacks based on files and system properties: The

Android ecosystem is ever-evolving. This means that in the future, Android may change

or add files and system attributes that might serve as a way of evading analysis. So, as

proposed in [122], the system should be adaptable enough to include such modifications

without requiring a recompile of the relevant module. In InviSeal, ARTmon provides the

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 84

defense mechanism against files and system properties-related attacks. Since ARTmon

relies on external configuration files, it may be changed at any moment to protect against

new threats without rebuilding the ARTmon. However, InviSeal will still be vulnerable to

future evasion attempts if such updates in configuration files are not made.

Adaptability in real devices: InviSeal is designed to help analyst perform dynamic

analysis of Android applications to find out if they are trying to do anything bad. It

is mainly made for an emulated platform to stop platform-sensing malware and profile

applications across multiple layers, including framework, native, and kernel. But imagine

that analyst want to profile an application on a real device across multiple layers. In that

case, it is also possible, given that the device has root access and the Xposed framework

can be installed. Also, the analyst needs to recompile the Android kernel on the device so

that SysCallMon and the LiME module can be used for system calls profiling and memory

dump. There is no need to change the ARTmon in order to capture framework-level APIs.

Adaptability for devices other than smartphones: Some Android devices like tablets

may lack cellular capabilities or do not have some sensors like GPS. In InviSeal, cellular,

GPS, and other sensors fall under the sensor category. An analyst may configure InviSeal

without these sensors’ information to create a realistic emulated device where such sensors

are not present.

4.10.1 Future Directions

Similar to the other analysis system, InviSeal is also having some limitations that we like

to address in future. Some of the limitations and directions for future work are as follows:

(i) Even though InviSeal provides a strong defense against all the malware samples, it

falls short if an application tries to detect Xposed framework. For example, the Snapchat

application uses the native code to detect Xposed [123]. It is possible because Xposed

capability is limited to the framework level API only, and here detection is performed

through the native code. A more suitable defense is to handle file and system property

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 85

related emulation-detection attack at kernel-level, which is one of the future directions of

this work.

(ii) Malware may leverage the timing channel attacks [122] to bypass the dynamic analysis

process on InviSeal. Such timing channel attack includes studying the performance of the

graphics sub-system, the number of instructions executed per second, or the mismatch

of timing information gathered from an external server and the execution platform. For

example, malware can communicate to an external NTP server to get accurate time and

measure the time spent on the platform to bypass the analysis process [122]. Therefore,

in the future, we like to add the capability of thwarting timing channel attacks into the

InviSeal.

(iii) At the moment, InviSeal only dumps information about network traffic as a pcap file

and does not have a module to analyze it further. There may be HTTPS/SSL traffic in

the captured network information, which makes it harder to get plain text information.

So, we would like to add more fine-grained network traffic monitoring utility like MITM-

proxy/CharleProxy to store all the information in plain text. We also want to add a

network analysis module to gather useful information from the captured traffic.

(iv) Like many other dynamic analysis systems, InviSeal uses the monkey [124] tool to

execute a single PATH at a time. Typically, a user’s activities will cause an application

to change its behavior; the monkey does not have this feature. In the future, we want to

enhance InviSeal with the sophisticated input-generating techniques such as Droidbot [125]

to circumvent the constraints imposed by the monkey.

4.11 Summary

In this chapter, we have shown that anti-emulation-detection measures provided by the

existing dynamic analysis frameworks are insufficient to operate in a stealthy manner re-

sulting in detection from malware. Further, we have shown the limitations (both in terms

of overhead and stealthiness) of system call monitoring utilities like strace to capture

Chapter 4. InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems 86

the app behavior below the framework layer. To address these issues, we have presented

InviSeal, a stealthy dynamic analysis framework for Android systems to perform cross-

layer targeted profiling of an app in the virtual environment while hiding the underlying

execution environment from the apps. We characterize the effectiveness of the InviSeal

by evaluating it with different setups. We have performed experiments to showcase the

effectiveness of InviSeal in providing low-overhead cross-layer profiling support with com-

prehensive anti-emulation-detection measures.

Furthermore, we have demonstrated the effective use of cross-layer profiling to detect

colluding malware. We believe that InviSeal will improve the existing offline malware

analysis system built around dynamic analysis while thwarting the emulation-detection

strategies opted by the malware.

Even though InviSeal offers a strong defense from being detected as an emulated platform,

malware can use timing channel attacks to detect emulated platforms (like timing measures

against the graphics subsystem) to bypass the analysis process. Furthermore, Android

allows the installation of an application from unverified sources (e.g., third-party market

and sideloading), which opens up other ways for malware to infect smartphones. Therefore,

detection of malware on a real device is essential. In the next chapter, we discuss the

process of on-device malware detection and the challenges associated with designing such

a system.

Chapter 5

DeepDetect: A Practical

On-device Android Malware

Detector

Even if the security system of an app store is fool-proof, it does not stop users from

installing apps from untrustworthy sources, allowing malware to attack smartphones in

new ways. Therefore, detection of malware on a real device is essential. In this chapter,

we design a low-overhead on-device malware detector DeepDetect by employing a machine

learning based model on static features. First, we discuss the challenges in designing an

on-device malware detector. Later, we elaborate on the building block of the on-device

malware detector, followed by the evaluation of it.

5.1 Introduction

In the recent years, Android has become one of the most popular operating systems (OSes)

for smartphones because of its open source nature and large support for different apps.

Recently, a report shared by the International Data Corporation (IDC) for smartphone

87

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 88

OSes showed that in the second quarter of 2021, the total market share of Android was

83.8% [4]. As a consequence of such large-scale adoption of Android, the security of

these devices has become a non-trivial challenge. In the year 2019, security experts at

G DATA observed that around 4.18 million new Android malware samples have been

discovered [126]. This shows that a new Android malware is born every eighth second [126].

The problem: Malware may get unleashed into the device bypassing the defense system

of Google Play Store [20] or from unverified sources (e.g., third-party market, sideload-

ing). Therefore, on-device malware detection is crucial to stop malware affecting end-user

devices. The performance of existing on-device malware detectors [6, 66] in presence of

recent malware is unknown. Furthermore, these detectors utilize the API call information

for malware detection that are susceptible to code obfuscation and requires significant

processing time (hence impact battery life). For example, API based malware detectors

take ∼11.89 seconds to extract Restricted API information which is 2.23X slower than op-

code based detector (see Section 5.5.5). Moreover, most malware detectors like DroidSieve

use the PRAGuard [79] dataset to evaluate their efficiency against obfuscated malware.

PRAGuard dataset contains malware till March 2013. These samples are outdated and

do not represent the current state of apps.

Our goal: We believe, an efficient and accurate on-device malware detection mechanism

should complement the existing offline analysis process to stop malware infecting the end-

user devices in an effective manner.

Our approach: To design an on-device malware detector that is faster, consumes less

device energy, provides high malware detection rate and low false-positive rate, we use the

following approach:

(i) With code obfuscation, selection of correct features is a challenging proposition as many

features either negatively impact the accuracy or unnecessarily increase the feature set size

with negligible contribution towards accuracy. Therefore, we carefully select features that

are either unaffected by obfuscation or we transform them into another form to make them

independent of obfuscation.

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 89

(ii) The most time consuming step in malware detection is the feature extraction process

while other computation such as executing the trained classification model on the feature

vectors require significantly less time. Hence, we design a lightweight feature extraction

module that can extract features efficiently. We also adapt the N-Gram method for feature

construction to preserve the relationship between opcode.

(iii) With the outdated obfuscated malware samples, it is hard to measure a malware

detector’s efficiency with the current pace of obfuscation methods. Hence, we create a

new obfuscated malware dataset that reflects the current state of obfuscation techniques

and app design paradigm.

The accuracy of on-device malware detectors ([6, 66, 67, 68]) built around machine learn-

ing algorithms with static features goes down in the presence of unseen1/new2/obfuscated

apps. Talos [67] uses only requested permissions to detect a malware, which can be ex-

tracted efficiently from an app by using the Package Manager (Android built-in feature).

However, a malware detector based on only permissions is not a good solution because

it can classify malware as benign that is obtained by introducing malicious code inside

a benign app. Drebin [6], IntelliAV [66], Yuan et al. [68] includes API call information

(suspicious API and/or Restricted API), which requires significant processing time (see

Section 5.5.5) to extract from an app. Furthermore, the API call information is more

susceptible to the code obfuscation attack, which impacts the accuracy of a model (see

Section 5.5.1). Also, in the newer versions of the Android OS, some APIs may go outdated

or suppressed, and the same will not be present in the future/unseen apps.

Techniques ([7, 55, 83, 84]) that are primarily proposed for deployment in the market place

provides good detection accuracy for both new malware samples and obfuscated samples.

One choice for on-device malware detection could be the deployment of the same model

on a real device. However, these methods extract various features (permissions, intent

filters, API calls, native code, etc.), and the processing time required for the extraction

1Samples that are not the part of training set, but they may be from the same period or prior to the
samples of training set.

2Samples that comes after the samples used for training.

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 90

of this information is relatively high. For example, DroidSieve [7] takes an average of

2.5 seconds, while Garcia et. al. [83] takes around two seconds to analyze an app in an

offline manner. Since the processing time requirement for these techniques are high on a

server environment with huge processing capabilities, we speculate that the deployment

of the same techniques on low-end devices will consume more time and therefore, it is

not practical. Note that, Drebin takes 750 milliseconds to analyze an app on a server

environment. However, when it is deployed on a real device, its reported analysis time

for an app is 10 seconds. Similarly, DroidAPIMiner [55], an API based malware detector

takes around 15 seconds for extracting features and 25 seconds of overall time to analyze

an app in a server environment with a detection rate of ∼97%.

In this work, we present DeepDetect that enables on-device malware detection by employ-

ing machine learning on static features with significantly less processing time and device

energy. Overall, our contributions are as follows:

(i) We reduce the size of Dalvik opcode instruction set by combining the same semantic

instructions and represent them as one instruction (Section 5.2.1). We also develop a

lightweight opcode information extraction module to extract the opcode sequence from an

APK inside a real device efficiently (Section 5.2.2).

(ii) We develop a feature engineering framework that can drastically reduce the feature

set size (from 7,12,595 to 75 features) while achieving malware detection rate of more than

97% (Section 5.3).

(iii) We design an on-device malware detector (DeepDetect) that is capable of identifying

a stand-alone malware (Section 5.4). We show the efficacy of DeepDetect in the presence

of known1 (training samples), unseen, and new malware in terms of detection rate (recall),

precision and F1-score (Section 5.5.2). We also evaluate our model against the Pegasus

malware samples that have been collected from the CloudSek organization.

1Samples that are the part of training data.

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 91

(iv) We create a new dataset of obfuscated malware D4:Obfuscated (see Section 3.2.1) by

obfuscating 4,993 unique malware with six different categories. We evaluate DeepDetect

against these obfuscated samples, DeepDetect correctly detects 95.57% malware, which

is an overall drop of 1.55% compared to the same set of non-obfuscated samples (Sec-

tion 5.5.3). Additionally, we evaluate DeepDetect against a new dataset D5:Biases-Free

(spanning over four years 2016 to 2019, see Section 3.2.5) downloaded from Androzoo and

eliminated both the potential biases i.e. spatial and temporal. In this evaluation, Deep-

Detect is able to detect ∼97% of malware while generating ∼1.4% false alarms (Section

5.5.4). Further, we show the runtime performance in extraction of different features on

a real device in terms of the execution time and device energy consumption. The op-

code based malware detector is 2.23X faster than the Restricted API based detector and

consumes 2.17X less device energy (Section 5.5.5).

5.2 Feature Extraction

Feature extraction is an important step in machine learning based malware detection

systems. In this section, we discuss about the type of features extracted from the dataset

along with the process of feature extraction.

5.2.1 Type of Features

In this work, we extract features from two locations, i.e., (i) Application Manifest file [19]

and (ii) Dex code. The Manifest file contains information about the Android app, whereas

the Dex code holds the main execution logic. Our primary goal is to design a malware

detector based on the static features while ensuring that the prediction accuracy is not af-

fected due to the obfuscation. Note that, here obfuscation includes all defense mechanisms

like packed malware, dynamic code loading, native code, and others [32]. Generally, the

obfuscation is applied to the code available in the Dex file, where a malware writer hides

the use of actual API by transforming it into another form. The extraction of used API

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 92

information from the Dex file may lead to miss classification, and the overall performance

of the detection model may be negatively impacted. Therefore, we utilize low-level Dalvik

bytecode (opcode) instead of the high-level API information and the features from the

Manifest file to design an obfuscation-resilient malware detector.

Features from the Manifest file: There are four categories of features [6] that can be

extracted from the Manifest file. The description of the features are as follows:

(i) Requested permissions: An app has to request permission to access important and

sensitive information. Malicious apps request certain permissions more frequently than

benign apps.

(ii) App components: Generally, an app contains four types of components. Each

component either defines user interfaces or interfaces to the system. These components

include activities, content providers, services, and broadcast receivers.

(iii) Intent filters: Using intent, inter-process and intra-process communication is per-

formed. Malware often listens to such intents.

(iv) Hardware components: Access to a certain hardware may have some security

implications.

Features from the Dex code: API call information extracted from the Dex code is

prone to obfuscation attacks. As an API is treated as a string by the static analyser, a

malware can bypass it very easily because the execution happens with a stream of Dalvik

opcodes. Dalvik instruction set contains 230 instructions to perform a designated task.

These instructions include method call instructions, branch instructions, data manipula-

tion instructions, and others. We generate a 2-Gram (N-Gram [127]) sequence of Dalvik

opcodes for each function to use them as features for malware detection. N-Gram is widely

used in natural language processing, and it has also been adapted for malware analysis.

As the Dalvik instruction set is large enough (230 instructions), a possible number of

unique features obtained using N-Gram is approx 230N . Such a large number of features

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 93

are not suitable to design an on-device malware detector. Therefore, we have clubbed

several instructions to reduce them into one instruction based on their usages (Table 5.1),

like move instructions or method call instructions similar to the approach used in [128, 53].

However, our reduced instruction set contains 17 instructions (Table 5.1), which is slightly

more than the reduced instructions set of TinyDroid [53] and Dong et al. [128]. Our

reduced instruction set is based on the 228 instructions (excluding the NOP and empty

method call instruction), whereas the simplified instruction set of TinyDroid and Dong

et al. includes only 107 and 218 instructions, respectively. Apart from the size of the

instruction set, we also include features from the Manifest file and reduce the feature set

size through the feature engineering module which is different from the Dong et al. and

TinyDroid.

Table 5.1: Reduced instruction set with description.

Symbol Description
A Arithmetic operation instructions
B Branch instruction (Conditional jump like if-eq)
C Comparison instruction like cmpl-float
D Data Definition instructions like const/4
F Type conversion instructions (int-to-long, int-to-float)
G Get instructions (aget, aget-wide)
I Method call instructions (invoke-direct, invoke-virtual ...)
J Jump instructions (Unconditional) like goto

L
Lock instruction, use to acquire/release a lock
(monitor-enter and monitor-exit)

M Data manipulation instruction like move and its variants
O Exception instruction (through)
P Put instructions (aput, aput-wide)
R Return instruction like return-void
S Bit-wise operation instructions (and-int, shl-int)
T Type judgement like check-cast
V Array operation instructions like array-length
X Switch case instructions

The above mentioned features are extracted using Androguard [33] and represented as

strings. From each sample, we have extracted all the information discussed above as fea-

tures. In Table 5.2, column named Original shows the number of unique features extracted

from the D1:Base-Dataset (see Section 3.2.1). There is a total of 7,12,595 unique features

extracted from the Manifest file and Dex code. Using such a large number of features

for an on-device malware detection leads to significant overhead in terms of processing

time and computation requirements. To overcome this limitation, we need to reduce the

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 94

Table 5.2: Effect of feature selection & encoding on extracted features.

Category
#Features

Original Encoding
Requested Permission 23,175 668
Hardware Component 245 245
Intent Filters 50,257 1
Activities 5,24,989 1
Services 57,202 1
Broadcast Receivers 49,751 1
Content Providers 6,659 1
Custom Permissions 0 1
2-Gram Opcode Sequence (2-Opc) 317 317

Total Features 7,12,595 1,236

dimension of the feature space to build an efficient on-device malware detector. We discuss

the process involved in reducing the feature set size in Section 5.3. Next we discuss the

efficient feature extraction method designed for a real device.

5.2.2 On-device Efficient Feature Extraction:

We use the features from two locations as discussed in Section 5.2.1. To extract features

from the Manifest file, Android provides an in-built functionality called Package Manager

(referred to as PM). Whenever an app gets installed (or gets updated, which is done fre-

quently) on an Android device, the PM maps all the information related to the Manifest

file. Hence, we use PM directly to extract features from the Manifest file efficiently. How-

ever, Android does not provide any in-built functionality to extract information (opcode)

from the Dex files of an APK. Hence, we have designed an efficient and lightweight opcode

information extractor with the help of DexLib2 library.

The DexLib2 is a Java library to process the Dalvik executable code, which has been used

by many heavy APK processing frameworks like APKTool to perform reverse engineering.

One can argue that, if APKTool is available, then why a new feature extraction method

is needed for on-device? Why can we not use APKTool directly? The reason is, APKTool

disassembles an APK and dumps the disassembled code into the secondary storage in smali

code (see listing 5.1, a smali code snippet of a method disassembled using APKTool). The

generated smali code is then used to extract the features by parsing them, requiring a lot

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 95

of string processing/comparison and file system operation. Both file operation and string

comparison requires significant processing capability and time.

1 const/4 v0 , 5

2 const /16 v1, 10

3 add -int v2, v0, v1

4 invoke -virtual {v3 , v2}, Activity;->setter(I)V

5 return -void

Listing 5.1: Sequence of Dalvik opcodes (smali code).

To extract opcode features efficiently, we deal with the Dex code as follows:

(i) Dex file is a stream of Hex code. Hence, we operate directly on the sequence of hex

stream (avoiding string operations).

(ii) We read Dex files one-by-one (in case of MultiDex app) from an APK and operate

only in-memory (avoiding file system operation).

Listing 5.2 shows the Dalvik opcode sequence in the hex stream (little-endian format),

equivalent to the smali code shown in listing 5.1. Compared to the smali code (listing

5.1), the hex stream (listing 5.2) does not contain any string. Hence, it does not require

time-consuming string operations to extract opcode information (highlighted in blue color

in both listings 5.1 and 5.2).

1 1250

2 1302 0a00

3 9002 0001

4 6e20 cc00 2300

5 0e00

Listing 5.2: Sequence of Dalvik opcodes (hex code).

5.3 Feature Engineering

A model based on collecting as much data as possible enables the classifier to learn more.

However, the computational power and processing time necessary to construct such models

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 96

are immense. Such models cannot be used on a real device in order to detect malware.

Therefore, we require a mechanism that would allow us to train a machine learning model

with fewer features while preserving the detection accuracy.

Often most of the features are usually irrelevant or redundant and increase the model

complexity. Therefore, we consider only the essential and relevant features. Feature se-

lection/reduction methods are often used to solve such problems. Figure 5.1 shows the

flow of the feature engineering module. This module has three major phases, which are

discussed in subsequent sub-sections.

Feature Selection &
Encoding

Category-wise
Feature

Reduction

Feature Reduction
from Combined

Feature Set Selected
Features

Feature Engineering

Figure 5.1: Flow of feature engineering module.

5.3.1 Feature Selection and Encoding

Android app developers can provide any name to custom permissions, services, activities,

and other user-defined entities/components. Such user-defined components have a massive

number of features due to user-defined names. Despite having a large number of binary-

valued features in each set for components, they do not show good prediction abilities

concerning the number of features available in each feature set. Hence, in the quest

of reducing the feature set, one should carefully handle loss of information. Therefore,

instead of eliminating these binary-valued features, we transform them by maintaining a

count of the components in each category. After the transformation, each of these set

holds the frequency of their usage for an app. Another change can take place in requested

permissions where we keep Android defined permissions as binary-valued features and

make the count of remaining permissions (custom permission). Note that, we did not

perform any transformation to the features extracted from the Dex code. As it is already

done by reducing the instructions as discussed in Section 5.2.1. We only use frequency of

2-Gram opcode sequence extracted from every function inside the Dex code.

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 97

Finally, after transformation and encoding of the extracted features, we have feature sets

that contain either binary value or the frequency of their usage. The Encoding column

in Table 5.2 shows the resulting set of features after this step.

5.3.2 Category-wise Feature Reduction

Most of the categorical sets individually have a lot of predictive powers. Hence, we optimize

the performance of each of the binary-valued feature set and 2-Gram opcode sequence,

individually and then combine their predictive power to build a better model.

Category-wise feature reduction involves two processes for feature reduction, as shown in

Figure 5.2. Both the binary-valued feature sets (see Section 5.3.1) and opcode sequence are

passed through each of these processes to filter out the redundant and irrelevant features

in each category. All of the steps involved in reducing features by category are explained

below.

