
SpecPref: High Performing Speculative Attacks
Resilient Hardware Prefetchers

Tarun Solanki
Dept. of CSE

Indian Institute of Technology Kanpur
taruns@cse.iitk.ac.in

Biswabandan Panda
Dept. of CSE

Indian Institute of Technology Bombay
biswa@cse.iitb.ac.in

Abstract—With the inception of the Spectre attack in 2018,
microarchitecture mitigation strategies propose secure cache hier-
archies that do not leak the speculative state. A recent mitigation
strategy, MuonTrap, proposes an efficient, secure cache hierarchy
that provides speculative attack resiliency with minimum perfor-
mance slowdown. Hardware prefetchers play a significant role
in improving application performance by fetching and bringing
data and instructions into caches before time. To prevent hardware
prefetchers from leaking information about the speculative blocks
brought into the cache, MuonTrap trains and triggers hardware
prefetchers on the committed instruction streams, eliminating
speculative state leakage. We find that on-commit prefetching
can lead to significant performance slowdown as high as 20.46%
(primarily because of prefetch timeliness issues), making hardware
prefetchers less effective. We propose Speculative yet Secure
Prefetching (SpecPref), enhancements on top of the MuonTrap
hierarchy that allows prefetching both on-commit and specula-
tively. We focus on improving the performance slowdown with
the state-of-the-art hardware prefetchers without compromising
the security guarantee provided by the MuonTrap implementation
and provide an average performance slowdown of 1.17%.

I. INTRODUCTION

With the advent of the Spectre attack [13] in 2018, and
other speculative-execution attacks [19]–[22], there is a press-
ing need to build mitigation strategies against these attacks
that not only provides security but also remains concerned
with the performance overhead. Amongst the various proposed
mitigation techniques [8], [23]–[27], a recent proposal, named
MuonTrap [3], provides a cache hierarchy that is resilient
to speculative attacks and at the same time does not incur
significant performance overhead. It also discusses hardware
prefetching, which is not the case with other prior works.
MuonTrap prevents speculative information leakage by adding
a small speculative L0 cache between the core and the L1 cache.
MuonTrap forces all the speculative data and instructions to
reside only in the L0 cache, meaning that other caches in the
cache hierarchy contain non-speculative data and instructions.
When a memory instruction commits, the corresponding data
and the instruction blocks are written to respective L1D and L1I
caches. MuonTrap uses a committed bit per cache block at the
L0 to differentiate speculative blocks from the non-speculative
ones. For the rest of the paper, we refer to the L0 cache as
speculative filter cache and the rest in the hierarchy as non-
speculative caches. The speculative filter caches (L0D and L0I)
get flushed out on context and protection domain switches. This
does not let any speculative data leakage between the processes.

A recent speculative interference attack [29] demonstrates
MuonTrap to be vulnerable through miss status holding reg-
isters (MSHRs) and execution unit (EU) port contention. To
mitigate this attack, the paper also discusses a few basic and
advanced defense mechanisms. The advanced defense approach
proposes tagging the instructions with a priority based on
their age in the reorder buffer (ROB). This does not allow
the younger speculative instructions to influence the older
non-speculative instructions, thus eradicating the interference
attacks. We thus improve the MuonTrap baseline and make it
stronger in security by implementing the proposed advanced
defense technique.

Hardware prefetchers play a significant role in improving
application performance by fetching and bringing data and
instructions into caches before time. To prevent hardware
prefetchers from leaking information about the speculative
blocks brought into the cache, MuonTrap allows the invocation
of hardware prefetcher only after the corresponding instruction
commits. Not only does it delay the prefetch training, but it
also causes the upcoming prefetch blocks to become useless
because of their late arrival into the cache, thus degrading the
performance.

Ghost Loads [28] solves this problem by prefetching specu-
latively into a small speculative buffer (ghost buffer). However,
Ghost loads only considers conventional data prefetchers like
stride-based. Additionally, it does not consider the prefetch
degree (number of prefetch requests issued at a given time) and
distance (how far ahead of the demand access, prefetch requests
are issued); which are extremely important with the state-of-
the-art data prefetchers [9], [11], [12]. Similar to MuonTrap, it
uses a speculative buffer, which is extremely small (eight-entry)
at L1D, which is ineffective for the aggressive prefetchers with
the recent deep and wide processor cores (e.g., Intel’s Sunny
Cove) with 352 entry ROB [4]. Furthermore, the Ghost loads
approach is specific to few memory consistency mechanisms
like the release consistency (RC), whereas MuonTrap is generic
in terms of memory consistency mechanisms.

Figure 1 shows the average and maximum performance slow-
downs with on-commit and secure prefetching (as mentioned
in MuonTrap), Ghost Loads and our proposal (SpecPref) with
the state-of-the-art instruction and data prefetching techniques,
compared to insecure prefetching techniques that prefetch even
during the speculative execution. We use the approach outlined



FNL+MMA(L1I) IPCP(L1D) Bingo(L2C) SPP(L2C) PPF(L2C)
0.8

0.85

0.9

0.95

1
1.01

No
rm

al
ize

d 
Pe

rfo
rm

an
ce

 Client/Server SPEC2017

MuonTrap (Average Slowdown)
SpecPref (Average Slowdown)
Ghost Loads (Average Slowdown)

MuonTrap (Maximum Slowdown)
SpecPref (Maximum Slowdown)
Ghost Loads (Maximum Slowdown)

0.52 0.41 0.8 0.44 0.45

Fig. 1: Average and maximum performance slowdown with
MuonTrap, Ghost Loads, and SpecPref (our proposal) with

five state-of-the-art prefetchers compared to an insecure
baseline evaluated with 50 client/sever [1] and 46 SPEC 2017

benchmark traces [2]. Bar above 1.0 represent performance
improvement. Benchmarks with maximum slowdowns are
different for SpecPref, Ghost loads, and MuonTrap. Ghost

loads is not proposed for instruction prefetching.

in Ghost Loads [28] to identify whether an instruction is
speculative or not. Ghost Loads uses a buffer and inserts
an instruction that causes speculation (control, Stores, Loads,
Exceptions causing instructions). If any load is younger than
the oldest entry in the buffer, it is considered as a speculative
load.

We discuss the state-of-the-art prefetching techniques in
Section II. Please refer Table II for the simulated parameters.
To understand each prefetcher in detail, we show perfor-
mance slowdowns of all the prefetchers in isolation. At the
L1-Instruction (L1I) cache, we consider the Footprint Next
Line and Multiple Miss Ahead (FNL+MMA) [7] prefetcher,
for server/client benchmarks, provided by the 1st instruction
prefetching championship co-located with ISCA 2020 [17].
We consider Instruction Pointer Classification based spatial
Prefetching (IPCP) [9] at the L1-Data (L1D) cache. At the
L2 cache (L2C), we consider Bingo [10], Signature Path
Prefetching (SPP) [11], and Perceptron based Prefetch Filtering
(PPF) [12]. We evaluate data prefetchers at L1D and L2C using
SPEC2017 [16] memory intensive benchmarks, provided by the
3rd data prefetching championship co-located with ISCA 2019
[5].

On average (maximum), FNL+MMA, IPCP, Bingo, SPP,
and PPF show performance slowdowns of 2.96% (6.69%),
3.91% (15.20%), 2.31% (10.46%), 3.03% (20.46%), and
2.31% (13.54%), respectively with the MuonTrap implemen-
tation. Correspondingly, the maximum slowdowns are for
server_026, mcf, xalancbmk, mcf, and xalancbmk
benchmarks. Considering 2KB speculative buffers with Ghost
Loads, the slowdowns on average (maximum) for IPCP, Bingo,
SPP, and PPF are 18.23% (47.80%), 16.07% (58.65%), 11.76%
(55.47%), and 11.29% (54.47%) respectively. For IPCP, the

TABLE I: Increase in prefetch lateness and decrease in
prefetch coverage due to on-commit prefetching.