Category-wise
Initial Feature Set

Category-wise
Final Feature Set

Feature Reduction
Based on Correlation

Optimal Feature
Identification

Category-wise Feature Reduction

Figure 5.2: Category-wise feature reduction process.

Feature Reduction Based on Correlation: Often a dataset contains some features

that are highly correlated with each other and provides the same information. Keeping

all such features (correlated features) increases the complexity of the model without con-

tributing towards classification efficiency. This step addresses the issue by finding all the

correlated features. Correlation between two features is performed based on the Pearson’s

correlation coefficient [129] that lies between −1 to 1. Pearson value closer to 0 denotes

weak correlation whereas value closer to 1 and −1 implies strong positive and negative

correlations, respectively. In both the strong correlations (i.e. positive and negative), it is

possible to minimize the feature set size without compromising the models’ performance

by using only one feature.

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 98

Table 5.3: Terminology used in feature engineering.

Term Description
CORt Threshold for eliminating the correlated values.
Acc It represents the accuracy of a detection model.
AccR Highest accuracy given by the RFECV [130].
FeatR Optimal #features used by RFECV to achieve accuracy AccR.

RFEt
It is a penalty over the highest accuracy AccR while selecting less
#feature in place of optimal #feature FeatR.

FeatC Chosen #Feature with penalty RFEt over AccR.
AccC Accuracy achieved while taking only FeatC features.
Pre Denotes the precision at which detection model can operate.
Rec Denotes the malware detection rate (recall) of a detection model.

By this analogy, we apply different Pearson correlation values as a threshold in both the

directions (i.e., negative and positive) to filter out highly correlated features. The effect

of correlation value (referred to as CORt
1) for different threshold (0.5 to 1.0) against

the accuracy2 of the detection model has been shown in Table 5.4. The CORt value 1.0

represents the original features without any reduction process. The results shown in Table

5.4 are obtained by evaluating a RandomForest model on the training set (see Section

5.5) with 10-fold cross-validation. We use a threshold of 0.8 for requested permissions and

hardware components while 0.9 for 2-Gram opcode (highlighted in Table 5.4) as it results

in the correct tradeoff between accuracy and number of features (significant reduction in

feature set size with minimum loss in accuracy). Note that, we use similar methods (using

training set) for the remaining stages of feature engineering.

Table 5.4: Effect of Pearson coefficient threshold (CORt) on Accuracy (Acc) and #Fea-
tures (#Feat).

Acc(%) / #Feat
CORt ReqP HWC 2-Opc
0.5 93.69 / 533 60.58 / 194 86.32 / 39
0.6 94.00 / 562 60.79 / 207 90.05 / 55
0.7 93.99 / 575 60.82 / 212 94.82 / 72
0.8 94.74 / 602 60.80 / 224 95.50 / 104
0.9 94.86 / 626 60.79 / 226 95.99 / 172
1.0 94.89 / 668 60.85 / 245 96.28 / 317

Note: ReqP=Requested Permissions set, HWC=Hardware Component set,

2-Opc=2-Gram opcode sequence

Optimal Feature Identification: This process utilizes RFECV (recursive feature elim-

ination with cross validation) [130] to identify the optimal feature set. RFECV uses a

1Summary of notations in Table 5.3 used in the remaining sections.
2Accuracy represents the number of samples (in percentage) correctly classified.

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 99

feature ranking method and selects the best features that contributes significantly in solv-

ing the desired problem. We provide the classifier C as RandomForest, ranking function F

as accuracy and the number of features N (set to 1) as input to RFECV for feature elim-

ination. As a result, RFECV provides a grid of score and the set of optimal features that

gives highest accuracy (see Figure 5.3). Corresponding to requested permissions, hardware

components and 2-Gram opcode sequence, the optimal number of features selected with

highest accuracy by the RFECV is 371, 185 and 169, respectively, which are still a lot of

features. However, if we carefully observe Figure 5.3, we find that with a significantly less

number of features result in an accuracy very close to the maximum achievable accuracy.

With this observation, we define a threshold RFEt, which is a penalty in choosing less

number of features in terms of accuracy.

0 100 200 300 400 500 600
Number of features selected

0.825

0.850

0.875

0.900

0.925

0.950

RF
EC

V
Sc

or
e

(A
cc

ur
ac

y)

Figure 5.3: Optimal #features Vs accuracy graphs for requested permissions.

For example, let the highest accuracy given by RFECV is AccR with optimal number

of features FeatR. However, we observe FeatR is still large and can be further reduced

finding a sweet spots without significantly compromising on accuracy. Let the chosen

accuracy from RFECV grid score be denoted by AccC and the corresponding number of

features as FeatC . Then the relation between the threshold RFEt, highest accuracy AccR

and the chosen accuracy AccC is shown in Equation 5.1.

AccR −AccC ≤ RFEt and FeatC < FeatR (5.1)

The effect of the RFEt with varying values from 0.0 to 0.5 is shown in Table 5.5 where

0.0 denotes the RFECV score with highest accuracy and the threshold is the difference

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 100

between AccR and AccC in percentage. As shown in Table 5.5, the changes in threshold

RFEt significantly reduces the feature set size while maintaining acceptable accuracy score.

In this step, we have selected 0.5 as the RFEt value where a drastic reduction in the feature

set size can be observed. The remaining relevant features contributes effectively towards

solving the desired problem. However, we do not know the features involved to achieve the

same results except the count of those features. To extract the required features, we have

used Recursive Feature Elimination (RFE) [131] that takes a classifier and the number of

features we want to select (as information retrieved using RFECV and threshold RFEt)

as input to obtain the list of features without impacting the accuracy.

Table 5.5: Effect of RFEt threshold on Accuracy (Acc) and #features.

Acc(%) / #Features
RFEt ReqP HWC 2-Opc
0.0 94.77 / 371 60.79 / 185 96.01 / 169
0.1 94.76 / 86 60.75 / 17 95.92 / 69
0.2 94.68 / 60 60.72 / 13 95.90 / 62
0.3 94.57 / 52 60.65 / 13 95.76 / 48
0.4 94.47 / 41 60.62 / 13 95.76 / 37
0.5 94.34 / 40 60.60 / 12 95.64 / 30

Note: ReqP=Requested Permissions set, HWC=Hardware Component set,

2-Opc=2-Gram opcode sequence

5.3.3 Feature Reduction from Combined Feature Set.

In Section 5.3.2, we have performed category-wise feature reduction where binary features

from two categories (requested permissions and hardware components) along with the

frequency of 2-Gram opcode sequence are involved. However, the original feature set

contains three types of features viz. binary features, 2-Gram opcode sequence and the

numeric features. This section combines all features and performs a feature reduction in

the combined feature set. This process includes two steps — (i) combining the features

and selecting the best combination of feature set and (ii) feature reduction on the selected

combined feature set.

Combining Feature Set: In Section 5.3.1, we have selected obfuscation resilient features

divided in four sets—one set corresponding to numerical features, one related to the opcode

sequence and the remaining two sets related to the binary features. Using four different

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 101

feature sets, we combine all the features in different combinations and select the best

combination among them. In total, there are 11 unique combinations, which are possible

for four sets. We have trained a RandomForest classifier on these combinations and the

result for them is summarized in Table 5.6 where performance of all the combinations

are enlisted in three evaluation metrices—(i) accuracy (Acc), (ii) precision1 (Pre), and

(iii) recall2 (Rec). As shown in Table 5.6, the hardware components feature set do not

contribute towards accuracy in a significant manner; neither individually nor by combining

with other features. If we compare detection results with two different combinations

with high accuracy—(i) numeric feature combined with requested permissions & opcode

sequence (76 features), and (ii) combining requested permission with opcode sequence

only (70 features), the results indicates that the performance of both the sets are almost

same but differs in the number of features. One could simply select the feature set which

contains less features in this case combination (ii). However, in place of combination (ii),

we select combination (i), because the contribution of numeric feature set is significant

when it is combined with the requested permissions (see Table 5.6). Therefore, we select

combination of Numeric feature, requested permissions and opcode sequence for the next

phase of reduction. Note that, here selection of combination is based on the analyst point

of view as both combination perform almost equally.

Table 5.6: Effect of combining different feature set.

Combination #Features Acc (%) Pre (%) Rec (%)
Num+HC 18 86.45 86.55 85.46
Num+OP 36 96.90 96.93 96.90
HC+OP 42 96.07 96.19 96.07
Num+RP 46 96.45 96.46 96.24
Num+HC+OP 48 96.87 96.89 96.87
RP+HC 52 95.16 95.08 94.96
Num+RP+HC 58 96.57 96.59 96.37
RP+OP 70 98.15 98.15 98.15
Num+RP+OP 76 98.14 98.15 98.14
RP+HC+OP 82 98.12 98.12 98.12
Num+RP+HC+OP 88 98.12 98.12 98.12

Note: RP=Reduced Requested Permissions set, HC=Reduced Hardware Component set,

Num=Numeric Feature (features for that we have taken frequency of their usage except n-Gram

features), OP=Reduced 2-Gram Opcode Sequence, Acc=Accuracy, Pre=Precision, Rec=Recall

1Precision denotes the fraction of malware correctly detected.
2Recall represents the malware detection rate for a model.

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 102

Feature Reduction in Selected Feature Set: In this step, we perform final optimiza-

tion on the feature set of the selected combination. The aim of this optimization is to

eliminate some features that increases the processing time and requires extra support for

extraction. In the selected feature set, such features are Intent Filter (referred to as I)

and Custom Permissions (referred to as C). We observe the effect on accuracy, precision,

and recall (see Table 5.7) when eliminating either one or both features from the feature

set. From Table 5.7, we find that the elimination of Custom Permissions (C) significantly

impacts the accuracy of malware detection (recall). On the other hand, the elimination of

the Intent Filter does not affect the detection rate of the model. After exclusion of Intent

Filter, the resulted feature set (of size 75) is used to learn the final detection model.

Table 5.7: Elimination of feature from combined feature set.

Feature Set #Feature Acc (%) Pre (%) Rec (%)
Num+RP+OP 76 98.14 98.15 98.14
Num+RP+OP-I 75 98.18 98.18 98.18
Num+RP+OP-C 75 98.08 98.08 98.08
Num+RP+OP-I-C 74 98.13 98.13 98.13

Note: RP=Reduced Requested Permissions set, Num=Numeric Feature, OP=Reduced

2-Gram Opcode Sequence, I=Intents Filter, C=Custom Permissions, Acc=Accuracy,

Pre=Precision, Rec=Recall

5.4 DeepDetect: Building the System

So far, we have extracted the features from the dataset (see Section 5.2) and selected the

most relevant features (see Section 5.3) to design an on-device malware detector. In this

section, we first provide an overview of DeepDetect followed by the off-device training

process of the machine learning model and porting it for mobile devices to detect malware

on real devices.

5.4.1 Overview

In DeepDetect, we train a machine learning model on a server machine. First, we extract

the static features from the Manifest file and Dex code (see Section 5.2). Then we pass

these features to the feature engineering process. In feature engineering (see Section 5.3),

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 103

we first eliminate the effect of obfuscation with the help of transformation and then reduce

the size of feature dimension by applying a multilevel feature selection/reduction process.

At last, a detection model is learned and embedded into an app for on-device detection.

We describe learning the malware detection model and detecting malware on a real device

in Section 5.4.2 and Section 5.4.3, respectively.

5.4.2 Learning Model

The final feature set obtained from Section 5.3.3 contains obfuscation-resilient features,

and obfuscation techniques used by the malware writer cannot affect the prediction ability

of a model built upon them. As our primary goal is to detect malware on-device, the

classifier’s choice for the final detection model should be lightweight. Keeping this in mind,

we use TensorFlow [132] library (developed by Google) to build the final model. Google

also provides a light version of TensorFlow, i.e., TensorFlow Lite, which is designed for

mobile devices. We use TensorForest [133] to learn final detection model. We use training

set for learning the final model and serialize the model into a file. The saved model occupies

869 KB of space in the system. The saved model needs to be converted into the .tflite

format for direct use with TensorFlow Lite. The TensorFlow Lite converter has been

used to convert the learned output so that we can use it in an Android device to detect

malware seamlessly. At last, we obtain a final TensorFlow Lite model of size ∼150 KB

only. The final detection model is provided to the DeepDetect along with the features

used in training to detect malware on-device.

5.4.3 On-device Detection

To detect malware on a real device, we require feature vector from an APK, so that we

can pass it to the already trained model (see Section 5.4.2) for the detection result. The

procedure for extracting the feature from a list of app(s) (single app as well as multiple

apps) and embedding them into the feature vector is shown in Algorithm 5 by utilizing

the Package Manager (referred to as PM) and customised opcode information extraction

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 104

Algorithm 5: Feature Vector Generation

Input : Listpkgs, Modelperm, Model2−opc

Output: V ectorfeat

1 V ectorfeat ← ϕ // Vector of features
2 Nact ← ActivitiesCount(PM,Listpkgs)
3 Nserv ← ServicesCount(PM,Listpkgs)
4 Nrecv ← ReceversCount(PM,Listpkgs)
5 Nprov ← ProvidersCount(PM,Listpkgs)
6 Listperm ← Permissions(PM,Listpkgs)
7 Freq2−opc ← GetTwoGramOpcodeFreq(Listpkgs)

8 NCustPerm ← CustPermCount(Listperm)

9 append(V ectorfeat, (Nact, Nserv, Nrecv, Nprov, NCustPerm))

10 foreach perm in Modelperm do
11 if perm is in Listperm then
12 bit← 1
13 else
14 bit← 0
15 append(V ectorfeat, bit)

16 foreach twoOP in Model2−opc do
17 if twoOP is in Freq2−opc then
18 count← get(Freq2−opc, twoOP)
19 else
20 count← 0

21 return V ectorfeat

module (referred to as GetTwoGramOpcodeFreq designed using the process discussed in

Section 5.2.2).

Algorithm 5 takes the list of the apps in terms of their package names (referred to as

Listpkgs), list of requested permission (referred to as Modelperm) and the list of selected

2-gram opcode sequence (referred to as Model2−opc) as input. In Algorithm 5, features

are extracted from apps by querying PM and custom opcode information extractor (line

2 to 7), number of custom permissions are filtered (line 8), and all features are encoded

into the feature vector (line 9 to 20). Note that, requested permissions that do not start

with “android.permission” are called custom permissions. The feature vector obtained

using Algorithm 5 is then passed to the detection model (see Section 5.4.2). The detection

model analyses the extracted features and provides the result in terms of a binary answer

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 105

where a true implies malware and a false implies benign. If the targeted app is flagged

as malware, the same is notified to the user and provides an option to uninstall the app.

5.5 Evaluation

To evaluate the effectiveness of DeepDetect in terms of malware detection accuracy and

runtime performance, we have separated 20% samples (referred to as evaluation set) from

the D1:Base-Dataset described in Section 3.2.1 and assumed them to be unseen apps. In

all the experiments, we train every model using the remaining 80% samples (referred to

as training set) of the dataset, which has samples till April 2018. Note: only runtime

performance experiments (Section 5.5.5) are performed on real smartphones to measure

execution time and device energy consumption. Rest of the experiments are performed on

a server machine. This section answers the following research question to evaluate the

proposed detection system effectively:

(i) Robustness against known, unseen, and new samples (Section 5.5.2): Does

DeepDetect maintains its prediction capability against known, unseen, and new samples?

(ii) Impact of obfuscation (Section 5.5.3): What is the impact of obfuscation on the

malware detection rate?

(iii) Effect of experimental biases (Section 5.5.4): How DeepDetect performs after

eliminating potential experimental biases?

(iv) Runtime overhead (Section 5.5.5): Does 2-Gram opcode sequence features consume

less device energy as compared to other features from Dex code?

5.5.1 Performance Comparison of Features

In this experiment, we extract seven categories of features from the Dex code—(i) 1-Gram

sequence of opcode, (ii) 2-Gram, (iii) 3-Gram, (iv) Used Permissions (UP), (v) Suspicious

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 106

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Flase Positive Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

1-Gram, AUC=0.987, #Feat=18
2-Gram, AUC=0.992, #Feat=30
3-Gram, AUC=0.995, #Feat=44
UP, AUC=0.973, #Feat=59
SA, AUC=0.944, #Feat=42
RA, AUC=0.929, #Feat=959
USR, AUC=0.993, #Feat=1060

Figure 5.4: AUC-ROC curve for the model build on various feature extracted from Dex
file. UP: Used Permission, SA: Sensitive APIs, RA: Restricted APIs and USR: Combined

features (UP, SA and RA). #Feat: Number of Features.

APIs (SA), (vi) Restricted APIs (RA), and (vii) combined features from UP, SA, RA (re-

ferred to as USR). To compare performance of these feature sets, we train a RandomForest

model on the training set and evaluated against the evaluation set. Figure 5.4 shows the

Receiver Operating Characteristic (ROC) curves obtained from the evaluation results of

the trained model along with the value of AUC (Area Under the Curve) and the number

of features (#Feat) in a feature set. ROC curve represents the relationship between the

true positive rate (TPR), and false-positive rate (FPR). The AUC measures the ability of

a classifier (model) to distinguish between classes and is generally used as a summary of

the ROC curve. The higher the AUC, the better the model’s performance at distinguishing

between the positive and negative classes. As shown in Figure 5.4, high AUC scores are ob-

served for 2-Gram, 3-Gram, and USR (more than 99%). However, the number of features

in USR is relatively large as compared to 2-Gram and 3-Gram. Also, the device energy

consumption and time required to extract features are also large (see Section 5.5.5). Hence,

USR is not a good choice of features to design an on-device malware detector. Therefore,

from the remaining two feature sets, any one can be used for on-device malware detection.

However, we select 2-Gram because it consumes ∼1.4X less device energy as compared to

3-Gram. Note: The main aim of this experiment (and experiment in Section 5.5.5) is to

select best features that can be efficiently extracted from the Dex code and combined with

features extracted from the Manifest file.

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 107

Table 5.8: Evaluation of final model with known, unseen, new and Pegasus samples.

Dataset Pre (%) Rec (%) F1 (%) FPR (%)
Training Set 99.98 99.95 99.95 0.01
Evaluation Set 98.05 97.50 97.69 1.51
D2:AndroZoo-2019 97.70 97.12 97.69 1.73
D3:Pegasus (5 Sample) – 100 – –

5.5.2 Performance Against Known, Unseen, and New Samples

To show the effectiveness of DeepDetect in identifying unseen samples, we use the eval-

uation set. We use D2:AndroZoo-2019 (see Section 3.2.2) dataset as new samples be-

cause these samples are born after the training samples. Apart from the D2:AndroZoo-

2019 dataset, we also used D3:Pegasus (see Section 3.2.3) dataset to evaluate DeepDetect

against Pegasus malware. For the known samples, we have used the same samples used

for training the final model. Table 5.8 summarizes the evaluation results for the known

(training set), unseen (evaluation set), new (D2:AndroZoo-2019), and Pegasus malware

samples (D3:Pegasus) with four evaluation metrices–(i) F1-score1 (referred to as F1), (ii)

precision, (iii) recall, and (iv) false-positive rate (referred to as FPR). When the model is

evaluated against the known samples, the model correctly classifies 99.90% malware and

generates 0.01% of false alarms. For the unseen samples, our detection model correctly

detects 97.50% malware with a false positive rate of 1.51%. In the presence of new sam-

ples, our model detects 97.12% of new malware while generating 1.73% of false alarms.

Interestingly, our model is able to detect all the Pegasus malware samples. Maybe this

is possible because Pegasus samples are pre-2019. In comparison to the state-of-the-art

on-device detector (Drebin [6]), DeepDetect detects ∼3.5% more malware (unseen mal-

ware) using only 75 features, whereas Drebin uses 0.5 million features with a malware

detection rate of ∼94%. If we compare DeepDetect with the recent on-device malware

detector IntelliAV [66], DeepDetect outperforms in both type of samples, i.e., known and

unseen/new samples. DeepDetect’s malware detection rate in case of known samples is

0.15% more as compare to IntelliAV. In the presence of unseen/new samples, the detection

rate of IntelliAV is still less than the best state-of-the-art detector Drebin. Further, we

have analysed the importance of features in differentiating a malware from the benign. In

1F1-score represents the weighted average of recall and precision.

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 108

our analysis we found that GET ACCOUNT requested permission and SB (Bit-wise oper-

ation followed by branch instruction) opcode sequence play a major role. For more details

about the list of features, their importance and more experiment (with other classifiers

and performance metrics), please refer to the Appendix A.

5.5.3 Evaluation Against Obfuscated Malware

To evaluate our model against the obfuscated samples, we use D4:Obfuscated dataset

which contains 4,993 obfuscated samples in six categories. The number of obfuscated

samples in each category and their evaluation with our detection model are shown in Table

5.9. We have also evaluated the same non-obfuscated samples in each category against

our detection model. The number of samples detected in non-obfuscated and obfuscated

samples are shown in the Original and Obfuscated columns of Table 5.9, respectively.

Note: We have trained our model on the training set only, which contains samples till

April 2018.

Table 5.9: Evaluation of final model against obfuscated malware.

Category #Samples
#Sample Detected Detection rate

Original Obfuscated drop (%)
trivial 160 156 156 0
renaming 570 554 554 0
encryption 1,135 1,102 1,096 0.53
reflection 252 241 239 0.79
code 2,429 2,358 2,298 2.47
mix 447 438 429 2.01

Overall 4,993 4,849 4,772 1.55

The results shown in Table 5.9 indicate that the detection rate of DeepDetect does not

go down for trivial and renaming obfuscation techniques. The main reason behind this is

the feature encoding, where we take count of user-defined similar entities like activities.

However, we observe some drop in detection rate for other categories. We see a maximum

drop in detection rate (up to 2.47%) for code obfuscation techniques. In general, our

detection model can detect 95.57% of malware, whereas, for the same non-obfuscated

malware sample, it achieves a 97.12% of detection rate. Therefore, the overall drop in

malware detection rate in the presence of obfuscated samples is 1.55%.

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 109

Q1
'1

7

Q2
'1

7

Q3
'1

7

Q4
'1

7

Q1
'1

8

Q2
'1

8

Q3
'1

8

Q4
'1

8

Q1
'1

9

Q2
'1

9

Q3
'1

9

Q4
'1

9

Testing Samples (Quarters)

96.0

96.5

97.0

97.5

98.0

98.5

99.0

Re
ca

ll
(%

)

Recall
FPR 0.2

0.4

0.6

0.8

1.0

1.2

1.4

FP
R

(%
)

Figure 5.5: Detection results after removing experimental bias (Space and Time).

5.5.4 Evaluation After Elimination of Experimental Biases Across Space

and Time

TESSERACT [72] has shown that the experiment done to evaluate existing Android mal-

ware detectors have two potential experimental biases–(i) Spatial bias and (ii) Temporal

bias. Spatial bias occurs due to the incorrect distribution of malware and benign samples

in the dataset, whereas temporal bias is caused by the incorrect time splits of training

and testing samples. DeepDetect evaluation is free from the temporal bias when evalu-

ated against D2:AndroZoo-2019 and Obfuscated samples, but spatial bias is still present.

Therefore, we evaluate DeepDetect against D5:Biases-Free dataset which is free from both

the biases and contains 87,632 (with ∼10% malware) unique samples spanning for four

years (2016 to 2019). We train the DeepDetect model on the sample from year 2016 and

test it quarter-wise against the years 2017, 2018, and 2019. Samples in each quarter con-

tain ∼10% malware, and the remaining are benign. The evaluation result (see Figure 5.5)

shows that DeepDetect can detect ∼97% of malware while generating ∼1.4% false alarms

when evaluated after elimination of experimental biases across space and time. It indicates

that our model is also robust against experimental biases. However, when TESSERACT

evaluated Drebin and MaMaDroid [71] against potential biases, the performance decreased

up to 50%.

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 110

Table 5.10: Android apps used for runtime performance and device energy consumption.

App Name #Dex Files
Size (MBs)

APK Dex Files
Slack 3 61 24.6
UberCab 15 50 116.6
Twitter 5 19 33.6
AarogyaSetu 1 4.3 5
Facebook 11 55 81.2

5.5.5 Runtime Efficiency

To measure the runtime efficiency (execution time and energy consumption), we have

used five Android apps—Slack, UberCab, Twitter, AarogyaSetu, and Facebook. The

selection of these apps is based on their size and the number of Dex files used (SingleDex

or MultiDex file app, see Table 5.10). We analyse these apps on three different mobile

devices—OnePlus 7Pro, Xiaomi 10T, and Redmi Note 7Pro. We execute each app ten

times on each device and log the time taken to extract different features used in Section

5.5.1 and the device energy consumed by these methods (see Figure 5.6). To obtain the

battery utilization, we have used dumpsys utility through ADB shell and analyzed using

the battery-historian tool. Figure 5.6(a) shows the average time spend to extract

features from an individual app executed on OnePlus 7Pro, which is obtained by taking

the average of all the execution time (ten runs), whereas Figure 5.6(b) denotes the average

time taken to analyse all apps on different devices. The energy consumption result (see

Figure 5.6(c)) shows battery utilization in analyzing these apps ten times. For the OnePlus

7Pro device (Figure 5.6(a)), the result shows that the 2-Gram feature set takes ∼5.32

seconds, which is 2.23X and 2.53X faster than the RA and USR feature set, respectively.

The feature extraction time depends on the Dex file size and not on the size of APK

because an APK also contains other resources and files like images, native code, etc.

With respect to device battery consumption (see Figure 5.6(c)), the 2-Gram approach

also outperforms all the other methods that do not use opcode information and improves

the device energy consumption by more than 2.1X (consumes only 0.45% of total device

battery). However, the average execution time and energy consumption of all the devices

(averaging the estimation of all the devices) for the 2-Gram feature set are 6.06 seconds

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 111

Slack UberCab Twitter AarogyaSetu Facebook
Application Used

0

5

10

15

20

25

30

Ex
ec

ut
io

n
Ti

m
e

(in
 S

ec
on

ds
)

1-Gram
2-Gram
3-Gram
UP

SA
RA
USR

(a) Execution time of an App with different techniques on OnePlus 7Pro.

OnePlus 7Pro Xiaomi 10T Redmi Note 7Pro Average
Devices Used

0

5

10

15

20

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(in
 S

ec
on

ds
)

1-Gram
2-Gram
3-Gram

UP
SA

RA
USR

(b) Average execution time of different techniques.

OnePlus 7Pro Xiaomi 10T Redmi Note 7Pro Average
Devices Used

0.0

0.5

1.0

1.5

2.0

2.5

De
vi

ce
 b

at
te

ry
co

ns
um

pt
io

n(
%

)

1-Gram
2-Gram
3-Gram

UP
SA

RA
USR

(c) Device energy estimation.

Figure 5.6: Estimation of feature extraction time and device battery consumption of
(i) 1-Gram, (ii) 2-Gram, (iii) 3-Gram, (iv) Used Permissions (UP), (v) Suspicious APIs

(SA), (vi) Restricted APIs (RA), and (vii) USR (Combined UP, SA and RA).

and 0.7%, respectively. For the analysis of individual app execution time on other mobile

devices, please refer to the Appendix A.2.4.

5.5.6 Discussion and Limitations

Even though DeepDetect provides a strong defense system to detect unseen malware on

a real device with a malware detection rate of more than 97.5%, it also has the following

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 112

limitation:

(i) Currently, it is designed to work as a third-party app for detecting Android malware

on an actual device. Hence it cannot stop an app from being installed on a device.

To overcome this limitation, a device vendor or AOSP project can include it in their

core system, and the installation of an app should start after getting a clean chit from

DeepDetect.

(ii) It cannot detect packed malware where entire code is encrypted except for the un-

packing logic.

(iii) As DeepDetect uses information from Manifest file and Dex code (opcode) to detect

malware, it cannot detect malware that include malicious behaviour exclusively in the

native code.

(iv) Static analysis based detection systems fail to detect malware that downloads ma-

licious code from the external source and execute it at runtime. This is also true with

DeepDetect. However, if a malware dynamically loads a code already present inside the

APK and is not encrypted, DeepDetect can detect such malware efficiently as we extract

opcode information from all the Dex file present inside an APK.

(v) One concern with the DeepDetect is that it uses Dex code as a feature, and Android is

increasingly moving toward ART to run an application. However, using ART in Android as

the default runtime does not change the underlying instruction set (Dalvik instructions).

Android only uses the Dex instruction to develop Android Apps. ART comes into the

picture only at runtime. As DeepDetect only operates on the static feature and does not

rely on the dynamic feature. Hence, using the Dalvik virtual machine or ART does not

impact the performance of DeepDetect.

Evaluation summary: In a nutshell, DeepDetect can effectively detect malware and

maintain its detection capability against the obfuscated samples with significantly low

processing time when deployed on the device.

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 113

5.6 Related Work

With the rapid growth in Android malware, various defense systems have evolved to fight

malware. Existing defense mechanisms [6, 8, 18, 55, 56, 66, 68, 71, 100, 134, 135, 136, 137,

138] use static, dynamic, or a combination of both analysis techniques to analyze apps [85].

These methods can be deployed either on market place in an offline manner or on a real

device. Since dynamic analysis is costly and requires significantly higher processing power,

deploying the same techniques on a real device is impractical. For example, Malton [138]

is an on-device dynamic malware analysis system that monitors an app on each layer of

Android OS. For Malton, the maximum slowdown for different Java operations is ∼36X

while observing taint propagation. This solution is good for the analysis environment but

not suitable for the end-users devices. Therefore, we restrict our discussion to the static

analysis based on-device malware detection.

With the consideration of low-end mobile devices, some on-device malware detectors [6,

66, 67, 68, 136] have been proposed and works only on static features. Drebin [6] extracts

features from the Dex code and Manifest file with a detection rate of 94%. IntelliAV [66]

uses framework level API along with the features extracted from the Manifest file. Intel-

liAV shows a high prediction rate of more than 99% in the case of known samples (training

sample), while the detection rate falls to ∼72% for unseen samples. However, the average

analysis times on real devices for Drebin and IntelliAV are 10 seconds and 3.5 seconds,

respectively. Directly comparing the execution time of DeepDetect with Drebin and In-

telliAV is not a good approach because the average app size has quintupled [139] every

year. Talos [67] uses only requested permissions and trains a deep learning model while

achieving an accuracy of more than 93% and takes negligible time to analyze an app (in

milliseconds). DeepDetect analysis time is ∼5.32 seconds, which is more than the Talos,

but DeepDetect’s malware detection rate is more than 97% for unseen malware, which is

significantly high compared to Talos, Drebin, and IntelliAV.

Mercaldo et al. [136] have also proposed an on-device malware detector using 1-Gram

opcode sequence only, where they utilize six opcodes (details can be seen in [136]). Our

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 114

experiment shows (see Section 5.5.5) that 1-Gram opcode’s device energy consumption

and average execution time for feature extraction are relatively less than the 2-Gram

opcode sequence. However, the malware detection accuracy is good for the 2-Gram method

compared to that of 1-Gram. Furthermore, utilizing only single-source information to

design a malware detector is not a good approach where the single source is a Dex file.

Therefore in our solution, we also include information from the Manifest file in the feature

set.

Similarly, Yuan et al. [68] use API call information, permissions and intent filters as the

feature set. As shown in Figure 5.4, API-based information is not good to detect malware

as compared to Opcode because the API calls are the most susceptible to obfuscation

attacks. However, this work is benefited from the on-device training to train a model

incrementally to learn more malicious behavior. Even though on-device training is a good

approach, an end-user device does not see a variety of samples in the live environment,

which is a core requirement to learn different behavior.

Some other on-device malware detectors [137, 140] are also proposed using dynamic anal-

ysis or a mix of static and dynamic techniques (also known as hybrid analysis). Sinha et

al. [140] insert instrumentation information into an app with the help of Dynalog [141] and

then execute the modified app on an actual device. This method requires modification

in an app due which the integrity of the app is compromised which can be exploited by

malware to bypass dynamic analysis.

Similarly, BRIDEMAID [137] uses hybrid techniques to detect malware on-device. For the

static analysis, BRIDEMAID uses the n-Gram opcode sequence as a feature set (similar

to our approach), whereas they rely on a kernel-level modification (kernel module) for the

collection of dynamic information (adapting the MADAM [11] solution). As the collection

of dynamic information requires modification in the Android kernel, BRIDEMAID requires

rooting of the device or support from the device vendor/AOSP.

Chapter 5. DeepDetect: A Practical On-device Android Malware Detector 115

5.7 Summary

As Android’s official market place (Play Store) itself is not free from malware, we have

proposed DeepDetect: an on-device malware detector that is capable of detecting malware

on a real device. In DeepDetect, we have designed a feature engineering framework with

the aim to reduce the feature set size by finding the right tradeoff of feature set size and

detection accuracy. We have shown the effectiveness of the feature engineering framework

by reducing the feature set size from 712K to 75 features that are free from the impact

of code obfuscation. We have performed experiments to demonstrate the effectiveness of

DeepDetect against the known, unseen, and obfuscated malware samples, and shown that

DeepDetect can effectively detect more than 97% new malware with an FPR of 1.73%.

For the obfuscated malware, DeepDetect achieves a malware detection rate of 95.57%.

However, the malware detection rate of DeepDetect for known malware is 99.90%, with an

FPR of 0.01%. Additionally, DeepDetect performance is not impacted significantly when

evaluated without the spatial and temporal biases, and achieves malware detection rate

of ∼97%. Finally, we have shown that when DeepDetect deployed on a real device, it can

analyze an app in ∼5.32 seconds on an average, which is 2.23X faster than API based

malware detector, while consuming 0.45% (for 50 apps) of total device battery.

Aside from detecting malware, classifying the malware’s family allows security analysts

to reuse malware removal techniques that have been proven to work for that family of

malware. Family information also aids in the articulation of the damages done by malware.

Therefore, identification of the malware family is also critical. In the next chapter, we

introduce the automatic identification of the malware family.

Chapter 6

MAPFam: Android Malware

Family Classification

In this past, more attention was given to malware detection rather than identification of

family of a malware in which it belongs to. Classifying the family the malware belongs to,

helps security analysts to reuse malware removal techniques that is known to work for that

family of malware. It takes manual analysis if a malware belongs to an unknown family.

Therefore, classifying malware into exact family is important. This chapter presents a

technique and tool named MAPFam that applies machine learning on static features from

the Manifest file and API packages to classify an Android malware into its family. This

work is premised on a starting hypothesis. First, we introduce with the hypothesis and the

testing process of it. Later, we design malware family identification framework MAPFam

based on the testing result of our hypothesis followed by the evaluation of it.

6.1 Introduction

With the rapid growth in malware numbers, variations, and diversity, it is challenging to

manually analyse the malware to obtain signatures and prepare defense tactics (e.g., em-

ploy antivirus techniques) against the new malware. Automated classification of malware

116

Chapter 6. MAPFam: Android Malware Family Classification 117

into different families can address the scale and dynamic nature of malware growth.

The process of auto-classification of malware into families can expedite the process of

flagging the malware and keep the anti-virus defense mechanisms up to date by obtain-

ing applicable signatures. On the other hand, if a malware can not be reliably mapped

to a family, human expertise is warranted which may lead to creation of a new malware

family. Existing mapping techniques use several features from an app to accurately clas-

sify malware into different families. In this chapter, we analyze the efficacy of mapping

techniques based on different app features—API calls, permissions and API packages (see

Section 6.4.1). Moreover, we propose MAPFam, a malware family classification solution

using combination of app features for better accuracy of malware to family mapping.

In the past, many [6, 8, 9, 10, 11, 12, 13, 62, 14, 15, 16, 135, 142, 143] machine learning

based Android malware detection systems have been developed. There are few [6, 9, 10, 12,

16, 18, 62, 144, 145, 146] that classifies an Android malware into malware families. Mostly,

the machine learning based Android malware detection tools utilize either static features

([6, 8, 62, 142, 145]) or dynamic features ([10, 11, 142]). Some machine learning based

malware analysis tool (like EC2 [18]) use both types of features i.e., static and dynamic.

Generally, dynamic features are obtained by executing a malware sample on an emulated

device. An emulator based dynamic analysis platform generally fails to capture malicious

behavior if the malware is designed to detect emulators [74]. Hence, our study mainly

focuses on static analysis based malware detectors, specifically in the domain of malware

family classification.

Most static malware analysis tool [6, 12, 145] extracts features from either manifest file,

Dex code or both. In the past, requested permissions from the manifest file and API call

information from the Dex code are widely used for Android malware detection and family

classification. Requested permissions provide an overview of the capabilities that an app

has whereas, API call information is used to capture actual malicious behavior.

In this work, we start with a hypothesis we formulated based on our experience with

Android malware detection. We experimentally test the hypothesis and based on the

Chapter 6. MAPFam: Android Malware Family Classification 118

evidences obtained – we established that the hypothesis holds. This leads to creation of a

tool MAPFam – for mapping malware into their families.

6.1.1 The Hypothesis

The performance of API call information-based malware detectors or family classification

models may be negatively impacted due to code obfuscation (use of java reflection) or

obsolete API. Also, the use of API call information unnecessarily increases the size of

the feature set while not contributing significantly towards malware family classification

(see Section 6.4.1). Alternative to the API call information, system API packages can be

used for malware detection and classification. An API package is a representative for a

group of API calls. Whenever an API gets invoked, the corresponding API package is

always referred. Furthermore, a system API package is free from the obfuscation attack,

as its implementation details is not present in an APK. Therefore, using API package

information in place of API calls will reduce the size of features and provides a better

classification accuracy.

6.1.2 Testing the Hypothesis

This work comparatively analyzes the effectiveness of features like API package used,

API call information, and requested permissions in classifying malware to their respective

families (section 6.4.1). Subsequently, we design MAPFam, an Android malware family

classification system that uses features from the Manifest file and API packages used

to identify the malware family. In MAPFam, we first extract static features from the

Android Manifest file and Dex code (API Packages) and encode them to use with a machine

learning algorithm. After that, we pass these encoded features to a feature selection module

to obtain optimal features that are most relevant to malware family identification. We

evaluate MAPFam using AMD dataset [80] to show that MAPFam provides increased

accuracy compared to techniques using only API calls (for restricted APIs) or requested

permissions.

Chapter 6. MAPFam: Android Malware Family Classification 119

Overall, our contributions are as follows:

• We design MAPFam, an Android malware family classification model that uses static

features from the manifest file and API packages (Section 6.3). To design a family

classification model, we develop a feature extraction and encoding module to extract

features from an Android app (Section 6.3.2). The API package information has

not been evaluated/used heretofore, for android malware family classification, to the

best of our knowledge.

• First, we show the effectiveness of the API package feature set against the requested

permissions and API calls. API package feature set is ∼1.63X and ∼1.04X accurate

compared to models that only use either APIs or requested permissions. We compute

the model reliability of API-packages and it comes out to 95.83% (Section 6.4.1).

• Finally, we evaluate MAPFam against the known malware families with multiple

classifier algorithms. MAPFam model can classify malware families with an accuracy

above 97% and 97.55% of model reliability rate (Section 6.4.2). We also evaluate the

effectiveness of MAPFam for the identification of individual malware families. The

evaluation results show that MAPFam can perfectly identify 36 malware families out

of 60 with an average precision rate of more than 97% (Section 6.4.3).

6.2 Android Malware Dataset (AMD)

We have used the real-world malware samples from AMD [80] which is the part of D1:Base-

Dataset. AMD is the largest public dataset that contains 24,553 unique labelled malware

distributed among 71 different families. Note that, the recent labelled malware is not

publicly available. In the AMD dataset, the airpush malware family size is the largest

with 7,843 unique malware whereas, the smallest size of the family contains only one

sample (roop malware family). A sufficient amount of representative samples are needed

to train and test a model for a machine learning algorithm. However, in AMD dataset,

Chapter 6. MAPFam: Android Malware Family Classification 120

some malware family does not have enough samples. To overcome this issue, we utilize the

top 60 malware families of the AMD dataset (see Table 6.1), which accounts for 24,205

unique malware samples and have at least 9 or 10 unique malware.

Table 6.1: Distribution of malware family in the dataset.

ID Family #Samples ID Family #Samples
0 airpush 7,843 30 andup 44
1 dowgin 3,384 31 boxer 44
2 fakeinst 2,172 32 ksapp 36
3 mecor 1,820 33 gorpo 32
4 youmi 1,300 34 stealer 25
5 fusob 1,270 35 updtkiller 24
6 kuguo 1,199 36 zitmo 24
7 jisut 558 37 vidro 23
8 droidkungfu 546 38 aples 21
9 bankbot 460 39 fakedoc 21
10 rumms 402 40 fakeplayer 21
11 lotoor 329 41 ztorg 20
12 mseg 235 42 winge 19
13 boqx 215 43 penetho 18
14 minimob 203 44 cova 17
15 triada 197 45 mobiletx 17
16 kyview 175 46 fjcon 16
17 slembunk 174 47 kemoge 15
18 simplelocker 172 48 spambot 15
19 smskey 165 49 mmarketpay 14
20 gumen 145 50 svpeng 13
21 gingermaster 128 51 vmvol 13
22 leech 109 52 faketimer 12
23 nandrobox 76 53 steek 12
24 bankun 70 54 utchi 12
25 koler 69 55 fakeangry 10
26 mtk 67 56 opfake 10
27 golddream 53 57 spybubble 10
28 androrat 46 58 univert 10
29 erop 46 59 finspy 9

6.3 Design

This section presents an overview of MAPFam: a Manifest file and API Package based

Android malware Family classification model, and elaborates the working of its core com-

ponents.