Lateness Coverage
Average Maximum Average Maximum

FNL+MMA 4.31% 8.04% 17.02% 30.98%
IPCP 2.39% 18.53% 3.62% 18.11%
Bingo 1.16% 7.69% 2.05% 10.15%
SPP 2.64% 22.61% 2.69% 16.06%
PPF 2.08% 17.35% 2.38% 11.89%

maximum slowdowns are with bwaves, and for the rest, it is
the fotonik benchmark.

What causes this performance slowdown? One of the pri-
mary reasons for high performance slowdowns is the prefetch
timeliness. Table I shows the average and maximum increase
in prefetch lateness (prefetched blocks do not reach caches
on time) and decrease in corresponding prefetch coverage
(reduction in cache misses because of prefetching). One of the
trivial approaches to solve the prefetch timeliness problem is to
increase the prefetch degree and distance so that the prefetch
requests will be triggered well ahead of time, with an aggressive
prefetcher. We sweep through all possible combinations of
prefetch degree and distance for all the evaluated prefetchers.
With aggressive prefetching, for FNL+MMA and IPCP, we
get a performance improvement of only 0.70% and 0.40%,
respectively. Bingo prefetches cache blocks based on a memory
region; thus, it has little scope for increasing the prefetch degree
and distance. For SPP and PPF, we already use an aggressive
version, and making it more aggressive by decreasing various
threshold values does not further improve the performance.

Our contributions: In this paper, we propose Speculative
yet Secure Prefetching (SpecPref), an enhancement to state-
of-the-art hardware instruction and data prefetchers that allows
speculative prefetching into speculative caches and on-commit
prefetching into the non-speculative caches (Section III).

SpecPref incurs marginal changes to the cache hierarchy.
When compared to insecure prefetching (that prefetches dur-
ing speculative execution), it provides average performance
slowdown of 1.17% with the different state-of-the-art hardware
instruction and data prefetchers (Section IV).

II. BACKGROUND

This section provides background on one instruction
prefetcher (FNL+MMA) and four data prefetchers.

FNL+MMA: FNL+MMA [7] performs intelligent next-line
instruction prefetching in its FNL component by predicting
whether a cache line will be used in a reasonable future or not
by monitoring the L1I accesses. This not only increases the
performance but also addresses the wasted bandwidth and the
cache pollution induced by the real next-line prefetching.

Applications also tend to have control-flow instructions,
which renders jumps to the other locations to access the
instruction blocks. These blocks, unable to be predicted by the
next-line component, are taken care of by the MMA component
of the FNL+MMA prefetcher. The MMA component associates
two different cache blocks separated by an ahead distance
to trigger timely prefetch requests. An ahead distance of n
refers to the nth block that will miss in the L1I-shadow
cache. FNL+MMA placed 2nd in the instruction prefetching



championship [17]. We use FNL+MMA over the winner of the
instruction prefetching championship, EIP [6], as FNL+MMA
is equally effective with a significant low storage budget.

IPCP: IPCP [9] correlates instruction pointers (IPs) with the
spatial access patterns. The spatial data prefetchers exploit the
fact that the data block accesses are spatially correlated over
small-sized memory regions, and this correlation can be used
for prediction. IPCP follows a mechanism of classifying the IPs
into three classes and designs tiny prefetchers per class. All the
IPs appearing in the instruction stream can be classified into
these three classes, and the resulting classification can be used
for finer prefetching. At a given point of time, an IP can belong
to one or many classes; hence a hierarchical priority is used for
tie-breaking.

Bingo: The principal idea of Bingo [10] is inspired by
the state-of-the-art branch predictor, TAGE [14]. The Bingo
prefetcher implements spatial data prefetching by considering
the short as well as the long events. The short events consider
only some specific events for triggering a prefetch, for instance,
the instruction pointer (IP). On the other hand, the long events
consider the occurrence of various specific events like the
combination of both IP and Address. This allows the long
events to maintain higher prefetch accuracy. Though short
events provide low prefetch accuracy, however, it has a higher
chance of recurrence, which lets the Bingo prefetcher not lose
any prefetching opportunity.