Chapter 6. MAPFam: Android Malware Family Classification 121

6.3.1 An Overview

The main aim of this work is to develop a system that can label Android malware into its

respective families without human expertise. Figure 6.1 shows the process of learning the

Android malware family classification model. As shown in Figure 6.1, there are three main

modules of the proposed work — (i) feature extraction & encoding, (ii) feature selection,

and (iii) learning model. In the feature extraction & encoding module, static features are

extracted from an Android app. The extracted features are then encoded to get feature

vectors that are given to the feature selection module. The feature selection module selects

the best features that directly contribute to the family classification work. Eventually, the

learning model module trains the final classification model on the selected features. We

describe the details of each of these modules in the following subsection.

Feature Selection
(RFECV)

Feature Extraction
& Encoding

Learning
Model

Trained
Model

Figure 6.1: Architecture of learning malware family classification model.

6.3.2 Feature Extraction and Encoding

This module is the heart of family classification model. We extract features from two loca-

tions, i.e., (i) Android manifest file [19] and (ii) Dex code similar to Drebin [6]. However,

the features extracted for this work are slightly different from Drebin [6]. In Drebin, all

the features are of binary type where the value of a feature is set to one if it is present in

an app otherwise zero. Whereas, in our work we use two type of features—(i) Numeric

and (ii) Binary (see Table 6.2).

Furthermore, Drebin extracts used permissions, URLs, restricted APIs and sensitive APIs

from the Dex code of an app, whereas we only extract the information about the API

packages used by an app. The main reason of using package information is—

Chapter 6. MAPFam: Android Malware Family Classification 122

Table 6.2: Encoding scheme of static features extracted from Manifest file and Dex
code.

Feature Type
#Features

Source Encoding
Original Selected

N
u
m

e
r
ic

(C
o
u
n
t) ActivitiesC 1 1 Manifest Number of activities

ServicesC 1 1 Manifest Number of services
ReceiversC 1 1 Manifest Number of Receivers
ProvidersC 1 0 Manifest Number of Providers
IntentsC 1 1 Manifest Number of intent filters
ReqPermC 1 1 Manifest Number of requested
CstPermC 1 1 Manifest Number of user defined permissions
PackagesC 1 1 Dex code Number of system API packages used

B
in

a
r
y ReqPermB 261 33 Manifest

1 if a system defined permission is declared
in the Android manifest file otherwise 0

PackagesB 159 41 Dex code
1 if a system API package is used by an app
otherwise 0

Total Features 428 81 – –

(i) Generally, a package contains multiple classes of the same type. Similarly, a class is

a group of methods (APIs) and related data. Therefore, package information reduces the

number of features for a malware family classification model compared to the APIs based

mechanism. For example, in Android API level 30, there are 4,833 unique system-defined

classes. At the same time, the count of system-defined unique packages is 226, which is

21.38X lesser than classes. Suppose a class contains an average of 4 methods (generally

it is more than 4). Then there are in total of 19,332 unique APIs available as features,

which is ∼85.54X larger than system package based features.

Therefore, we extract API package information from the Dex code. Features extracted

from the manifest file are—

Activities

Services

Broadcast Receivers (receivers)

Content Providers (providers)

Intent Filters (intents)

Requested Permissions

The above mentioned features from manifest file and Dex code have been extracted using

the Androguard [33] and represented as strings.

Chapter 6. MAPFam: Android Malware Family Classification 123

6.3.2.1 Feature Encoding

The primary task of this sub-module is to encode the extracted features and generate the

feature vector that can be passed to machine learning classifier for training and testing.

To generate feature vector we opt following strategy:

• Initially, all features in each feature set category are binary types (represented as

strings). Taking all of the feature sets as binary features will increase the size of the

feature set because some of the features, such as activities, providers, and others, have

user-defined names that can differ from one sample to another. By counting such

features, we can combine them into a single feature. This transformation drastically

reduces the size of the feature set.

• Secondly, the features that have a predefined name like API packages and system

defined requested permissions are considered to be used as a binary feature.

• Lastly, we also consider the number of API packages, total requested permissions,

and custom permissions count as features. A custom permission is the permission

which is defined by an app. As custom permission can take any name, hence we use

number of custom permission as feature instead of binary.

Using the strategy mentioned above, this module produces two types of features, i.e.,

numeric and binary features. In Table 6.2, column Feature Type describes the name of a

feature. In the feature name, suffix C denotes that the feature is of Numeric type, whereas

suffix B denotes binary feature. Similarly, sub-column Original shows the total number of

unique features in the feature vector after the feature encoding step. Finally, we are left

with the 428 unique features, which we pass to the feature selection module (see Section

6.3.3) to find optimal features.

Chapter 6. MAPFam: Android Malware Family Classification 124

6.3.3 Feature Selection (RFECV):

After feature encoding, the resulting features are used to identify optimal features that

directly contribute to the Android malware family classification task. To determine opti-

mal features, we used RFECV (recursive feature elimination with cross validation) [130].

RFECV uses a feature ranking method and selects the best feature that contributes more

in solving the desired problem. It takes a classifier C (RandomForest), a ranking function

F (accuracy) and the number of features N (set to 1) to eliminate in each steps. As a

result, RFECV provides a grid of score and the set of optimal features that gives highest

accuracy. The grid of score provided by the RFECV is shown in Figure 6.2 as accuracy

vs. #features graph, and the optimal number of features obtained is listed in sub-column

Selected of Table 6.2 (total 81 unique features).

0 100 200 300 400
Number of features selected

0.5

0.6

0.7

0.8

0.9

1.0

%
 C

or
re

ct
 C

la
ss

ifi
ca

tio
n

81
 fe

at
ur

es

Figure 6.2: Feature selection using RFECV.

6.3.4 Learning Model

The final features obtained from Section 6.3.3 contains optimal features that directly

contibutes to the malware family classification work. For modeling the final malware

family classifier, we use ExtraTree classifiers. ExtraTree is an ensemble learning based

classifier which internally uses multiple Decision Tree classifier. ExtraTree classifier takes

the number of estimators for training a machine learning model, which we set to 18. The

final model has been trained on the randomly selected 70% of samples of our dataset,

Chapter 6. MAPFam: Android Malware Family Classification 125

while we kept the remaining 30% samples for the evaluation. We show the evaluation of

MAPFam in Section 6.4.

6.4 Evaluation

To evaluate the effectiveness of MAPFam in terms of labeling a malware with its appropri-

ate family, we have separated 30% samples (referred to as evaluation set) from the dataset

(see Section 6.2) and assumed them to be unknown malware family. The rest of the 70%

malware sample (referred to as training set) are used for training in every experiment

including the feature selection step (see Section 6.3.3). This section answers the following

research question to evaluate the proposed malware family labeling (classification) system

effectively:

(i) Effectiveness of API Packages (Section 6.4.1): What is the effectiveness of API

packages against the requested permissions and restricted APIs?

(ii) Performance with different classifiers against unknown malware family

(Section 6.4.2): How well MAPFam model (original and reduced feature set) performs to

label unknown malware families by training a model with different classifiers?

(iii) Correctness of labeling of individual malware family (Section 6.4.3): How

well final model of MAPFam classifies a malware into respective family?

6.4.1 Performance Comparison of Features

In this experiment, we extract three categories of features from Android manifest file and

Dex code—(i) restricted APIs (RAPI), (ii) requested permissions (PER), and (iii) API

package (PKG). To compare the performance of these feature sets, we train seven different

classifiers on the training set, namely (i) RandomForest (RF), (ii) ExtraTree (ET), (iii)

Voting classifier in hard mode (VH), (iv) Voting classifier in soft mode, (v) Decision Tree,

Chapter 6. MAPFam: Android Malware Family Classification 126

(vi) Neural Network, and (vii) Logistic Regression, and evaluates against the evaluation

set. We have used three tree-based classifiers for the voting classifier (in hard and soft

voting mode), namely—RandomForest, ExtraTree, and Decision Tree. Figure 6.3 shows

the performance comparison result of different features set (i.e., RAPI, PER, and PKG)

with two evaluation metrics—(i) Accuracy and (ii) Cohen’s Kappa score. The accuracy

represents the number of samples (in percentage) correctly classified by a classifier, whereas

the Kappa score is a quantitative measure of reliability for two observers for labeling the

samples. In our case, the first observer is labeled dataset (AMD) which provides actual

label for malware samples, and the second observer is a classifier. In other words, the

Kappa score is used to measure the reliability of a machine learning model (classifier).

RF ET VH VS DT NN LR
Classifiers

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

RAPI (344) PER (261) PKG (159)

(a) Accuracy of family classification models.

RF ET VH VS DT NN LR
Classifiers

0.4

0.6

0.8

1.0

Ka
pp

a
Sc

or
e

(%
)

RAPI (344) PER (261) PKG (159)

(b) Cohen’s Kappa score.

Figure 6.3: Accuracy and Cohen’s Kappa score for the model build on different features
(i) restricted APIs (RAPI), (ii) requested permission (PER), and (iii) API package (PKG).

Suppose we observe accuracy (see Figure 6.3(a)) for all the features set in every classifier,

in that case, the API package features are more accurate in terms of labeling the malware

family. API package-based ExtraTree classifier can correctly label 96.46% malware samples

into the respective family, which is ∼1.63X and ∼1.04X accurate from restricted APIs

and requested permissions based classifier, respectively. Similarly, when we measure the

reliability of a model, in that case, the API package-based model is much more reliable

with a 95.83% reliability rate, whereas the restricted APIs and requested permissions based

classifier are 52.14% and 91.06% reliable, respectively (see Figure 6.3(b)). Therefore, API

package-based feature set is more suitable as compared to APIs and permissions. Similarly,

Chapter 6. MAPFam: Android Malware Family Classification 127

permissions are more reliable than APIs. Hence we select the requested permissions and

API Package feature set for our family classification model.

Summary: In general, API packages based feature set is more effective and reliable as

compare to API call and requested permissions.

6.4.2 Evaluation Against Unknown Malware Family with Different Clas-

sifiers

To show the effectiveness of MAPFam before and after feature selection to predict unknown

malware family, we use evaluation set. For the training, we use the same seven classifiers

as used in Section 6.4.1 and train them on the training set. Figure 6.4 shows the accuracy

and Kappa score for the identification of unknown malware family by the MAPFam.

When the model is evaluated without feature selection, it correctly labels more than 91%

unknown malware family (see Figure 6.4(a)). The lowest accuracy achieved is 91.89%

when the classifier choice is Logistic Regression, whereas the highest accuracy achieved

by MAPFam is 97.62% when classifier choice is ExtraTree. However, when the feature

selection is applied on the MAPFam, it correctly classifies more than 90% sample with

90.95% lowest accuracy for Logistic Regression and 97.92% highest accuracy when the

classifier is ExtraTree. From the Figure 6.4(a), it is clear that MAPFam performance

increases after feature selection when ExtraTree classifier is used for final model whereas

performance decreases if the choice of classifier is Logistic Regression. The primary reason

for this behavior is due to the unbalanced dataset and feature set size. ExtraTree can

efficiently handle the unbalanced dataset with less number of features, whereas Logistic

Regression performs well when the feature set size is large.

Similarly, when we measure the reliability of MAPFam (see kappa score in Figure 6.4(b)),

best and worst reliable classifiers are ExtraTree and Logistic Regression, respectively. For

the ExtraTree classifier, reliability rate goes up from 97.19% to 97.55% when feature

selection is applied. However, in the case of Logistic Regression, it goes down from 90.45%

to 89.33%.

Chapter 6. MAPFam: Android Malware Family Classification 128

RF ET VH VS DT NN LR
Classifiers

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

Original (428) Selected (81)

(a) Accuracy of MAPFam model.

RF ET VH VS DT NN LR
Classifiers

0.4

0.6

0.8

1.0

Ka
pp

a
Sc

or
e

(%
)

Original (428) Selected (81)

(b) Cohen’s Kappa score.

Figure 6.4: Evaluation of final model against unknown malware family with different
classifiers.

Summary: In general, MAPFam can correctly classify 97.92% of unknown malware into

their respective families with 97.55% of reliability rate.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Families

0.25

0.50

0.75

1.00

De
te

ct
io

n
Ra

te
 (%

)

Weighted average (0.9792)
Macro average (0.9341)
Detection rate

(a) Detection rate of individual malware family.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Families

0.25

0.50

0.75

1.00

Pr
ec

isi
on

 (%
)

Weighted average (0.9793)
Macro average (0.9812)
Precision

(b) Precision for detecting individual malware family.

Figure 6.5: Performance of final model for detecting individual Android malware family.

6.4.3 Detection of an Individual Malware Family

In this experiment, we analyze MAPFam performance for the classification of an individual

malware family. To evaluate the model, we train ExtraTree classifier on the MAPFam

feature set after performing feature selection (81 features), and the evaluation results are

shown in Figure 6.5. Figure 6.5(a) shows the detection rate for an individual malware

Chapter 6. MAPFam: Android Malware Family Classification 129

family along with the macro and weighted average detection. Here, the detection rate

represents the percentage of samples a model can correctly classify for a single family.

Evaluation results show that MAPFam can reliably detect most families with a macro and

weighted average detection rate of 93.41% and 97.92%, respectively. There are only three

malware families for which the detection rate is ≤50%, and these malware families are

gorpo (33 with 50% detection), ztorg (41 with 33.33% detection), and opfake (56 with

50% detection). Otherwise, all other malware families are reliably detected with more

than 75% of detection rate. Out of 60 malware families, 36 are perfectly labeled by the

MAPFam with 100% detection rate and 12 families with a detection rate of more than

90% but not 100%. Apart from the detection rate, we also measure the precision for each

malware family shown in Figure 6.5(b). Results show that MAPFam is able to detect an

individual malware family precisely with macro and weighted average precision of 98.12%

and 97.93%, respectively. There are only two malware families for which the precision rate

is less than 85%. One is ztorg (41) with a precision of 50%, and the other is mtk (26)

with 84.21% precision, rest of the malware families are precisely classified with more than

94% precision rate.

6.4.4 Discussion and Limitations

As MAPFam makes use of API-package information for Android malware family classifi-

cation, which correctly classifies 97.92% of unknown malware families. However, we do not

know its runtime performance when the same technique is used for family classification

on a real smartphone. In future, we would like to analyze it and develop an on-device

Android malware family classification system. Furthermore, we would like to evaluate

MAPFam with latest labelled dataset whenever it is publicly available or by creating our

own latest dataset. Even though MAPFam provides good classification results, it also has

the following limitations:

(i) It cannot identify the family of malware that is encrypted.

Chapter 6. MAPFam: Android Malware Family Classification 130

(ii) If malware tries to load a code from an external source dynamically, MAPFam cannot

predict its family. However, if code is present inside the APK, MAPFam can predict the

family for such malware because we check all the Dex files bundled with an APK.

(iii) If a combination of two or more apps are performing a malicious activity, and one

app alone is provided to identify its family, in that case, MAPFam cannot predict its

family. However, if the combination of apps involved in malicious activities is provided,

then MAPFam can identify its family by constructing a combined feature vector from the

apps.

6.5 Related Work

With the rapid growth in malware numbers, variations, and diversity, various defense

system has evolved to detect and categorize malware. The existing solutions [6, 8, 9, 10,

11, 12, 13, 14, 15, 16, 62, 135, 142, 143] uses static, dynamic, or combination of both

(hybrid) techniques for malware detection. The main aim of malware detection work is

to predict whether a new sample is malicious or benign. However, it does not provide

information about a family to which malware belongs. If a malware family is known, then

the same removal techniques can be reused that has been known to work for that family

of malware, and analysts can give their attention to the new samples of unknown malware

family. With this goal, several efforts ([6, 9, 10, 12, 16, 18, 62, 144, 145, 146]) have been

made to group similar malware into families automatically. This work is also focusing

on malware family identification. Therefore, we restrict our discussion to malware family

classification or characterization in the context of static and dynamic/hybrid analysis.

Static Analysis based Classification: Static analysis-based solutions extract informa-

tion from an app without executing it. Existing solutions [6, 12, 62, 145, 147, 148] extract

static information from the manifest file, Dex code, and sometimes additional information

from other resources like certificate, developer information, create time, and others. Al-

swaina et al. [147] extract information about the permission and reduce the feature set size

Chapter 6. MAPFam: Android Malware Family Classification 131

by excluding the least important features (with zero importance) by using ExtraTree and

achieving an accuracy of 95.97% for 28 malware families. Drebin [6] extracts more than

0.5 million binary features from the Dex code and manifest file, including permissions,

API calls, URLs, components, and many more. Drebin took the top 20 malware families

for the classification task and achieved an average accuracy of 93%.

Fan et al. [148] make use of frequent subgraphs to understand malware behavior with the

help of a function call graph of sensitive API calls inside the Dex code. DroidLegacy [145]

first partitions an APK into loosely coupled modules to identify piggybacked malware.

After that, it compares the API call made by each module to the signature of each family.

DroidLegacy has used 14 unique malware families for the evaluation where the size of

family rise between 12 to 309 and achieves an accuracy of 94.03%.

AndMFC [12] utilizes requested permissions and API call information for classifying the

Android malware family. In AndMFC, the feature importance method has been used to

reduce the size of features. It selects the top 1000 important features while achieving

more than 96% accuracy with a precision rate of 95.02%. XU et al. [62] extracts CFGs

(control flow graph) and DFGs (data flow graph) and then generate a weighted graph

by abstracting both of them. The combined weighted graph is then used to identify a

malware family. They used top 20 malware families where family size ranges from 57 to

2753 unique malware samples and achieved an accuracy of 94.71%.

All the above work utilizes API call information in some form, whereas we use API package

information to identify Android malware families. R-PackDroid [142] is the most closely

related work that utilizes API package information to characterize and detect Mobile

Ransomware. However, in later work [54], authors have again shifted their focus on API

call information. Also, most of the work utilizes outdated dataset or operates on fewer

families that contain a sufficient number of unique samples, whereas we evaluate our

solution on a large number of families.

Dynamic/Hybrid Solutions: In dynamic analysis-based solutions, the behavior of an

app is obtained by executing it either on an emulated platform or on an actual device.

Chapter 6. MAPFam: Android Malware Family Classification 132

Whereas, a hybrid solution utilizes information from both the method, i.e., static and

dynamic. Several efforts [9, 10, 11, 13, 18, 144] have also been made to identify malware

families using dynamic/hybrid methods. Most work [9, 11, 13, 18, 144] utilizes an emulator-

driven analysis framework to capture dynamic information.

EC2 [18] uses both supervised and unsupervised machine learning techniques to predict

Android malware families with the ability to identify singleton families. Wang et al. [13]

use all static features except for network address and restricted API used in Drebin [6]

and the dynamic information captured by executing a malware sample on CuckooDroid

[38]. It utilizes the top 20 malware families containing samples until 2014 and achieves an

average positive rate of 98.94% (accuracy).

Similarly, Andro-Simnet [9] also uses the hybrid method and collects dynamic logs by

executing a sample on emulated device. Andro-Simnet uses a malware similarity graph

(a social network analysis technique) and achieves an accuracy of 97% to classify eight

malware families.

All the method provides good classification results as dynamic analysis can capture actual

behavior of an app. However, these techniques use an outdated dataset that does not

represent the state of toady’s malware which senses the execution platform. A platform-

sensing malware did not show its actual behavior on finding that an execution environment

is an emulated platform [74]. Recently, a work [100] has come to hide an emulated platform

from a platform-sensing malware.

6.6 Summary

In this chapter, we have shown that the API package-based malware family classification

model is ∼1.63X more accurate than the API call-based method. Later, we have devel-

oped MAPFam, a manifest file and API package-based family classification system that

is capable of predicting a malware family precisely and accurately. We have performed

several experiments to show the effectiveness of MAPFam to identify unknown malware

Chapter 6. MAPFam: Android Malware Family Classification 133

families. The evaluation results showed that the MAPFam classification system can ac-

curately classify malware families with an average precision and accuracy of more than

97% for the top 60 malware family. The MAPFam model is 97.55% reliable. We have

also shown the effectiveness of MAPFam in identifying individual malware families and

found that it can perfectly identify 36 malware families out of 60. In the next chapter, we

conclude this thesis and provides directions for future research work.

Chapter 7

Conclusion and Future Work

This thesis has contributed to the domain of Android malware detection and classification.

In this chapter, first we summarizes our contributions to this thesis (Section 7.1). Next,

it suggest some future directions for extending this work (Section 7.2)

7.1 Conclusion

Android has become the primary target of malware writers because it is an open-source

platform with the highest proportion of the worldwide smartphone market. In this thesis,

we have focused on designing stealthy, reliable, and low-overhead Android malware de-

tection and classification systems. We have studied multiple malware analysis techniques

and found that they are not robust enough to address the scale and dynamic nature of

malware growth. From the study of existing malware analysis techniques, we have made

some observations that becomes the foundation key points for this thesis.

We created a configurable anti-emulation-detection library in Chapter 3. This library is

capable of arming current or new malware with various emulation-detection capabilities to

test the efficacy of well-known dynamic analysis frameworks. After that, we constructed

multiple datasets to test the efficacy of malware detectors in all possible scenarios.