The footprint of the pages accessed by the CPU is associated
with both the long and the short events and is consequently
stored in the prefetcher metadata tables. The prefetch triggering
occurs by looking up the footprint associated with the longest
available event in the table, subsequently issuing the prefetch
request. Bingo merges the multiple metadata tables into a single
unified table; this significantly helps in reducing the storage
overhead.

SPP: SPP [11] is a confidence-based lookahead prefetcher.
The lookahead prefetchers prefetch blocks by speculating
the upcoming blocks based on a delta value. A delta value
corresponds to the difference between the block addresses;
for instance, a delta of +3 signifies that block B+3 should
be prefetched after block B has been accessed. To ensure
the accuracy of the prefetches, SPP relies on the confidence
mechanism based on its prior prefetch requests.

SPP creates a signature based on the history of accesses in a
page and stores them in a metadata table. It then utilizes these
signatures to predict the future likely delta patterns and thus
issues the prefetch requests based on this learning. SPP also
applies the history information on the new pages that occur
during the demand accesses from the CPU; this allows SPP to
prefetch even when a new page is accessed. SPP also changes
the prefetching depth dynamically to maintain the prefetch
coverage and accuracy.

PPF: Based on the underlying prefetcher SPP, PPF [12]
aims to increase the prefetch accuracy by still maintaining
the prefetch coverage provided by SPP. It sits between the
underlying prefetcher and the prefetch queue, filtering out the
inaccurate prefetch requests generated by SPP. To implement

Speculative 
Demand Request

On-Commit 
Demand 
Request

2 Speculative 
Prefetch

Commit

3 4

Write 
Through

L0I L1I

On-Commit 
Prefetch

Set 0

Set 1

FNL MMA

On-Commit PT 
Update

1

Set 1

Set 0

3

4

Fig. 2: SpecPref with L0I/L1I prefetcher.

the mechanism of filtering, it uses the perceptron based learning
that has been used in prior techniques as well, for instance,
branch prediction. This filter mechanism can also be adapted
by other prefetchers with some modifications.

III. SPECPREF

In this section, we discuss our enhancements for instruction
and data prefetchers, which we call SpecPref. We bring prefetch
blocks during speculative execution into the speculative L0
cache, whereas for L1 and L2, we bring prefetched blocks
on commit. For L2, we introduce a tiny speculative prefetch
cache (similar to L0 for L1) for storing prefetched blocks
brought during the speculative execution. All the prefetch tables
(micro-architectural structures used for training) get updated
only on commit. All the speculative structures like L0I, L0D,
corresponding prefetch queues, miss status holding registers
(MSHRs), and the newly introduced speculative prefetch cache
get flushed on a context switch to mitigate the possibility of a
transient execution attack. Note that, SpecPref follows the cache
coherence mechanism similar to that of baseline MuonTrap
implementation, and we do not propose any additional changes
to coherence protocol on top of Muontrap.

A. L0/L1 instruction prefetcher

Figure 2 shows the steps in the implementation of SpecPref
for the L1I prefetcher (which is now placed beside the L0I
cache). In step 1 , the speculative request at the L0I cache
invokes only the FNL component. The MMA component can
be used on commit with a large ahead distance. However,
the FNL component fetches next lines, and if we do use
FNL on commit, there will be no performance utility in terms
of instruction prefetching. In step 2 , the FNL component
prefetches the speculative blocks into the L0I cache, bypassing
the lower levels of the memory hierarchy (same as MuonTrap).
Since the L0I cache is non-inclusive, this does not let any
speculative state leakage into the non-speculative lower level
caches, thus making the speculative state invisible to the entire
cache hierarchy.

In step 3 , when the commit of the corresponding instruction
arrives, the committed blocks are written through (step 4 )



L0D L1D

Set 0

Set 1

Set 0

Set 1

2
Conservative
Speculative 

Prefetch

3

Write 
Through

Aggressive
On-Commit 

Prefetch

On-Commit 
Demand 
Request

Speculative 
Demand 
Request

Commit

4

IPCP

On-Commit PT 
Update

1

3

4

Fig. 3: SpecPref with L0D/L1D prefetcher.

from the L0I to the L1I, inclusively (making it visible to the
entire cache hierarchy). Note that we do not write through the
prefetched blocks as these blocks have committed bit as zero.
However, if a committed instruction gets a hit on a prefetched
block, then we set the committed bit and write through to
the next level. The MMA component uses ahead distance that
manipulates the distance value for the next predicted block w.r.t.
to the prefetch triggering block. We reduce the prefetch lateness
induced by the MMA component by increasing the ahead
distance, and continue to prefetch the blocks only after the
commit of the instruction. A high distance compensates for the
lateness caused due to on-commit triggering of the prefetches
of the MMA component. We use a lookahead distance of 16
for MMA, which used to be nine in the originally proposed
FNL+MMA. we allow the updates to these tables only after
the commit of the corresponding instruction.

B. L0/L1 data prefetcher

Figure 3 shows the steps in the implementation of SpecPref
for the L1-D prefetcher (which is now placed beside L0-D). In
step 1 , the speculative request at the L0D invokes the IPCP
prefetcher. In step 2 , we allow only a conservative number
of blocks (degree=1) to be prefetched into the L0D, bypassing
the lower levels of the memory hierarchy. This reduces the
possibility of L0D thrashing and prohibits any speculative state
from leaking into the memory hierarchy. In step 3 , when
the corresponding load instruction commits, the committed
blocks are written through (step 4 ) from the L0D to the L1D,
inclusively (making it visible to the entire cache hierarchy).
Note that we do not write through the prefetched blocks until
they become committed, as discussed for the L0I prefetcher.
Also, on the commit of the instruction, we issue prefetch
requests (aggressively with a higher degree as suggested in the
IPCP paper), which are filled into the L1D. As discussed for
L1I, we allow only on-commit updation to the prefetcher tables.

C. L2 data prefetchers

The design of L2 prefetchers such as SPP and PPF is such
that they perform well with L1 misses, capturing irregular

Set 0

Set 1

Set 0

Set 1

Speculative Prefetch Cache

L2

L0

L1

L2 Prefetcher (Bingo, SPP, PPF)

On-Commit PT Update

1

Speculative 
Demand Request

Conservative
Speculative 

Prefetch

3

Commit

On-Commit
Demand
Request

Write 
Through

Pending
On-Commit 

Prefetch

2

4

4 3

Fig. 4: SpecPref with L2 prefetcher.

deltas that are filtered after L1 misses. To make L2 prefetchers
effective, we invoke L2 prefetchers on an L1 miss. Figure
4 shows the steps in the implementation of SpecPref for L2
prefetcher; the steps are similar to those of the L1D prefetcher.
We introduce a Speculative Prefetch Cache (SPC) that is located
beside the L2 and probed concurrently. On a speculative L1
miss (step 1 ), the L2 prefetcher prefetches the speculative
blocks into the SPC (step 2 ), bypassing the lower levels of
the cache hierarchy. This does not let any speculative state leak
into the non-speculative caches. At the commit point (step 3 ),
the blocks from SPC are written through to the L2 (step 4 ),
thus becoming visible in the memory hierarchy; subsequently,
we trigger on-commit prefetching and bring pending blocks
into the L2. Note that the prefetcher learning happens only on
the commit access streams. At the SPC, too, we do not write
through the prefetched blocks as discussed for L0I and L0D
prefetchers, unless they get committed.