134

Chapter 7. Conclusion and Future Work 135

In Chapter 4, first, we have empirically evaluated the efficacy of existing well-known dy-

namic analysis frameworks against the created emulation-detection library and more than

1000 real-world malware. We discovered that existing frameworks fail to hide the underly-

ing emulated platform. Later, we created InviSeal, a stealthy dynamic analysis framework

with cross-layer profiling capabilities. We have performed various experiments to see how

effective it is against all potential emulation-detection approaches. Experimental results

showed that InviSeal is able to hide underline emulated platforms efficiently while incurring

very low-overhead. Finally, we have demonstrated several use cases of InviSeal.

In Chapter 5, we have created DeepDetect, an on-device malware detector. DeepDetect

has employed a machine learning algorithm on static features to detect malware on a

real device. In this work, first, we have designed an efficient feature extraction module to

extract features on a real device. Later, we developed a feature engineering framework that

drastically reduces the feature set size (from 712K to 75 features) by removing irrelevant

features. Finally, we have designed DeepDetect with 75 features to detect malware on a

real device. DeepDetect is able to detect more than 97% of new malware with a 1.73% of

the false-positive rate. DeepDetect takes ∼5.32 seconds on average to analyze an app on

a real device while consuming 0.45% of total device power in analyzing 50 apps.

In Chapter 6, we have developed MAPFam, a malware family classification framework.

This work was premised on a starting hypothesis that features extracted from API pack-

ages rather than on API calls lead to more precise classification. We have experimentally

tested our hypothesis and showed that API package-based models provide ∼1.63X more

accurate classification than an API call-based method. As a result, we have designed

MAPFam, a manifest file and API package-based family classification framework that is

capable of predicting a malware family precisely and accurately. We have performed sev-

eral experiments to show the effectiveness of MAPFam in identifying unknown malware

families. The evaluation results showed that the MAPFam classification system can accu-

rately classify malware families with an average precision and accuracy of more than 97%

for the top 60 malware families and 97.55% reliable.

Chapter 7. Conclusion and Future Work 136

7.2 Future Directions

In this work, we have focused on protecting app stores and end-user devices being infected

by the malware by designing a stealthy dynamic analysis framework and on-device malware

detector followed by identifying malware families. This section offers some future work

directions for extending the work presented in this thesis.

• Revisiting anti-emulation-detection capabilities: Even though InviSeal pro-

vides a strong defense against all the malware samples, it falls short if an app tries

to detect the Xposed framework. For example, the Snapchat app uses native code to

detect Xposed [123]. It is possible because Xposed capability is limited to the frame-

work level API only, and here detection is performed through the native code. Hence,

we can develop file and system properties related anti-emulation-detection mecha-

nism at the kernel level instead of the application layer. Moreover, the timing channel

attacks like studying the graphics subsystem and finding the difference between em-

ulated vs. real devices, can also be the source of the emulation-detection. Hence, we

can also develop a strategy to fool timing channel-based emulation-detection attacks.

• Family classification with dynamic weights: MAPFam family classification

framework uses first precision to identify the family of malware. First precision

refers to the strategy of assigning the family name to malware with the one which

has the highest probability. For example, if we have ten families, F1 to F10, F5 gets

the highest probability for a malware sample. According to the first precision, we

directly assign the family name of the malware as F5, which might not be the true

family of that malware. Therefore, we can opt for higher precision, say 3rd precision

or 5th precision. In that case, we will assign a family name from the top 3rd or 5th

probability which the weights will decide. However, we need the weights that will

guide the actual family name from the higher precision families, and we do not have

the same. Hence, we can develop a strategy that dynamically assigns the weights to

predict malware families based on the higher precision.

Chapter 7. Conclusion and Future Work 137

• Effect of MAPFam on a real device: MAPFam is a practical Android malware

family classification framework that correctly classifies 97.92% of unknown malware

families and is 97.55% reliable. However, we do not know its runtime performance

when the same technique is used for family classification on a real smartphone.

Therefore, a study can also be performed to identify the runtime efficiency of MAP-

Fam on a real smartphone. If it is efficient and does not impact smartphone battery

significantly, develop an on-device Android malware family classification system to

identify family on a real device.

• Integrate on-device solution with offline detection: Right now, DeepDetect,

InviSeal, and MAPFam are working independently. We can integrate all the solutions

to perform more fine-grained malware detection and classification. For example, if

DeepDetect analyzes an app on a real device, it fails to detect the malware. In

that case, it can submit the same app to InviSeal for dynamic analysis. Hence, a

two-stage analysis process will increase the malware detection rate.

Appendix A

Additional Information of
DeepDetect

A.1 Features Used in DeepDetect

The feature used in DeepDetect are as follows:

(i) Numeric Features: List of numeric feature used are as follows:

Activities

Services

Brodcast Receivers

Content Providers

Custom Permissions.

(ii) Requested Permissions: The list of requested permission used are as follows:

android.permission.RECEIVE_BOOT_COMPLETED

android.permission.ACCESS_NETWORK_STATE

android.permission.RECEIVE_SMS

android.permission.VIBRATE

android.permission.ACCESS_COARSE_LOCATION

android.permission.INSTALL_PACKAGES

android.permission.READ_SMS

android.permission.PROCESS_OUTGOING_CALLS

android.permission.READ_PHONE_STATE

android.permission.WRITE_EXTERNAL_STORAGE

android.permission.WAKE_LOCK

android.permission.SEND_SMS

android.permission.INTERNET

android.permission.GET_ACCOUNTS

138

Appendix A. Additional Information of DeepDetect 139

android.permission.DISABLE_KEYGUARD

android.permission.CHANGE_WIFI_STATE

android.permission.ACCESS_WIFI_STATE

android.permission.READ_LOGS

android.permission.CALL_PHONE

android.permission.READ_CONTACTS

android.permission.GET_TASKS

android.permission.WRITE_SMS

android.permission.SET_WALLPAPER

android.permission.ACCESS_GPS

android.permission.WRITE_SETTINGS

android.permission.READ_EXTERNAL_STORAGE

android.permission.SYSTEM_ALERT_WINDOW

android.permission.RESTART_PACKAGES

android.permission.MOUNT_UNMOUNT_FILESYSTEMS

android.permission.CHANGE_NETWORK_STATE

android.permission.WRITE_CONTACTS

android.permission.CAMERA

android.permission.KILL_BACKGROUND_PROCESSES

android.permission.ACCESS_LOCATION_EXTRA_COMMANDS

android.permission.BLUETOOTH_ADMIN

android.permission.USE_CREDENTIALS

android.permission.RECORD_AUDIO

android.permission.MODIFY_AUDIO_SETTINGS

android.permission.BROADCAST_STICKY

android.permission.CHANGE_CONFIGURATION

(iii) 2-Gram Opcode Sequence: The 2-Gram opcode sequence used in DeepDetect are
shown bellow. To know about the Reduce instruction set symbols, please see Table 5.1 in
Chapter 5.

DX,XR,VD,PG,IL,

LL,SC,SR,BV,TM,

AA,FM,OM,TR,XP,

GM,XI,PA,AT,OL,

DM,DP,FP,SX,OP,

FT,LV,MM,TP,SB

A.2 Additional Experiments and Results

This section contains additional results and experiments that have been carried out to
evaluate DeepDetect but did not show in Chapter 5.

Appendix A. Additional Information of DeepDetect 140

A.2.1 Performance Comparison of Features

In Chapter 5, we have only shown the ROC curve and the AUC value. Table A.1 shows
the evaluation results against other metrics.

Table A.1: Evaluation of various feature extracted from Dex file. UP: Used Permission,
SA: Sensitive APIs, RA: Restricted APIs and USR: Combined features (UP, SA and RA).

Features #Features Pre (%) Rec (%) F1 (%) FPR (%)
1-Gram 18 94.71 91.74 93.42 3.33
2-Gram 30 96.26 94.25 95.39 2.40
3-Gram 44 97.44 95.47 96.75 1.35
UP 59 92.35 86.59 90.05 4.10
SA 42 86.13 83.60 83.79 11.44
RA 959 84.23 88.76 82.72 18.49
USR 1060 96.48 92.10 95.13 1.10

A.2.2 Performance Against Known, Unseen, and New Samples

Figure A.1 shows the performance results against the ROC curve and AUC value against
known, unseen, and new Samples.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Flase Positive Rate

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Training Set, AUC=1.000
Evaluation Set, AUC=0.997
AndroZoo-2019, AUC=0.986

Figure A.1: AUC-ROC curve for the final model evaluated against the known, unseen
and new samples.

A.2.3 Performance of Restricted APIs and 2-Gram Opcode Sequence
with Multiple Classifier

In this section, we compare the performance of the 2-Gram opcode sequence (2-Opc) based
model with restricted APIs. Restricted APIs (or API calls) are widely used in both types of
malware detection systems—(i) on-device (Drebin [6], IntelliAV [66]), and (ii) on a server
in an off-line fashion (DroidSeive [7], Garcia et al. [83]). Restricted APIs are those API
that requires some permission, but the same is not present in the manifest file. Therefore,

Appendix A. Additional Information of DeepDetect 141

we can say that restricted APIs generally showcase the malicious intents of an app, which
is the main reason for showcasing the performance of the 2-Gram opcode sequence against
the restricted APIs.

In this evaluation, we have used six classifiers to measure the performance of individual
feature sets. Training and testing of the classifiers are performed on the training and
evaluation set, respectively. The six classifiers that we have used are –(i) Random Forest,
(ii) Extra Tree, (iii) Decision Tree, (iv) Logistic Regression, (v) Neural Network, and (vi)
Nearest Neighbour. The evaluation results (see Table A.2) show that the 2-Gram opcode
sequence feature set outperforms the restricted APIs in all tree-based classifiers and Neural
Network classifiers with more than 85% malware detection. However, the detection rate
of the 2-Gram opcode sequence is lower than Restricted APIs for Logistic regression and
Nearest Neighbour. If we observe the false positive rate of these two classifiers, it is
relatively very high for restricted APIs compared to the 2-Gram opcode sequence. The
possible reason is that the API calls are the most susceptible to obfuscation attacks to
bypass the static analysis process. Also, some APIs may go outdated or suppressed in
the newer version of Android OS, which will not be present in the future/unknown apps.
Hence, a model’s performance may degrade when utilizing the API call information to
detect malware. That is the main reason behind using opcode information in designing
the on-device malware detector instead of API call information.

Table A.2: Comparison of 2-Gram opcode sequence (2-Opc) with restricted APIs

Classifiers
Restricted API (959) 2-Opc (30)

Pre (%) Rec (%) F1 (%) FPR (%) Pre (%) Rec (%) F1 (%) FPR (%)
Random Forest 85.36 88.76 84.64 18.48 96.21 94.25 96.20 2.4
Extra Tree 85.38 88.62 84.69 18.29 96.06 94.05 96.05 2.51
Decision Tree 84.82 88.43 84.02 19.32 93.28 93.00 93.25 6.59
Logistic Regression 81.15 84.30 80.29 22.82 73.89 55.85 72.92 13.49
Neural Network 81.70 83.28 81.18 20.51 87.82 85.04 87.84 10.13
Nearest Neighbour 83.14 98.06 74.56 41.55 91.08 90.90 91.03 8.91

A.2.4 Run-time Efficiency

Figure A.2 shows the execution time of an app with different techniques on Xiaomi 10T
and Redmi Note 7Pro.

Slack UberCab Twitter AarogyaSetu Facebook
Application Used

0

5

10

15

20

25

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(in
 S

ec
on

ds
)

1-Gram
2-Gram
3-Gram
UP

SA
RA
USR

(a) Execution time on Xiaomi 10T.

Slack UberCab Twitter AarogyaSetu Facebook
Application Used

0

10

20

30

40

Av
er

ag
e

Ex
ec

ut
io

n
Ti

m
e

(in
 S

ec
on

ds
)

1-Gram
2-Gram
3-Gram
UP

SA
RA
USR

(b) Execution time on Redmi Note 7Pro.

Figure A.2: Execution time of an app with different techniques (i) 1-Gram, (ii) 2-Gram,
(iii) 3-Gram, (iv) Used Permissions (UP), (v) Suspicious APIs (SA), (vi) Restricted APIs,

and (vii) USR (Combined UP, SA and RA).

Appendix A. Additional Information of DeepDetect 142

A.2.5 Feature Importance

In this experiment, we show the quality of our features concerning classes, i.e., malware
and benign. For the experiment, we train a random forest model on our training set for
both categories of features individually, i.e., selected requested permissions and 2-Gram
opcode sequence. Figure A.3 shows the importance of both the feature set. Figure A.3(a)
shows the importance of the top 30 requested permissions, while the feature importance
of the 2-Gram opcode sequence is projected in Figure A.3(b).

In Figure A.3(a), we observe a significant difference in the feature importance of GET ACCOUNT
permission between malware and benign, which indicates how well this feature can distin-
guish malware from the benign app. Similarly, when we observe the feature importance of
the 2-Gram opcode sequence, then a Bit-wise instruction followed by a branch instruction
(SB feature in Figure A.3(b)) is more important for identifying malware and benign. We
observe such differences in all the features for both the feature set, which shows the quality
of features in distinguishing malware from benign.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Features Importance

KILL_BACKGROUND_PROCESSES
CHANGE_WIFI_STATE

CALL_PHONE
MOUNT_UNMOUNT_FILESYSTEMS

GET_TASKS
SEND_SMS

INSTALL_PACKAGES
READ_EXTERNAL_STORAGE
CHANGE_CONFIGURATION

WRITE_SETTINGS
ACCESS_GPS

USE_CREDENTIALS
ACCESS_COARSE_LOCATION

RECORD_AUDIO
WRITE_EXTERNAL_STORAGE

RESTART_PACKAGES
READ_CONTACTS
SET_WALLPAPER

ACCESS_LOCATION_EXTRA_COMMANDS
READ_SMS

ACCESS_WIFI_STATE
WAKE_LOCK

BLUETOOTH_ADMIN
ACCESS_NETWORK_STATE

READ_LOGS
RECEIVE_BOOT_COMPLETED

RECEIVE_SMS
READ_PHONE_STATE

CAMERA
GET_ACCOUNTS

Fe
at

ur
es

 N
am

e

0.0006

0.0007

0.0007

0.0007

0.0007

0.0007

0.0008

0.0008

0.0008

0.001

0.001

0.001

0.0014

0.0015

0.0018

0.0021

0.0022

0.0025

0.0029

0.0037

0.0041

0.0058

0.0094

0.0105

0.0133

0.0159

0.0161

0.0214

0.0405

0.1346

0.0009

0.0009

0.001

0.001

0.001

0.001

0.0011

0.0011

0.0012

0.0013

0.0014

0.0015

0.0019

0.0021

0.0025

0.0029

0.003

0.0034

0.0041

0.0052

0.0057

0.0081

0.0131

0.0146

0.0186

0.0222

0.0226

0.0299

0.0567

0.1883

benign
malware

(a) Requested Permissions (top 30).

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Features Importance

DX
LL
AA
GM
DM
FT
XR
SC
FM
XI

DP
LV
VD
SR

OM
PA
FP

MM
PG
BV
TR
AT
SX
TP
IL

TM
XP
OL
OP
SB

Fe
at

ur
es

 N
am

e

0.0001

0.0037

0.0042

0.0043

0.0046

0.0048

0.005

0.0051

0.0053

0.0056

0.0056

0.006

0.006

0.0065

0.0066

0.0067

0.0068

0.0075

0.0076

0.008

0.0082

0.0087

0.0097

0.0105

0.0105

0.0118

0.0131

0.0141

0.0197

0.0209

0.0001

0.0052

0.0058

0.006

0.0064

0.0068

0.007

0.0071

0.0074

0.0078

0.0078

0.0084

0.0084

0.0091

0.0093

0.0094

0.0095

0.0105

0.0106

0.0113

0.0114

0.0122

0.0135

0.0147

0.0147

0.0165

0.0183

0.0197

0.0276

0.0293

benign
malware

(b) 2-Gram Opcode sequence.

Figure A.3: Importance of features for malware detection. Figure A.3(a) shows impor-
tance of top 30 requested permissions while Figure A.3(b) shows importance of 2-Gram

opcode sequence.

We conducted a similar experiment with new samples (AndroZoo-2019) and obfuscated
malware samples by including benign samples from AndroZoo-2019. The feature impor-
tance result for new and obfuscated samples are shown in Figure A.4 and Figure A.5,
respectively.

Appendix A. Additional Information of DeepDetect 143

0.00 0.02 0.04 0.06 0.08 0.10 0.12
Features Importance

ACCESS_NETWORK_STATE
MOUNT_UNMOUNT_FILESYSTEMS

VIBRATE
GET_ACCOUNTS

ACCESS_WIFI_STATE
CHANGE_WIFI_STATE

WRITE_CONTACTS
DISABLE_KEYGUARD

INTERNET
ACCESS_GPS

INSTALL_PACKAGES
GET_TASKS

CALL_PHONE
CHANGE_NETWORK_STATE

SYSTEM_ALERT_WINDOW
RECORD_AUDIO

WRITE_EXTERNAL_STORAGE
WRITE_SMS

BROADCAST_STICKY
USE_CREDENTIALS

RECEIVE_BOOT_COMPLETED
READ_EXTERNAL_STORAGE

CAMERA
CHANGE_CONFIGURATION

RESTART_PACKAGES
SET_WALLPAPER

RECEIVE_SMS
ACCESS_LOCATION_EXTRA_COMMANDS

MODIFY_AUDIO_SETTINGS
ACCESS_COARSE_LOCATION

Fe
at

ur
es

 N
am

e

0.001

0.0015

0.0016

0.0017

0.0017

0.0017

0.0021

0.0021

0.0023

0.0026

0.0028

0.0028

0.0031

0.0034

0.004

0.0041

0.0046

0.0047

0.0051

0.0076

0.012

0.0207

0.0233

0.0264

0.0291

0.0294

0.0337

0.112

0.1152

0.1179

0.0011

0.0016

0.0018

0.0018

0.0018

0.0018

0.0023

0.0023

0.0025

0.0028

0.003

0.0031

0.0034

0.0037

0.0043

0.0044

0.005

0.005

0.0055

0.0082

0.0129

0.0223

0.0251

0.0285

0.0314

0.0317

0.0363

0.1207

0.1241

0.127

benign
malware

(a) Requested Permissions (top 30).

0.00 0.01 0.02 0.03 0.04 0.05
Features Importance

LV
TR
XI

XR
DX
FT
VD
AA
LL
BV
OP
OL
GM
SC
IL

FP
DM
MM
AT
TM
PG
XP
SB

OM
FM
SX
DP
SR
PA
TP

Fe
at

ur
es

 N
am

e

0.0002

0.0007

0.0008

0.0009

0.001

0.0013

0.0014

0.0016

0.0016

0.0017

0.0018

0.0021

0.0022

0.0022

0.0025

0.0028

0.0029

0.0034

0.0036

0.005

0.0091

0.013

0.018

0.0203

0.0252

0.0312

0.0335

0.036

0.0468

0.0529

0.0002

0.0007

0.0008

0.001

0.001

0.0014

0.0015

0.0017

0.0018

0.0018

0.0019

0.0023

0.0023

0.0024

0.0027

0.003

0.0031

0.0037

0.0039

0.0054

0.0098

0.014

0.0194

0.0218

0.0271

0.0336

0.0361

0.0388

0.0504

0.057

benign
malware

(b) 2-Gram Opcode sequence.

Figure A.4: Importance of features for malware detection with new sample (AndroZoo-
2019). Figure A.4(a) shows importance of top 30 requested permissions while Figure

A.4(b) shows importance of 2-Gram opcode sequence.

Appendix A. Additional Information of DeepDetect 144

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Features Importance

RECEIVE_BOOT_COMPLETED
GET_ACCOUNTS

SYSTEM_ALERT_WINDOW
BLUETOOTH_ADMIN

CHANGE_WIFI_STATE
WRITE_CONTACTS

ACCESS_WIFI_STATE
INTERNET

INSTALL_PACKAGES
ACCESS_GPS

READ_PHONE_STATE
RESTART_PACKAGES

CAMERA
READ_SMS

RECORD_AUDIO
READ_EXTERNAL_STORAGE

WRITE_SMS
SET_WALLPAPER

BROADCAST_STICKY
SEND_SMS

WAKE_LOCK
WRITE_SETTINGS

VIBRATE
DISABLE_KEYGUARD

USE_CREDENTIALS
RECEIVE_SMS

CHANGE_CONFIGURATION
KILL_BACKGROUND_PROCESSES

CALL_PHONE
ACCESS_COARSE_LOCATION

Fe
at

ur
es

 N
am

e

0.001

0.0012

0.0015

0.0016

0.0016

0.0019

0.0021

0.0022

0.0024

0.0028

0.0032

0.0032

0.0033

0.0035

0.0042

0.0043

0.0046

0.0051

0.0059

0.0069

0.0121

0.0194

0.0215

0.0261

0.0263

0.0284

0.0297

0.1111

0.1112

0.1338

0.001

0.0013

0.0017

0.0018

0.0018

0.002

0.0023

0.0024

0.0025

0.003

0.0034

0.0034

0.0035

0.0038

0.0045

0.0046

0.005

0.0055

0.0064

0.0074

0.0131

0.0209

0.0231

0.0281

0.0283

0.0306

0.032

0.1197

0.1198

0.1441

benign
malware

(a) Requested Permissions (top 30).