SPP and PPF also issue prefetch requests to LLC. We
discard that mechanism (while prefetching speculatively) of
these prefetchers and instead issue all prefetches only into the
SPC. We use the degree and distance as per the look-ahead
mechanism of SPP, which is dynamic in nature. For some
benchmarks (bwaves), Bingo performs better with on-commit
prefetching, thus we dynamically decide the mechanism be-
tween SpecPref and on-commit (using prefetch coverage as a
metric) to prefetch the data. We quantify prefetch coverage for
an epoch of L2 demand accesses (equivalent to the size of L2
in terms of blocks) with on-commit and SpecPref prefetching,
and use the one that provides better coverage. Analogous to the
L0, we flush, SPC on context and protection domain switches.
For L2 prefetchers, we use a tiny 2KB (4 way, access latency
of one cycle) of SPC. Note that Ghost Loads uses a 16KB
speculative cache [28].

IV. EVALUATION

We use the ChampSim [15] simulator with the MuonTrap
cache hierarchy as mentioned in the Table II. We simulate 46
memory intensive benchmarks from SPEC2017 [16] for the
L1D and L2 prefetchers. For the L1I prefetcher, we simulate 50
client/server traces provided by the 1st Instruction Prefetching
Championship [17].



2 4 8 16 32
Cache size (in KB)

0.84

0.88

0.92

0.96

1.0
1.02

No
rm

al
ize

d 
Pe

rfo
rm

an
ce

(a) L0I Cache

2 4 8 16 32
Cache size (in KB)

0.8

0.85

0.9

0.95

1.0

1.05

No
rm

al
ize

d 
Pe

rfo
rm

an
ce

Ghost Prefetching
SpecPref

(b) L0D Cache

2 4 8 16 32
Cache size (in KB)

0.8

0.84

0.88

0.92

0.96

1.0

1.04

No
rm

al
ize

d 
Pe

rfo
rm

an
ce

Bingo (Ghost)
Bingo (SpecPref)

SPP (Ghost)
SPP (SpecPref)

PPF (Ghost)
PPF (SpecPref)

Bingo (Ghost)
Bingo (SpecPref)

SPP (Ghost)
SPP (SpecPref)

PPF (Ghost)
PPF (SpecPref)

(c) Speculative Prefetch Cache at L2

Fig. 5: Size of speculative caches and average normalized performance with SpecPref. MuonTrap uses 2KB of L0D and L0I.
Higher the better.

Performance: Figure 1 shows the normalized performance
with SpecPref compared to the insecure baseline that performs
prefetching even during speculative execution. On average,
SpecPref provides no performance slowdown with IPCP, SPP
and PPF. For IPCP, the performance with SpecPref improves
even above the baseline by 0.62%. For FNL+MMA, the average
slowdown reduces to less than 1%. However, for Bingo, there is
still a slowdown of 1.17%. Since Bingo prefetches based on a
memory region; thus, prefetching only one block, speculatively,
does not improve its performance significantly. The maximum
slowdown across all benchmarks and all the prefetchers has
reduced from 20.46% (for SPP) to 14.53% (for IPCP). We
find that benchmarks like gcc and fotonik3d perform even
better than the insecure baseline. This is due to the reduced
latency for accessing the prefetched data in L0 and SPC.

The SpecPref implementation outperforms Ghost Loads due
to the distribution of prefetching requests amongst the specula-
tive and the non-speculative caches. For Ghost loads at L1D, the
performance slowdown increases due to complete speculative
prefetching that induces thrashing with IPCP. The conservative
prefetching mechanism of SpecPref avoids the possibility of
thrashing in the small speculative cache.

Prefetch coverage: The performance improvement with
SpecPref is attributed to the decrease in prefetch lateness,
which improves the prefetch coverage. For SpecPref, when
compared to MuonTrap with on-commit prefetching, in terms
of prefetch coverage, FNL+MMA, IPCP, Bingo, SPP, and PPF
improve average (maximum) coverage by 11.34% (23.58%),
4.79% (34.44%), 7.54% (34.59%), 5.17% (34.61%), and 4.65%
(36.09%), respectively.

Speculative cache size sensitivity: To study the effect
of speculative cache sizes on the performance of hardware
prefetchers, we vary the cache sizes for L0D, L0I, and SPC
from 2KB to 32KB (Figure 5). We evaluate the hit latencies by
using PCACTI [18], thus we consider a 1-cycle hit latency for
the 2KB and 4 KB caches. For 8KB, 16KB, and 32KB caches,
we consider a hit latency of two, three, and four cycles, respec-
tively. For L0I and L0D, when we increase the cache size from
2KB to 4KB, the performance with SpecPref increases due
to larger cache size with equivalent hit latency. However, with

TABLE II: Parameters of the simulated system.

Core One or eight cores, 4 GHz, 6-issue, 352-entry
ROB, 12-entry IQ, 128-entry LQ, 72-entry
SQ

L0-D and I Cache 2KB, 4-way, 1-cycle, PQ:16, 16 MSHRs
L1-D Cache 48KB, 12-way, 5-cycle, PQ:16, 16 MSHRs,

Prefetcher: IPCP
L1-I Cache 32KB, 8-way, 4-cycle, PQ:16, 8 MSHRs,

Prefetcher: FNL+MMA
L2 Cache 512KB, 8-way, 10-cycle, PQ:16, 32 MSHRs,

Prefetcher: Bingo, SPP, or PPF
LLC 2 MB/core, 16-way, 20-cycle, PQ:32x#cores,

MSHR: 64x#cores
Cache line size 64B in L0, L1, L2 and LLC
Memory 1 channel for single-core, 2 channels/multi-

core, 8 banks/rank, 3200 MT/sec, 64 read-
/write queues, FR-FCFS

further increase in the cache size, the performance improvement
goes down drastically as the increased hit latency becomes
a bottleneck. For ghost prefetching at L1D, the performance
improves with an increase in the cache size (except 32KB),
this is due to the reduced thrashing as the capacity of the cache
increases.

Since the SPC has a latency lower than L2, the maximum
latency to access the L2 always remains the baseline L2 latency.
Thus with an increase in the SPC size, the latency to access the
L2 level does not increase, but instead the increase in cache size
improves performance. Bingo performs better with large SPC
sizes since more speculative prefetch requests can be invoked
without thrashing the SPC, which improves the timeliness and
in turn prefetch coverage. Ghost Loads approach performs
better with an SPC of size above 16KB since a large cache
easily accommodates all the speculatively prefetched blocks
without getting thrashed.

On-chip bandwidth demand: Figure 6 shows the normal-
ized bandwidth with MuonTrap, Ghost Loads and SpecPref
compared to an insecure baseline. Note that the Ghost Loads
technique does not consider the instruction prefetchers. We
evaluate the bandwidth using the L0 speculative cache size of
2KB with FNL+MMA and IPCP, with the L2C prefetchers,
we consider an SPC of size 16KB. On average, SpecPref
demands an additional bandwidth of 24.38%, 3.61%, 26.16%,



FNL+MMA(L1I)
IPCP(L1D)

Bingo(L2C)
SPP(L2C)

PPF(L2C)
geomean

0.95

1

1.1

1.2

1.3

1.4

No
rm

al
ize

d 
Ba

nd
wi

dt
h

dummy Client/Server SPEC2017

MuonTrap Ghost Loads SpecPref

Fig. 6: Normalized bandwidth usage with the three techniques
compared to an insecure baseline. Lower the better.

FNL+MMA(L1I)
IPCP(L1D)

Bingo(L2C)
SPP(L2C)

PPF(L2C)
0.86

0.9

0.94

0.98

1

1.02

1.04

1.06

No
rm

al
ize

d 
Pe

rfo
rm

an
ce

 Client/Server SPEC2017

MuonTrap
Ghost Loads
SpecPref

Fig. 7: Normalized 8-core performance compared to an
insecure baseline.