0.00 0.02 0.04 0.06 0.08 0.10
Features Importance

DX
TP

DM
XI

VD
OL
SB
SX
BV
FP
OP
FT

MM
SC
DP
IL

TR
AA
XR
AT
TM
LL

OM
GM
PA
XP
PG
SR
LV
FM

Fe
at

ur
es

 N
am

e

0.0002

0.0003

0.0006

0.0006

0.0007

0.0009

0.001

0.0012

0.0012

0.0014

0.0015

0.0018

0.0018

0.002

0.0024

0.0024

0.0026

0.0027

0.0032

0.0036

0.0043

0.005

0.0086

0.0192

0.0291

0.0312

0.0333

0.036

0.0545

0.1001

0.0002

0.0004

0.0006

0.0007

0.0008

0.001

0.0011

0.0013

0.0013

0.0015

0.0016

0.002

0.002

0.0021

0.0025

0.0026

0.0028

0.0029

0.0035

0.0039

0.0046

0.0054

0.0092

0.0207

0.0314

0.0336

0.0359

0.0387

0.0587

0.1078

benign
malware

(b) 2-Gram Opcode sequence.

Figure A.5: Importance of features for malware detection with obfuscated samples.
Figure A.5(a) shows importance of top 30 requested permissions while Figure A.5(b)

shows importance of 2-Gram opcode sequence.

Appendix B

Additional Information of
MAPFam

B.1 Features Used in MAPFam

The features used in the final MAPFam model are as follows:

(i) Numeric Features: List of numeric features used are as follows:

Activities

Services

Brodcast Receivers

Content Providers

Custom Permissions

Requested Permission Count

Unique Packages Used

(ii) Requested Permissions: The list of requested permissions used are as follows:

android.permission.READ_SMS

android.permission.READ_EXTERNAL_STORAGE

android.permission.RECEIVE_SMS

android.permission.WRITE_SMS

android.permission.CHANGE_WIFI_STATE

android.permission.READ_PHONE_STATE

android.permission.WRITE_EXTERNAL_STORAGE

android.permission.SEND_SMS

android.permission.MOUNT_UNMOUNT_FILESYSTEMS

android.permission.ACCESS_FINE_LOCATION

android.permission.SYSTEM_ALERT_WINDOW

android.permission.ACCESS_WIFI_STATE

145

Appendix B. Additional Information of MAPFam 146

android.permission.ACCESS_COARSE_LOCATION

android.permission.RECEIVE_BOOT_COMPLETED

android.permission.VIBRATE

android.permission.GET_TASKS

android.permission.READ_LOGS

android.permission.WAKE_LOCK

android.permission.RESTART_PACKAGES

android.permission.CAMERA

android.permission.WRITE_SETTINGS

android.permission.CALL_PHONE

android.permission.WRITE_CONTACTS

android.permission.READ_CONTACTS

android.permission.PROCESS_OUTGOING_CALLS

android.permission.KILL_BACKGROUND_PROCESSES

android.permission.GET_ACCOUNTS

android.permission.ACCESS_COARSE_UPDATES

android.permission.READ_CALL_LOG

android.permission.READ_PROFILE

android.permission.ACCESS_GPS

android.permission.ACCESS_LOCATION

android.permission.ACCESS_ASSISTED_GPS

(iii) API Packages: The API Packages used in final MAPFam model are shown bellow.

javax.microedition.khronos.opengles

org.xmlpull.v1

java.util.zip

android.webkit

java.util.regex

java.util.concurrent

android.telephony

java.lang.ref

android.text.format

javax.crypto

org.json

android.animation

java.text

android.accounts

java.lang.reflect

dalvik.system

java.security

java.math

android.preference

java.nio.charset

android.net.wifi

android.media

android.graphics

Appendix B. Additional Information of MAPFam 147

android.telephony.cdma

java.net

org.w3c.dom

java.util.concurrent.atomic

android.telephony.gsm

android.content.pm

android.provider

android.graphics.drawable

org.apache.http.params

android.app.admin

android.database.sqlite

javax.xml.parsers

android.content.res

java.nio

android.location

android.view.accessibility

android.database

javax.net.ssl

Bibliography

[1] Malware statistics & trends report — av-test, 2022. URL https://www.av-test.

org/en/statistics/malware/. Accessed: 1 January 2022.

[2] Android Developers. Platform architecture — Android developers, Dec 2021.
URL https://developer.android.com/guide/platform/. Accessed: 13 Decem-
ber 2021.

[3] Simone Aonzo, Gabriel Claudiu Georgiu, Luca Verderame, and Alessio Merlo. Ob-
fuscapk: An open-source black-box obfuscation tool for Android apps. SoftwareX,
11:100403, 2020.

[4] IDC: Smartphone Market Share-OS, Oct 2021. URL https://www.idc.com/promo/

smartphone-market-share/os. Accessed: 12 January 2022.

[5] Number of daily Android app releases worldwide — statista.com,
Dec 2021. URL https://www.statista.com/statistics/276703/

android-app-releases-worldwide/. Accessed: 15 January 2022.

[6] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad
Rieck. Drebin: Effective and explainable detection of Android malware in your
pocket. In Proceedings of the 21st Network and Distributed Systems Security Sym-
posium, NDSS, 02 2014. doi: 10.14722/ndss.2014.23247.

[7] Guillermo Suarez-Tangil, Santanu Kumar Dash, Mansour Ahmadi, Johannes Kinder,
Giorgio Giacinto, and Lorenzo Cavallaro. DroidSieve: fast and accurate classification
of obfuscated Android malware. In Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy, page 309–320, 2017.

[8] Anam Fatima, Saurabh Kumar, and Malay Kishore Dutta. Host-server-based mal-
ware detection system for Android platforms using machine learning. In Xiao-Zhi
Gao, Shailesh Tiwari, Munesh C. Trivedi, and Krishn K. Mishra, editors, Advances
in Computational Intelligence and Communication Technology, pages 195–205, Sin-
gapore, 2021. Springer Singapore. ISBN 978-981-15-1275-9.

[9] Hye Min Kim, Hyun Min Song, Jae Woo Seo, and Huy Kang Kim. Andro-Simnet:
Android malware family classification using social network analysis. In 2018 16th
Annual Conference on Privacy, Security and Trust (PST), pages 1–8, 2018. doi:
10.1109/PST.2018.8514216.

148

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://developer.android.com/guide/platform/
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://www.statista.com/statistics/276703/android-app-releases-worldwide/
https://www.statista.com/statistics/276703/android-app-releases-worldwide/

Bibliography 149

[10] Luca Massarelli, Leonardo Aniello, Claudio Ciccotelli, Leonardo Querzoni, Daniele
Ucci, and Roberto Baldoni. Android malware family classification based on resource
consumption over time. In 2017 12th International Conference on Malicious and
Unwanted Software (MALWARE), pages 31–38, 2017. doi: 10.1109/MALWARE.
2017.8323954.

[11] Andrea Saracino, Daniele Sgandurra, Gianluca Dini, and Fabio Martinelli. MADAM:
effective and efficient behavior-based Android malware detection and prevention.
IEEE Transactions on Dependable and Secure Computing, 15(1):83–97, 2018. ISSN
2160-9209. doi: 10.1109/TDSC.2016.2536605.

[12] Sercan Türker and Ahmet Burak Can. AndMFC: Android malware family clas-
sification framework. In 2019 IEEE 30th International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC Workshops), pages 1–6, 2019.
doi: 10.1109/PIMRCW.2019.8880840.

[13] Xiaolei Wang, Yuexiang Yang, and Yingzhi Zeng. Accurate mobile malware de-
tection and classification in the cloud. SpringerPlus, 4, 12 2015. doi: 10.1186/
s40064-015-1356-1.

[14] Ke Xu, Yingjiu Li, Robert H. Deng, and Kai Chen. DeepRefiner: multi-layer Android
malware detection system applying deep neural networks. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 473–487, April 2018.

[15] Suleiman Y. Yerima, Sakir Sezer, and Igor Muttik. Android malware detection
using parallel machine learning classifiers. In 2014 Eighth International Conference
on Next Generation Mobile Apps, Services and Technologies, pages 37–42, 2014. doi:
10.1109/NGMAST.2014.23.

[16] Zhenlong Yuan, Yongqiang Lu, and Yibo Xue. DroidDetector: Android malware
characterization and detection using deep learning. Tsinghua Science and Technol-
ogy, 21(1):114–123, 2016. doi: 10.1109/TST.2016.7399288.

[17] Lok Kwong Yan and Heng Yin. DroidScope: Seamlessly reconstructing the OS
and dalvik semantic views for dynamic Android malware analysis. In 21st USENIX
Security Symposium (USENIX Security 12), pages 569–584, Bellevue, WA, August
2012. USENIX Association. ISBN 978-931971-95-9.

[18] Tanmoy Chakraborty, Fabio Pierazzi, and V. S. Subrahmanian. EC2: Ensemble clus-
tering and classification for predicting Android malware families. IEEE Transactions
on Dependable and Secure Computing, 17(2):262–277, mar 2020. ISSN 1545-5971.
doi: 10.1109/TDSC.2017.2739145. URL https://doi.org/10.1109/TDSC.2017.

2739145.

[19] Saurabh Kumar and Sandeep Kumar Shukla. The state of Android security. In Cyber
Security in India: Education, Research and Training, pages 17–22. Springer Singa-
pore, Singapore, 2020. ISBN 978-981-15-1675-7. doi: 10.1007/978-981-15-1675-7\ 2.
URL https://doi.org/10.1007/978-981-15-1675-7_2.

[20] Andrew Orlowski. Google play store spews malware onto 9 million ’Droids.,
2019. URL https://www.theregister.co.uk/2019/01/09/google_play_store_

malware_onto_9m_droids/.

https://doi.org/10.1109/TDSC.2017.2739145
https://doi.org/10.1109/TDSC.2017.2739145
https://doi.org/10.1007/978-981-15-1675-7_2
https://www.theregister.co.uk/2019/01/09/google_play_store_malware_ onto_9m_droids/
https://www.theregister.co.uk/2019/01/09/google_play_store_malware_ onto_9m_droids/

Bibliography 150

[21] Apache cordova, 2021. URL https://cordova.apache.org/. Accessed: 17 Decem-
ber 2021.

[22] Ionic - cross-platform mobile app development, 2021. URL https://

ionicframework.com/. Accessed: 17 December 2021.

[23] Wikipedia. Android application package - wikipedia, Jan 2022. URL https://en.

wikipedia.org/wiki/Android_application_package. Accessed 5 January 2022.

[24] Android Developers. App Manifest overview — Android developers, Jan 2022. URL
https://developer.android.com/guide/topics/manifest/manifest-intro.
Accessed: 17 January 2022.

[25] Android Developers. <permission> — Android developers, Jan 2022. URL https:

//developer.android.com/guide/topics/manifest/permission-element. Ac-
cessed: 12 January 2022.

[26] Satoshi Maruyama, Katsuhiko Tanahashi, and Takehiko Higuchi. Base transceiver
station for w-cdma system. Fujitsu Scientific & Technical Journal, 38:167–173, 01
2002.

[27] Wikipedia. Gsm cell id, 2020. URL https://en.wikipedia.org/wiki/GSM_Cell_

ID. Accessed: 21 December 2021.

[28] Wikipedia. Mobile malware - wikipedia, May 2022. URL https://en.wikipedia.

org/wiki/Mobile_malware. Accessed 25 May 2022.

[29] Trend Micro. A look at google bouncer, Oct 2012. URL https://www.

trendmicro.com/en_us/research/12/g/a-look-at-google-bouncer.html. Ac-
cessed: 12 April 2022.

[30] Dan Goodin. Android devices can be fatally hacked by ma-
licious wi-fi networks — ars technica, June 2017. URL
https://arstechnica.com/information-technology/2017/04/

wide-range-of-android-phones-vulnerable-to-device-hijacks-over-wi-fi/.
Accessed: 12 April 2022.

[31] Ashawa Moses and Sarah Morris. Analysis of mobile malware: A systematic re-
view of evolution and infection strategies. Journal of Information Security and
Cybercrimes Research, 4(2):103–131, Dec. 2021. doi: 10.26735/KRVI8434. URL
https://journals.nauss.edu.sa/index.php/JISCR/article/view/1578.

[32] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and Lorenzo Cav-
allaro. The evolution of Android malware and Android analysis techniques. ACM
Computing Surveys, 49(4), jan 2017. ISSN 0360-0300. doi: 10.1145/3017427. URL
https://doi.org/10.1145/3017427.

[33] Sebastian Bachmann Anthony Desnos, Geoffroy Gueguen. Welcome to Androguard’s
documentation! — Androguard 3.4.0 documentation, Jan 2021. URL https://

androguard.readthedocs.io/en/latest/. Accessed: 20 December 2021.

https://cordova.apache.org/
https://ionicframework.com/
https://ionicframework.com/
https://en.wikipedia.org/wiki/Android_application_package
https://en.wikipedia.org/wiki/Android_application_package
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element
https://en.wikipedia.org/wiki/GSM_Cell_ID
https://en.wikipedia.org/wiki/GSM_Cell_ID
https://en.wikipedia.org/wiki/Mobile_malware
https://en.wikipedia.org/wiki/Mobile_malware
https://www.trendmicro.com/en_us/research/12/g/a-look-at-google-bouncer.html
https://www.trendmicro.com/en_us/research/12/g/a-look-at-google-bouncer.html
https://arstechnica.com/information-technology/2017/04/wide-range-of-android-phones-vulnerable-to-device-hijacks-over-wi-fi/
https://arstechnica.com/information-technology/2017/04/wide-range-of-android-phones-vulnerable-to-device-hijacks-over-wi-fi/
https://journals.nauss.edu.sa/index.php/JISCR/article/view/1578
https://doi.org/10.1145/3017427
https://androguard.readthedocs.io/en/latest/
https://androguard.readthedocs.io/en/latest/

Bibliography 151

[34] Argus Lab. Argus SAF - argus-pag, Nov 2021. URL http://pag.arguslab.org/

argus-saf. Accessed: 20 December 2021.

[35] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A precise and
general inter-component data flow analysis framework for security vetting of Android
apps. ACM Transactions on Privacy and Security, 21(3), apr 2018. ISSN 2471-2566.
doi: 10.1145/3183575. URL https://doi.org/10.1145/3183575.

[36] Apktool - documentation, 2022. URL https://ibotpeaches.github.io/Apktool/

documentation/. Accessed: 20 March 2022.

[37] Patrik Lantz. An Android application sandbox for dynamic analysis. Master’s thesis,
Lund University, Nov 2011. URL https://www.eit.lth.se/sprapport.php?uid=

595. Accessed: 18 December 2021.

[38] Checkpoint Software Technologies. CuckooDroid book, Jan 2021. URL https:

//cuckoo-droid.readthedocs.io/en/latest/. Accessed: 18 January 2022.

[39] MobSF Team. 1. documentation · MobSF/mobile-security-framework-
MobSF wiki, Mar 2020. URL https://github.com/MobSF/

Mobile-Security-Framework-MobSF/wiki/1.-Documentation. Accessed: 12
January 2022.

[40] Mehedee Zaman, Tazrian Siddiqui, Mohammad Rakib Amin, and Md. Shohrab Hos-
sain. Malware detection in Android by network traffic analysis. In 2015 Interna-
tional Conference on Networking Systems and Security (NSysS), pages 1–5, 2015.
doi: 10.1109/NSysS.2015.7043530.

[41] Igor Jochem Sanz, Martin Andreoni Lopez, Eduardo Kugler Viegas, and Vinicius Ro-
drigues Sanches. A lightweight network-based Android malware detection system.
In 2020 IFIP Networking Conference (Networking), pages 695–703, 2020.

[42] Aqil Zulkifli, Isredza Rahmi A. Hamid, Wahidah Md Shah, and Zubaile Abdullah.
Android malware detection based on network traffic using decision tree algorithm. In
Rozaida Ghazali, Mustafa Mat Deris, Nazri Mohd Nawi, and Jemal H. Abawajy, ed-
itors, Recent Advances on Soft Computing and Data Mining, pages 485–494, Cham,
2018. Springer International Publishing. ISBN 978-3-319-72550-5.

[43] Shanshan Wang, Zhenxiang Chen, Qiben Yan, Ke Ji, Lizhi Peng, Bo Yang, and
Mauro Conti. Deep and broad url feature mining for Android malware detec-
tion. Information Sciences, 513:600–613, 2020. ISSN 0020-0255. doi: https://doi.
org/10.1016/j.ins.2019.11.008. URL https://www.sciencedirect.com/science/

article/pii/S0020025519310539.

[44] Peng Xu, Claudia Eckert, and Apostolis Zarras. hybrid-flacon: Hybrid pattern
malware detection and categorization with network traffic and program code. CoRR,
abs/2112.10035, 2021. URL https://arxiv.org/abs/2112.10035.

[45] Zhenxiang Chen, Qiben Yan, Hongbo Han, Shanshan Wang, Lizhi Peng, Lin
Wang, and Bo Yang. Machine learning based mobile malware detection using
highly imbalanced network traffic. Information Sciences, 433-434:346–364, 2018.

http://pag.arguslab.org/argus-saf
http://pag.arguslab.org/argus-saf
https://doi.org/10.1145/3183575
https://ibotpeaches.github.io/Apktool/documentation/
https://ibotpeaches.github.io/Apktool/documentation/
https://www.eit.lth.se/sprapport.php?uid=595
https://www.eit.lth.se/sprapport.php?uid=595
https://cuckoo-droid.readthedocs.io/en/latest/
https://cuckoo-droid.readthedocs.io/en/latest/
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-Documentation
https://github.com/MobSF/Mobile-Security-Framework-MobSF/wiki/1.-Documentation
https://www.sciencedirect.com/science/article/pii/S0020025519310539
https://www.sciencedirect.com/science/article/pii/S0020025519310539
https://arxiv.org/abs/2112.10035

Bibliography 152

ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.2017.04.044. URL https:

//www.sciencedirect.com/science/article/pii/S0020025517307077.

[46] Shanshan Wang, Zhenxiang Chen, Qiben Yan, Bo Yang, Lizhi Peng, and Zhong-
tian Jia. A mobile malware detection method using behavior features in net-
work traffic. Journal of Network and Computer Applications, 133:15–25, 2019.
ISSN 1084-8045. doi: https://doi.org/10.1016/j.jnca.2018.12.014. URL https:

//www.sciencedirect.com/science/article/pii/S1084804518304028.

[47] Mohammad Kamel A. Abuthawabeh and Khaled W. Mahmoud. Android malware
detection and categorization based on conversation-level network traffic features.
In 2019 International Arab Conference on Information Technology (ACIT), pages
42–47, 2019. doi: 10.1109/ACIT47987.2019.8991114.

[48] Mahshid Gohari, Sattar Hashemi, and Lida Abdi. Android malware detection and
classification based on network traffic using deep learning. In 2021 7th International
Conference on Web Research (ICWR), pages 71–77, 2021. doi: 10.1109/ICWR51868.
2021.9443025.

[49] José Gaviria de la Puerta, Iker Pastor-López, Borja Sanz, and Pablo G. Bringas.
Network traffic analysis for Android malware detection. In Hilde Pérez Garćıa,
Lidia Sánchez González, Manuel Castejón Limas, Héctor Quintián Pardo, and Emilio
Corchado Rodŕıguez, editors, Hybrid Artificial Intelligent Systems, pages 468–479,
Cham, 2019. Springer International Publishing.

[50] Mohammad Reza Norouzian, Peng Xu, Claudia Eckert, and Apostolis Zarras.
Hybroid: Toward Android malware detection and categorization with program
code and network traffic. In Information Security: 24th International Confer-
ence, ISC 2021, Virtual Event, November 10–12, 2021, Proceedings, page 259–278,
Berlin, Heidelberg, 2021. Springer-Verlag. ISBN 978-3-030-91355-7. doi: 10.1007/
978-3-030-91356-4 14. URL https://doi.org/10.1007/978-3-030-91356-4_14.

[51] Anshul Arora, Shree Garg, and Sateesh K. Peddoju. Malware detection using net-
work traffic analysis in Android based mobile devices. In 2014 Eighth International
Conference on Next Generation Mobile Apps, Services and Technologies, pages 66–
71, 2014. doi: 10.1109/NGMAST.2014.57.

[52] Charles Lever, Manos Antonakakis, Bradley Reaves, Patrick Traynor, and Wenke
Lee. The core of the matter: Analyzing malicious traffic in cellular carriers. In Pro-
ceedings of the 20th Network and Distributed Systems Security Symposium, NDSS,
April 2013.

[53] Tieming Chen, Qingyu Mao, Yimin Yang, Mingqi Lv, and Jianming Zhu. TinyDroid:
a lightweight and efficient model for Android malware detection and classification.
Mobile Information Systems, 2018:1–9, 2018.

[54] Michele Scalas, Davide Maiorca, Francesco Mercaldo, Corrado Aaron Visaggio,
Fabio Martinelli, and Giorgio Giacinto. On the effectiveness of system API-related
information for Android ransomware detection. Computers & Security, 86:168–
182, 2019. ISSN 0167-4048. doi: https://doi.org/10.1016/j.cose.2019.06.004. URL
https://www.sciencedirect.com/science/article/pii/S0167404819301178.

https://www.sciencedirect.com/science/article/pii/S0020025517307077
https://www.sciencedirect.com/science/article/pii/S0020025517307077
https://www.sciencedirect.com/science/article/pii/S1084804518304028
https://www.sciencedirect.com/science/article/pii/S1084804518304028
https://doi.org/10.1007/978-3-030-91356-4_14
https://www.sciencedirect.com/science/article/pii/S0167404819301178

Bibliography 153

[55] Yousra Aafer, Wenliang Du, and Heng Yin. DroidAPIMiner: Mining api-level fea-
tures for robust malware detection in Android. In Security and Privacy in Commu-
nication Networks, pages 86–103. Springer International Publishing, 2013.

[56] Xiaoqing Wang, Junfeng Wang, and Xiaolan Zhu. A static Android malware de-
tection based on actual used permissions combination and api calls. International
Journal of Computer, Electrical, Automation, Control and Information Engineering,
10(9):1652–1659, 2016.

[57] M. Qiao, A. H. Sung, and Q. Liu. Merging permission and api features for Android
malware detection. In 2016 5th IIAI International Congress on Advanced Applied
Informatics (IIAI-AAI), pages 566–571, July 2016. doi: 10.1109/IIAI-AAI.2016.237.

[58] Gerardo Canfora, Eric Medvet, Francesco Mercaldo, and Corrado Aaron Visaggio.
Detecting Android malware using sequences of system calls. In Proceedings of the
3rd International Workshop on Software Development Lifecycle for Mobile, DeMobile
2015, page 13–20, New York, NY, USA, 2015. Association for Computing Machinery.
ISBN 9781450338158. doi: 10.1145/2804345.2804349. URL https://doi.org/10.

1145/2804345.2804349.

[59] Roopak Surendran, Tony Thomas, and Sabu Emmanuel. On existence of common
malicious system call codes in Android malware families. IEEE Transactions on
Reliability, 70(1):248–260, 2021. doi: 10.1109/TR.2020.2982537.

[60] Chen Da, Zhang Hongmei, and Zhang Xiangli. Detection of Android malware se-
curity on system calls. In 2016 IEEE Advanced Information Management, Commu-
nicates, Electronic and Automation Control Conference (IMCEC), pages 974–978,
2016. doi: 10.1109/IMCEC.2016.7867355.

[61] Mayank Jaiswal, Yasir Malik, and Fehmi Jaafar. Android gaming malware detection
using system call analysis. In 2018 6th International Symposium on Digital Forensic
and Security (ISDFS), pages 1–5, 2018. doi: 10.1109/ISDFS.2018.8355360.

[62] Zhiwu XU, Kerong Ren, and Fu Song. Android malware family classification
and characterization using CFG and DFG. In 2019 International Symposium
on Theoretical Aspects of Software Engineering (TASE), pages 49–56, 2019. doi:
10.1109/TASE.2019.00-20.

[63] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid:
Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps. In Proceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’14, page 259–269, New York,
NY, USA, 2014. Association for Computing Machinery. ISBN 9781450327848. doi:
10.1145/2594291.2594299. URL https://doi.org/10.1145/2594291.2594299.

[64] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun,
Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth. Taint-
Droid: An information-flow tracking system for realtime privacy monitoring on
smartphones. ACM Transactions on Computer Systems, 32(2), jun 2014. ISSN
0734-2071. doi: 10.1145/2619091. URL https://doi.org/10.1145/2619091.

https://doi.org/10.1145/2804345.2804349
https://doi.org/10.1145/2804345.2804349
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2619091

Bibliography 154

[65] Mingshen Sun, Tao Wei, and John C.S. Lui. TaintART: A practical multi-level
information-flow tracking system for Android runtime. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS ’16,
page 331–342, New York, NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450341394. doi: 10.1145/2976749.2978343. URL https://doi.org/10.

1145/2976749.2978343.

[66] Mansour Ahmadi, Angelo Sotgiu, and Giorgio Giacinto. IntelliAV: toward the feasi-
bility of building intelligent anti-malware on Android devices. In Machine Learning
and Knowledge Extraction, pages 137–154. Springer International Publishing, 2017.
ISBN 978-3-319-66808-6.

[67] H. C. Takawale and A. Thakur. Talos App: on-device machine learning using ten-
sorflow to detect Android malware. In 2018 Fifth International Conference on In-
ternet of Things: Systems, Management and Security, pages 250–255, 2018. doi:
10.1109/IoTSMS.2018.8554572.

[68] W. Yuan, Y. Jiang, H. Li, and M. Cai. A lightweight on-device detection method for
Android malware. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
pages 1–12, 2019. doi: 10.1109/TSMC.2019.2958382.

[69] Wei-Ling Chang, Hung-Min Sun, and Wei Wu. An Android behavior-based malware
detection method using machine learning. In 2016 IEEE International Conference
on Signal Processing, Communications and Computing (ICSPCC), pages 1–4, Aug
2016. doi: 10.1109/ICSPCC.2016.7753624.

[70] Pengbin Feng, Jianfeng Ma, Cong Sun, Xinpeng Xu, and Yuwan Ma. A novel
dynamic Android malware detection system with ensemble learning. IEEE Access,
6:30996–31011, 2018. ISSN 2169-3536. doi: 10.1109/ACCESS.2018.2844349.

[71] Lucky Onwuzurike, Enrico Mariconti, Panagiotis Andriotis, Emiliano De Cristofaro,
Gordon Ross, and Gianluca Stringhini. MaMaDroid: detecting Android malware by
building markov chains of behavioral models (extended version). ACM Transactions
on Privacy and Security, 22(2), April 2019.

[72] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. TESSERACT: eliminating experimental bias in malware classi-
fication across space and time. In Proceedings of the 28th USENIX Conference on
Security Symposium, SEC’19, page 729–746, 2019. ISBN 9781939133069.

[73] Wei Yan, Zheng Zhang, and Nirwan Ansari. Revealing packed malware. IEEE
Security & Privacy, 6(5):65–69, 2008. doi: 10.1109/MSP.2008.126.

[74] Timothy Vidas and Nicolas Christin. Evading Android runtime analysis via sandbox
detection. In Proceedings of the 9th ACM Symposium on Information, Computer and
Communications Security, ASIA CCS ’14, page 447–458, New York, NY, USA, 2014.
Association for Computing Machinery. ISBN 9781450328005. doi: 10.1145/2590296.
2590325. URL https://doi.org/10.1145/2590296.2590325.

[75] Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu. Morpheus: Au-
tomatically generating heuristics to detect Android emulators. In Proceedings of

https://doi.org/10.1145/2976749.2978343
https://doi.org/10.1145/2976749.2978343
https://doi.org/10.1145/2590296.2590325

Bibliography 155

the 30th Annual Computer Security Applications Conference, ACSAC ’14, page
216–225, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450330053. doi: 10.1145/2664243.2664250. URL https://doi.org/10.1145/

2664243.2664250.

[76] thehackernews.com. New Android malware apps use motion sensor to
evade detection, 2019. URL https://thehackernews.com/2019/01/

android-malware-play-store.html.

[77] Api help (dexlib2 2.2.7 api), 2022. URL https://javadoc.io/doc/org.smali/

dexlib2/2.2.7/help-doc.html. Accessed: 20 March 2022.

[78] Yajin Zhou and Xuxian Jiang. Android malware genome project, 2012. URL http:

//www.malgenomeproject.org/.

[79] Maiorca et al. Stealth attacks: An extended insight into the obfuscation effects on
Android malware. Computers & Security, 51:16 – 31, 2015. ISSN 0167-4048.

[80] Fengguo Wei, Yuping Li, Sankardas Roy, Xinming Ou, and Wu Zhou. Deep ground
truth analysis of current Android malware. In Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pages 252–276. Springer International Publish-
ing, 2017. ISBN 978-3-319-60876-1.

[81] VirusShare, 2018. URL https://virusshare.com/.

[82] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. AndroZoo:
collecting millions of Android apps for the research community. In Proceedings of
the 13th International Conference on Mining Software Repositories, page 468–471,
2016. ISBN 9781450341868.

[83] Joshua Garcia, Mahmoud Hammad, and Sam Malek. Lightweight, obfuscation-
resilient detection and family identification of Android malware. ACM Transactions
on Software Engineering and Methodology, 26(3), January 2018.

[84] Sagar Jaiswal. Feature engineering & analysis towards temporally robust detection
of Android malware. Master’s thesis, Indian Institute of Technology, Kanpur, 2019.

[85] Alireza Sadeghi, Hamid Bagheri, Joshua Garcia, and Sam Malek. A taxonomy
and qualitative comparison of program analysis techniques for security assessment
of Android software. IEEE Transactions on Software Engineering, 43(6):492–530,
2017. doi: 10.1109/TSE.2016.2615307.

[86] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and
Giovanni Vigna. Execute This! Analyzing Unsafe and Malicious Dynamic Code
Loading in Android Applications. In Proceedings of the 21st Network and Distributed
Systems Security Symposium, NDSS, San Diego, CA, February 2014.

[87] Mingshen Sun, Xiaolei Li, John C. S. Lui, Richard T. B. Ma, and Zhenkai
Liang. Monet: A user-oriented behavior-based malware variants detection sys-
tem for Android. IEEE Transactions on Information Forensics and Security, 12
(5):1103–1112, may 2017. ISSN 1556-6013. doi: 10.1109/TIFS.2016.2646641. URL
https://doi.org/10.1109/TIFS.2016.2646641.

https://doi.org/10.1145/2664243.2664250
https://doi.org/10.1145/2664243.2664250
https://thehackernews.com/2019/01/android-malware-play-store.html
https://thehackernews.com/2019/01/android-malware-play-store.html
https://javadoc.io/doc/org.smali/dexlib2/2.2.7/help-doc.html
https://javadoc.io/doc/org.smali/dexlib2/2.2.7/help-doc.html
http://www.malgenomeproject.org/
http://www.malgenomeproject.org/
https://virusshare.com/
https://doi.org/10.1109/TIFS.2016.2646641

Bibliography 156

[88] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Puccetti, Ali
Zand, Christopher Kruegel, and Giovanni Vigna. Obfuscation-resilient privacy leak
detection for mobile apps through differential analysis. In Proceedings of the 24th
Symposium on Network and Distributed System Security (NDSS), San Diego, Febru-
ary 2017.

[89] Martin Henze, Jan Pennekamp, David Hellmanns, Erik Mühmer, Jan Henrik Ziegel-
dorf, Arthur Drichel, and Klaus Wehrle. CloudAnalyzer: Uncovering the cloud
usage of mobile apps. In Proceedings of the 14th EAI International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services, Mo-
biQuitous 2017, page 262–271, New York, NY, USA, 2017. Association for Com-
puting Machinery. ISBN 9781450353687. doi: 10.1145/3144457.3144471. URL
https://doi.org/10.1145/3144457.3144471.

[90] Lok Kwong Yan and Heng Yin. DroidScope: Seamlessly reconstructing the os and
dalvik semantic views for dynamic Android malware analysis. In Proceedings of the
21st USENIX Conference on Security Symposium, Security’12, page 29, USA, 2012.
USENIX Association.

[91] securityfair.com. Android apps use the motion sensor to evade detection and deliver
anubis malware security affairs, Jan 2019. URL https://securityaffairs.co/

wordpress/80037/malware/android-apps-motion-sensor.html. Accessed: 13
March 2019.

[92] strace(1) - linux manual page, 2022. URL https://man7.org/linux/man-pages/

man1/strace.1.html. Accessed: 5 January 2022.

[93] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the
Annual Conference on USENIX Annual Technical Conference, ATEC ’05, page 41,
USA, 2005. USENIX Association.

[94] Android Developers. Run apps on the Android emulator — Android developers,
2021. URL https://developer.android.com/studio/run/emulator. Accessed:
21 October 2021.

[95] XDA Developers. Xposed framework hub, Aug 2018. URL https://www.

xda-developers.com/xposed-framework-hub/. Accessed: 5 January 2022.

[96] Li Li, Daoyuan Li, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon, David
Lo, and Lorenzo Cavallaro. Understanding Android app piggybacking: A systematic
study of malicious code grafting. IEEE Transactions on Information Forensics and
Security, 12(6):1269–1284, 2017. doi: 10.1109/TIFS.2017.2656460.

[97] Michael Backes, Sven Bugiel, Oliver Schranz, Philipp Von Styp-Rekowsky, and Se-
bastian Weisgerber. ARTist: The Android runtime instrumentation and security
toolkit. In 2017 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 481–495, 2017. doi: 10.1109/EuroSP.2017.43.

[98] Valerio Costamagna and Cong Zheng. ARTDroid: A virtual-method hooking frame-
work on Android ART runtime. In IMPS@ESSoS, volume 1575 of CEUR Workshop
Proceedings, pages 20–28. CEUR-WS.org, 2016.

https://doi.org/10.1145/3144457.3144471
https://securityaffairs.co/wordpress/80037/malware/android-apps-motion-sensor.html
https://securityaffairs.co/wordpress/80037/malware/android-apps-motion-sensor.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://developer.android.com/studio/run/emulator
https://www.xda-developers.com/xposed-framework-hub/
https://www.xda-developers.com/xposed-framework-hub/

Bibliography 157

[99] idanr. Droidmon: Dalvik monitoring framework for cuckoodroid, 2014. URL https:

//github.com/idanr1986/droidmon. Accessed: 2 March 2022.

[100] Saurabh Kumar, Debadatta Mishra, Biswabandan Panda, and Sandeep K. Shukla.
STDNeut: Neutralizing sensor, telephony system and device state information on
emulated Android environments. In Stephan Krenn, Haya Shulman, and Serge
Vaudenay, editors, Cryptology and Network Security, pages 85–106, Cham, 2020.
Springer International Publishing. ISBN 978-3-030-65411-5.

[101] Github - qqshow/dendroid: Dendroid source code. contains panel and apk., Jan
2015. URL https://github.com/qqshow/dendroid. Accessed: 20 Oct 2021.

[102] Pendragon Software Corporation. CaffeineMark 3.0 benchmark information, May
2006. URL http://www.benchmarkhq.ru/cm30/info.html. Accessed: 18 January
2022.

[103] Michael Hale Ligh, Andrew Case, Jamie Levy, and Aaron Walters. The Art of
Memory Forensics: Detecting Malware and Threats in Windows, Linux, and Mac
Memory. Wiley Publishing, 1st edition, 2014. ISBN 1118825098, 9781118825099.

[104] Teller Tomer and Hayon Adi. Enhancing automated malware analysis machines with
memory analysis”. In Blackhat Arsenal, pages 1–5, 2014.

[105] Android Developers. Send emulator console commands — Android developers, Dec
2021. URL https://developer.android.com/studio/run/emulator-console.
Accessed: 17 December 2021.

[106] AT Commands - 3GPP TS 27.007, 2020. URL https://doc.qt.io/archives/

qtextended4.4/atcommands.html. Accessed: 10 September 2021.

[107] Wikipedia. OpenCellID, 2020. URL https://en.wikipedia.org/wiki/

OpenCellID. Accessed: 21 December 2021.

[108] Wikipedia. Haversine formula, 2020. URL https://en.wikipedia.org/wiki/

Haversine_formula. Accessed: 21 December 2021.

[109] 504ensicsLabs. Lime linux memory extractor, March 2021. URL https://github.

com/504ensicsLabs/LiME. Accessed: 12 January 2022.

[110] Android Developers. Android debug bridge (adb) — Android developers, Dec 2021.
URL https://developer.android.com/studio/command-line/adb. Accessed: 10
December 2021.

[111] Rprop/libhoudini: the default ARM translation layer for x86, extracted partly from
nexus player, Oct 2017. URL https://github.com/Rprop/libhoudini. Accessed:
20 September 2021.

[112] Harry Gonzalez. SIM card info – apps on google play, Oct 2021. URL
https://play.google.com/store/apps/details?id=me.harrygonzalez.

simcardinfo&hl=en_IN. Accessed: 20 October 2021.

[113] The volatility foundation - open source memory forensics, Jan 2022. URL https:

//www.volatilityfoundation.org/. Accessed: 11 Jan 2022.

https://github.com/idanr1986/droidmon
https://github.com/idanr1986/droidmon
https://github.com/qqshow/dendroid
http://www.benchmarkhq.ru/cm30/info.html
https://developer.android.com/studio/run/emulator-console
https://doc.qt.io/archives/qtextended4.4/atcommands.html
https://doc.qt.io/archives/qtextended4.4/atcommands.html
https://en.wikipedia.org/wiki/OpenCellID
https://en.wikipedia.org/wiki/OpenCellID
https://en.wikipedia.org/wiki/Haversine_formula
https://en.wikipedia.org/wiki/Haversine_formula
https://github.com/504ensicsLabs/LiME
https://github.com/504ensicsLabs/LiME
https://developer.android.com/studio/command-line/adb
https://github.com/Rprop/libhoudini
https://play.google.com/store/apps/details?id=me.harrygonzalez.simcardinfo&hl=en_IN
https://play.google.com/store/apps/details?id=me.harrygonzalez.simcardinfo&hl=en_IN
https://www.volatilityfoundation.org/
https://www.volatilityfoundation.org/

Bibliography 158

[114] Y. Hebbal, S. Laniepce, and J. Menaud. Virtual machine introspection: Techniques
and applications. In 2015 10th International Conference on Availability, Reliability
and Security, pages 676–685, Aug 2015. doi: 10.1109/ARES.2015.43.

[115] Lei Xue, Chenxiong Qian, Hao Zhou, Xiapu Luo, Yajin Zhou, Yuru Shao, and
Alvin T.S. Chan. NDroid: toward tracking information flows across multiple Android
contexts. IEEE Transactions on Information Forensics and Security, 14(3):814–828,
March 2019. ISSN 1556-6013. doi: 10.1109/TIFS.2018.2866347.

[116] Haipeng Cai. Embracing mobile app evolution via continuous ecosystem mining and
characterization. In Proceedings of the IEEE/ACM 7th International Conference on
Mobile Software Engineering and Systems, MOBILESoft ’20, page 31–35, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379595. doi:
10.1145/3387905.3388612. URL https://doi.org/10.1145/3387905.3388612.

[117] Haipeng Cai and Barbara Ryder. A longitudinal study of application structure and
behaviors in android. IEEE Transactions on Software Engineering, 47(12):2934–
2955, 2021. doi: 10.1109/TSE.2020.2975176.

[118] Haipeng Cai, Xiaoqin Fu, and Abdelwahab Hamou-Lhadj. A study of run-time be-
havioral evolution of benign versus malicious apps in android. Information and Soft-
ware Technology, 122:106291, 2020. ISSN 0950-5849. doi: https://doi.org/10.1016/
j.infsof.2020.106291. URL https://www.sciencedirect.com/science/article/

pii/S0950584920300410.

[119] arm.com. Arm confidential compute architecture – arm®, November
2022. URL https://www.arm.com/architecture/security-features/

arm-confidential-compute-architecture. Accessed: 8 November 2022.

[120] Karim O. Elish, Haipeng Cai, Daniel Barton, Danfeng Yao, and Barbara G. Ryder.
Identifying mobile inter-app communication risks. IEEE Transactions on Mobile
Computing, 19(1):90–102, 2020. doi: 10.1109/TMC.2018.2889495.

[121] Irina Mariuca Asavoae, Jorge Blasco, Thomas M. Chen, Harsha Kumara Kalutarage,
Igor Muttik, Hoang Nga Nguyen, Markus Roggenbach, and Siraj Ahmed Shaikh.
Towards automated android app collusion detection, 2016. URL https://arxiv.

org/abs/1603.02308.

[122] Marcus Botacin, Paulo Ĺıcio De Geus, and André grégio. Who watches the watch-
men: A security-focused review on current state-of-the-art techniques, tools, and
methods for systems and binary analysis on modern platforms. ACM Comput.
Surv., 51(4), jul 2018. ISSN 0360-0300. doi: 10.1145/3199673. URL https:

//doi.org/10.1145/3199673.

[123] AeonLucid. Snapchat detection on Android – Aeonlucid, Jun 2019. URL https://

aeonlucid.com/Snapchat-detection-on-Android/. Accessed: 21 December 2021.

[124] Ui/application exerciser monkey — android developers, Jan 2022. URL https://

developer.android.com/studio/test/other-testing-tools/monkey. Accessed:
21 July 2022.

https://doi.org/10.1145/3387905.3388612
https://www.sciencedirect.com/science/article/pii/S0950584920300410
https://www.sciencedirect.com/science/article/pii/S0950584920300410
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://arxiv.org/abs/1603.02308
https://arxiv.org/abs/1603.02308
https://doi.org/10.1145/3199673
https://doi.org/10.1145/3199673
https://aeonlucid.com/Snapchat-detection-on-Android/
https://aeonlucid.com/Snapchat-detection-on-Android/
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey

Bibliography 159

[125] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. DroidBot: A lightweight
ui-guided test input generator for Android. In Proceedings of the 39th International
Conference on Software Engineering Companion, ICSE-C ’17, page 23–26. IEEE
Press, 2017. ISBN 9781538615898. doi: 10.1109/ICSE-C.2017.8. URL https:

//doi.org/10.1109/ICSE-C.2017.8.

[126] G DATA Software AG. G DATA Mobile Malware Report 2019: new high for
malicious Android apps, June 2020. URL https://www.gdatasoftware.com/news/

g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps.
Accessed: 10 January 2021.

[127] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and
Jenifer C. Lai. Class-based n-gram models of natural language. Computational
Linguistics, 18(4):467–479, December 1992. ISSN 0891-2017.

[128] Hang DONG, Neng qiang HE, Ge HU, Qi LI, and Miao ZHANG. Malware detection
method of Android application based on simplification instructions. The Journal of
China Universities of Posts and Telecommunications, 21:94–100, 2014.

[129] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. Pearson Cor-
relation Coefficient, pages 1–4. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009. ISBN 978-3-642-00296-0. doi: 10.1007/978-3-642-00296-0 5. URL https:

//doi.org/10.1007/978-3-642-00296-0_5.

[130] SKLEARN: RFECV, 2019. URL https://scikit-learn.org/stable/modules/

generated/sklearn.feature_selection.RFECV.html.

[131] SKLEARN: RFE, 2019. URL https://scikit-learn.org/stable/modules/

generated/sklearn.feature_selection.RFE.html.

[132] Tensorflow, 2019. URL https://www.tensorflow.org/.

[133] Thomas Colthurst, Gilbert Hendry, Zachary Nado, and Sculley D. TensorForest:
scalable random forests on tensorflow. In Machine Learning Systems Workshop at
NIPS, pages 1–9. 2016.

[134] H. Fereidooni, M. Conti, D. Yao, and A. Sperduti. ANASTASIA: Android malware
detection using static analysis of applications. In 2016 8th IFIP International Con-
ference on New Technologies, Mobility and Security (NTMS), pages 1–5, 2016. doi:
10.1109/NTMS.2016.7792435.

[135] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye. Significant permission
identification for machine-learning-based Android malware detection. IEEE Trans-
actions on Industrial Informatics, 14(7):3216–3225, 2018. ISSN 1941-0050. doi:
10.1109/TII.2017.2789219.

[136] F. Mercaldo, C. A. Visaggio, G. Canfora, and A. Cimitile. Mobile malware detection
in the real world. In 2016 IEEE/ACM 38th International Conference on Software
Engineering Companion, pages 744–746, 2016.

https://doi.org/10.1109/ICSE-C.2017.8
https://doi.org/10.1109/ICSE-C.2017.8
https://www.gdatasoftware.com/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps
https://www.gdatasoftware.com/news/g-data-mobile-malware-report-2019-new-high-for-malicious-android-apps
https://doi.org/10.1007/978-3-642-00296-0_5
https://doi.org/10.1007/978-3-642-00296-0_5
https://scikit-learn.org/stable/modules/generated/ sklearn.feature_selection.RFECV.html
https://scikit-learn.org/stable/modules/generated/ sklearn.feature_selection.RFECV.html
https://scikit-learn.org/stable/modules/generated/ sklearn.feature_selection.RFE.html
https://scikit-learn.org/stable/modules/generated/ sklearn.feature_selection.RFE.html
https://www.tensorflow.org/

Bibliography 160

[137] Fabio Martinelli, Francesco Mercaldo, and Andrea Saracino. BRIDEMAID: an hy-
brid tool for accurate detection of Android malware. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security, ASIA CCS
’17, page 899–901, 2017.

[138] Lei Xue, Yajin Zhou, Ting Chen, Xiapu Luo, and Guofei Gu. Malton: Towards
on-device non-invasive mobile malware analysis for art. In Proceedings of the 26th
USENIX Conference on Security Symposium, SEC’17, page 289–306, USA, 2017.
USENIX Association. ISBN 9781931971409.

[139] Shrinking APKs, growing installs. How your app’s APK size im-
pacts install. — by Sam Tolomei — Google Play Apps & Games
— Medium, 2017. URL https://medium.com/googleplaydev/

shrinking-apks-growing-installs-5d3fcba23ce2.

[140] Anukriti Sinha, Fabio Di Troia, Philip Heller, and Mark Stamp. Emulation versus
instrumentation for Android malware detection. In Digital Forensic Investigation
of Internet of Things (IoT) Devices, pages 1–20. Springer International Publishing,
2021.

[141] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer. Dynalog: an automated dynamic
analysis framework for characterizing Android applications. In 2016 International
Conference On Cyber Security And Protection Of Digital Services (Cyber Security),
pages 1–8, 2016. doi: 10.1109/CyberSecPODS.2016.7502337.

[142] Davide Maiorca, Francesco Mercaldo, Giorgio Giacinto, Corrado Aaron Visaggio,
and Fabio Martinelli. R-PackDroid: api package-based characterization and detec-
tion of mobile ransomware. In Proceedings of the Symposium on Applied Comput-
ing, SAC ’17, page 1718–1723, New York, NY, USA, 2017. Association for Com-
puting Machinery. ISBN 9781450344869. doi: 10.1145/3019612.3019793. URL
https://doi.org/10.1145/3019612.3019793.

[143] Kai Zhao, Dafang Zhang, Xin Su, and Wenjia Li. Fest: A feature extraction and se-
lection tool for Android malware detection. In 2015 IEEE Symposium on Computers
and Communication (ISCC), pages 714–720, 2015. doi: 10.1109/ISCC.2015.7405598.

[144] Santanu Kumar Dash, Guillermo Suarez-Tangil, Salahuddin Khan, Kimberly Tam,
Mansour Ahmadi, Johannes Kinder, and Lorenzo Cavallaro. DroidScribe: classifying
Android malware based on runtime behavior. In 2016 IEEE Security and Privacy
Workshops (SPW), pages 252–261, 2016. doi: 10.1109/SPW.2016.25.

[145] Luke Deshotels, Vivek Notani, and Arun Lakhotia. DroidLegacy: automated familial
classification of Android malware. In Proceedings of ACM SIGPLAN on Program
Protection and Reverse Engineering Workshop 2014, PPREW’14, New York, NY,
USA, 2014. Association for Computing Machinery. ISBN 9781450326490. doi: 10.
1145/2556464.2556467. URL https://doi.org/10.1145/2556464.2556467.

[146] Chao Yang, Zhaoyan Xu, Guofei Gu, Vinod Yegneswaran, and Phillip Porras. Droid-
Miner: automated mining and characterization of fine-grained malicious behaviors

https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2
https://medium.com/googleplaydev/shrinking-apks-growing-installs-5d3fcba23ce2
https://doi.org/10.1145/3019612.3019793
https://doi.org/10.1145/2556464.2556467

Bibliography 161

in Android applications. In Miros law Kuty lowski and Jaideep Vaidya, editors, Com-
puter Security - ESORICS 2014, pages 163–182, Cham, 2014. Springer International
Publishing. ISBN 978-3-319-11203-9.

[147] Fahad Alswaina and Khaled Elleithy. Android malware permission-based multi-class
classification using extremely randomized trees. IEEE Access, 6:76217–76227, 2018.
doi: 10.1109/ACCESS.2018.2883975.

[148] Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua Zheng, and
Ting Liu. Android malware familial classification and representative sample selection
via frequent subgraph analysis. IEEE Transactions on Information Forensics and
Security, 13(8):1890–1905, 2018. doi: 10.1109/TIFS.2018.2806891.

[149] Le Guan, Shijie Jia, Bo Chen, Fengwei Zhang, Bo Luo, Jingqiang Lin, Peng Liu,
Xinyu Xing, and Luning Xia. Supporting transparent snapshot for bare-metal mal-
ware analysis on mobile devices. In Proceedings of the 33rd Annual Computer
Security Applications Conference, ACSAC 2017, page 339–349, New York, NY,
USA, 2017. Association for Computing Machinery. ISBN 9781450353458. doi:
10.1145/3134600.3134647. URL https://doi.org/10.1145/3134600.3134647.

[150] Miguel B. Costa, Nuno O. Duarte, Nuno Santos, and Paulo Ferreira. TrUbi: A sys-
tem for dynamically constraining mobile devices within restrictive usage scenarios.
In Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Net-
working and Computing, Mobihoc ’17, New York, NY, USA, 2017. Association for
Computing Machinery. ISBN 9781450349123. doi: 10.1145/3084041.3084066. URL
https://doi.org/10.1145/3084041.3084066.

[151] Wikipedia. Dalvik (software) - wikipedia, Jan 2022. URL https://en.wikipedia.

org/wiki/Dalvik_(software). Accessed: 15 Jan 2022.

[152] Android Open Source Project. ART and Dalvik — Android open source project,
Jan 2022. URL https://source.android.com/devices/tech/dalvik/. Accessed:
15 Jan 2022.

[153] S Wang, H Ma, and X Wu. Permissions abuse detection for Android platform
based on Droidbox. In Proceedings of the 2014 International Conference on Network
Security and Communication Engineering, NSCE 2014, pages 87–92, 07 2015. ISBN
978-1-138-02821-0. doi: 10.1201/b18660-19.

[154] Andrea Atzeni, Fernando Dı́az, Andrea Marcelli, Antonio Sánchez, Giovanni
Squillero, and Alberto Tonda. Countering Android malware: A scalable semi-
supervised approach for family-signature generation. IEEE Access, 6:59540–59556,
2018. doi: 10.1109/ACCESS.2018.2874502.

[155] Veelasha Moonsamy and Lynn Batten. Android applications: Data leaks via ad-
vertising libraries. In 2014 International Symposium on Information Theory and its
Applications, pages 314–317, 2014.

[156] android.com. Android, Mar 2019. URL https://www.android.com/. Accessed: 11
Jan 2022.

https://doi.org/10.1145/3134600.3134647
https://doi.org/10.1145/3084041.3084066
https://en.wikipedia.org/wiki/Dalvik_(software)
https://en.wikipedia.org/wiki/Dalvik_(software)
https://source.android.com/devices/tech/dalvik/
https://www.android.com/

Bibliography 162

[157] Wikipedia. Dendroid (malware) - wikipedia, 2014. URL https://en.wikipedia.

org/wiki/Dendroid_(malware). Accessed: 20 December 2021.

[158] VirusTotal, 2018. URL https://www.virustotal.com/.

[159] Contagio. Contagio mobile - mobile malware mini dump, 2019. URL http://

contagiominidump.blogspot.com/.

[160] 172 malicious apps with 335m+ installs found on google play, 2019. URL https:

//thenextweb.com/apps/2019/10/01/google-play-android-malware-2/. Ac-
cessed: 5 April 2022.

[161] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and M. Ra-
jarajan. Android security: A survey of issues, malware penetration, and de-
fenses. IEEE Communications Surveys Tutorials, 17(2):998–1022, Secondquarter
2015. ISSN 2373-745X. doi: 10.1109/COMST.2014.2386139.

[162] Parnika Bhat and Kamlesh Dutta. A survey on various threats and current state
of security in Android platform. ACM Computing Surveys, 52(1), February 2019.
ISSN 0360-0300. doi: 10.1145/3301285. URL https://doi.org/10.1145/3301285.

[163] Philipp Kreimel, Oliver Eigner, and Paul Tavolato. Anomaly-based detection and
classification of attacks in cyber-physical systems. In Proceedings of the 12th Inter-
national Conference on Availability, Reliability and Security, ARES ’17, New York,
NY, USA, 2017. Association for Computing Machinery. ISBN 9781450352574. doi:
10.1145/3098954.3103155. URL https://doi.org/10.1145/3098954.3103155.

[164] Hui-Juan Zhu, Tong-Hai Jiang, Bo Ma, Zhu-Hong You, Wei-Lei Shi, and Li Cheng.
HEMD: a highly efficient random forest-based malware detection framework for An-
droid. Neural Computing and Applications, 30(11):3353–3361, Dec 2018. ISSN
1433-3058. doi: 10.1007/s00521-017-2914-y. URL https://doi.org/10.1007/

s00521-017-2914-y.

[165] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song, and H. Yu. SAMADroid:
A novel 3-level hybrid malware detection model for Android operating system. IEEE
Access, 6:4321–4339, 2018. ISSN 2169-3536. doi: 10.1109/ACCESS.2018.2792941.

[166] L. D. Coronado-De-Alba, A. Rodŕıguez-Mota, and P. J. E. Ambrosio. Feature
selection and ensemble of classifiers for Android malware detection. In 2016 8th
IEEE Latin-American Conference on Communications (LATINCOM), pages 1–6,
Nov 2016. doi: 10.1109/LATINCOM.2016.7811605.

[167] Sebastián et al. AVclass: A tool for massive malware labeling. In Research in At-
tacks, Intrusions, and Defenses, pages 230–253, Cham, 2016. Springer International
Publishing. ISBN 978-3-319-45719-2.

https://en.wikipedia.org/wiki/Dendroid_(malware)
https://en.wikipedia.org/wiki/Dendroid_(malware)
https://www.virustotal.com/
http://contagiominidump.blogspot.com/
http://contagiominidump.blogspot.com/
https://thenextweb.com/apps/2019/10/01/google-play-android-malware-2/
https://thenextweb.com/apps/2019/10/01/google-play-android-malware-2/
https://doi.org/10.1145/3301285
https://doi.org/10.1145/3098954.3103155
https://doi.org/10.1007/s00521-017-2914-y
https://doi.org/10.1007/s00521-017-2914-y

Publications

[1] Saurabh Kumar and Sandeep Kumar Shukla. The State of Android Security, In:
Cyber Security in India. IITK Directions, 2020 (Book Chapter)

[2] Saurabh Kumar, Debadatta Mishra, Biswabandan Panda, and Sandeep Kumar Shukla.
STDNeut: Neutralizing Sensor, Telephony System and Device State Information on
Emulated Android Environments. In 19th International Conference on Cryptology
and Network Security (CANS ’20), 2020

[3] Saurabh Kumar, Debadatta Mishra, Biswabandan Panda, and Sandeep Kumar Shukla.
DeepDetect: A Practical On-device Android Malware Detector. In 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security (QRS ’21),
2021

[4] Saurabh Kumar, Debadatta Mishra, and Sandeep Kumar Shukla. Android Malware
Family Classification: What Works – API Calls, Permissions or API Packages?. In
2021 14th International Conference on Security of Information and Networks (SIN
’21), 2021

[5] Saurabh Kumar, Debadatta Mishra, Biswabandan Panda, and Sandeep Kumar Shukla.
AndroOBFS: Time-tagged Obfuscated Android Malware Dataset with Family Infor-
mation. In 19th International Conference on Mining Software Repositories (MSR
’22), 2022

[6] Saurabh Kumar, Debadatta Mishra, Biswabandan Panda, and Sandeep Kumar Shukla.
InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems. ACM Dig-
ital Threats: Research and Practice (Accepted)

Other Publications (not included in the thesis)

[7] Anam Fatima, Saurabh Kumar, and Malay Kishore Dutta. Host-Server-Based Mal-
ware Detection System for Android Platforms Using Machine Learning. In Advances
in Computational Intelligence and Communication Technology, 2019

[8] Arun KP, Saurabh Kumar, Debadatta Mishra, and Biswabandan Panda. SniP: An
Efficient Stack Tracing Framework for Multi-threaded Programs. In 19th Interna-
tional Conference on Mining Software Repositories (MSR ’22), 2022

[9] Vikas Maurya, Rachit Agarwal, Saurabh Kumar, and Sandeep Kumar Shukla. EPASAD:
Ellipsoid Decision Boundary Based Process-Aware Stealthy Attack Detector. Inter-
national Journal of Critical Infrastructure Protection (Submitted)

163

	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem
	1.3 Our Goal
	1.4 Our approach
	1.5 Contributions
	1.6 Thesis Organization

	2 Background and Related Work
	2.1 Android Background
	2.1.1 Android Platform Architecture
	2.1.2 Android Application Package (APK)
	2.1.3 Android Security Architecture
	2.1.4 Base Transceiver Station (BTS)

	2.2 Android Malware
	2.2.1 Evolution of Mobile Malware

	2.3 Android Malware Analysis Approaches
	2.3.1 Static Analysis
	2.3.2 Dynamic Analysis
	2.3.3 Hybrid Analysis
	2.3.4 Analysis Techniques

	2.4 Countering the Malware Analysis Process
	2.4.1 Obfuscation Techniques
	2.4.2 Dynamic Code Loading
	2.4.3 Packed Malware
	2.4.4 Platform Sensing Malware (Emulation-Detection)

	2.5 Observations
	2.5.1 Anti-Emulation-Detection Capabilities
	2.5.2 Cross-layer Profiling
	2.5.3 On-device Malware Detection
	2.5.4 A Lack of Representative Dataset
	2.5.5 Focus on Family Identification

	2.6 Summary

	3 Datasets and Tools
	3.1 Tools and Libraries
	3.1.1 Emulation Detection Library (EmuDetLib)
	3.1.2 Obfuscapk
	3.1.3 Androguard
	3.1.4 DexLib2

	3.2 Datasets
	3.2.1 D1:Base-Dataset (2012-2018)
	3.2.2 D2:AndroZoo-2019
	3.2.3 D3:Pegasus
	3.2.4 D4:Obfuscated
	3.2.5 D5:Biases-Free

	3.3 Summary

	4 InviSeal: A Stealthy Dynamic Analysis Framework for Android Systems
	4.1 Introduction
	4.2 Relevant Background
	4.2.1 Xposed Framework

	4.3 Motivation
	4.3.1 Anti-Emulation-Detection
	4.3.2 System Call Monitoring
	4.3.3 Memory Forensics

	4.4 STDNeut: Design & Implementation
	4.4.1 Realistic Sensor Data Generation
	4.4.2 STDNeut Overview
	4.4.3 Extensions to the Android Emulator
	4.4.4 STDNeut Controller

	4.5 ARTmon: Monitoring Framework APIs
	4.6 SysCallMon: System Call Monitor
	4.6.1 Implementation

	4.7 InviSeal: Building the System
	4.7.1 Why An Integrated Solution is Required?
	4.7.2 An Overview

	4.8 Evaluation
	4.8.1 Performance Overhead Analysis
	4.8.2 Validation of Proposed Anti-Emulation-Detection Measures
	4.8.3 InviSeal Use Cases

	4.9 Related Work
	4.10 Discussion and Future Directions
	4.10.1 Future Directions

	4.11 Summary

	5 DeepDetect: A Practical On-device Android Malware Detector
	5.1 Introduction
	5.2 Feature Extraction
	5.2.1 Type of Features
	5.2.2 On-device Efficient Feature Extraction:

	5.3 Feature Engineering
	5.3.1 Feature Selection and Encoding
	5.3.2 Category-wise Feature Reduction
	5.3.3 Feature Reduction from Combined Feature Set.

	5.4 DeepDetect: Building the System
	5.4.1 Overview
	5.4.2 Learning Model
	5.4.3 On-device Detection

	5.5 Evaluation
	5.5.1 Performance Comparison of Features
	5.5.2 Performance Against Known, Unseen, and New Samples
	5.5.3 Evaluation Against Obfuscated Malware
	5.5.4 Evaluation After Elimination of Experimental Biases Across Space and Time
	5.5.5 Runtime Efficiency
	5.5.6 Discussion and Limitations

	5.6 Related Work
	5.7 Summary

	6 MAPFam: Android Malware Family Classification
	6.1 Introduction
	6.1.1 The Hypothesis
	6.1.2 Testing the Hypothesis

	6.2 Android Malware Dataset (AMD)
	6.3 Design
	6.3.1 An Overview
	6.3.2 Feature Extraction and Encoding
	6.3.3 Feature Selection (RFECV):
	6.3.4 Learning Model

	6.4 Evaluation
	6.4.1 Performance Comparison of Features
	6.4.2 Evaluation Against Unknown Malware Family with Different Classifiers
	6.4.3 Detection of an Individual Malware Family
	6.4.4 Discussion and Limitations

	6.5 Related Work
	6.6 Summary

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Directions

	A Additional Information of DeepDetect
	A.1 Features Used in DeepDetect
	A.2 Additional Experiments and Results
	A.2.1 Performance Comparison of Features
	A.2.2 Performance Against Known, Unseen, and New Samples
	A.2.3 Performance of Restricted APIs and 2-Gram Opcode Sequence with Multiple Classifier
	A.2.4 Run-time Efficiency
	A.2.5 Feature Importance

	B Additional Information of MAPFam
	B.1 Features Used in MAPFam

	Bibliography
	Publications