29.58%, and 30.93% for FNL+MMA, IPCP, Bingo, SPP, and
PPF, respectively. For FNL+MMA and IPCP, we report L1-
L2 bandwidth, and for the rest, we report L2-LLC bandwidth.
There is a marginal increase (less than 5%) in bandwidth
demand between L0 and L1, with the exception of FNL+MMA.

Ghost Loads requires an additional bandwidth of 34.21%,
14.73%, 26.92% and 24.68% above the insecure baseline
for IPCP, Bingo, SPP, and PPF respectively. The excessive
bandwidth increase for IPCP is attributed to the increase in
the number of misses due to extensive thrashing at L0D.

Multicore results: Figure 7 shows the multicore perfor-
mance with MuonTrap, Ghost Loads and SpecPref, simulated
on an 8-core system with 100 multi-programmed homogeneous
and heterogeneous mixes, similar to [9], [11], [12]. On average,
MuonTrap shows a performance slowdown of 5.10%, 6.70%,
2.58%, 2.40% and 1.52% for FNL+MMA, IPCP, Bingo, SPP,
and PPF, respectively. Ghost Loads shows a performance slow-
down of 12.82%, 6.07%, 1.50% and 1.45% with IPCP, Bingo,
SPP and PPF respectively. SpecPref improves the performance
above the baseline by 2.19%, 4.35%, 3.62%, 3.01%, and 1.83%

for the previously stated prefetchers respectively. Compared to
single-core, Specpref’s effectiveness increases with multicore
as timely prefetching and higher coverage has more utility
in multicore system as it helps in reducing shared resource
contentions at the L3 and DRAM.

V. CONCLUSION

This paper presented SpecPref, an enhancement that im-
proves the performance of hardware prefetchers with secure
cache hierarchies that are resilient to speculative execution
attacks. SpecPref considers the state-of-the-art instruction and
data prefetchers for evaluation as opposed to Ghost Loads. Our
discussion showed that the increase in the prefetch lateness can
reduce the prefetch coverage, consequently reducing the perfor-
mance gain provided by the prefetchers. SpecPref demonstrated
that it is possible to balance the prefetching load between
speculative and on-commit execution to improve performance
while maintaining security. On average, SpecPref reduces the
performance slowdown for the five evaluated prefetchers from
as low as no slowdown to an average of 1.17% slowdown,
with marginal changes to the cache hierarchy. In conclusion,
We have shown that it possible to speculatively prefetch cache
blocks and not to delay the prefetching until the commit time
while still providing the security.

REFERENCES

[1] https://research.ece.ncsu.edu/ipc/infrastructure/
[2] https://dpc3.compas.cs.stonybrook.edu/?SW IS
[3] Ainsworth and Jones, ”Muontrap: Preventing cross-domain spectre-like

attacks by capturing speculative state,” in ISCA 2020, pp. 132-144
[4] https://en.wikipedia.org/wiki/Sunny Cove (microarchitecture)
[5] https://dpc3.compas.cs.stonybrook.edu/
[6] A. Ros and A. Jimborean, ”The entangling instruction prefetcher,” IEEE

Computer Architecture Letters, vol. 19, pp. 84-87, 2020.
[7] A. Seznec, ”The FNL+ MMA Instruction Cache Prefetcher,” First In-

struction Prefetching Championship, 2020.
[8] Gupta et al., ”Seclusive Cache Hierarchy for Mitigating Cross-Core Cache

and Coherence Directory Attacks,” in DATE 2021, pp:1-4
[9] Pakalapati and Panda, ”Bouquet of instruction pointers: Instruction

pointer classifier-based spatial hardware prefetching,” in ISCA 2020, pp.
118-131

[10] Bakhshalipour et al., ”Bingo spatial data prefetcher,” in HPCA 2019, pp.
399-411

[11] Kim et al., ”Path confidence based lookahead prefetching,” in MICRO
2016, pp. 1-12

[12] Bhatia et al., ”Perceptron-based prefetch filtering,” in ISCA 2019, pp.
1-13

[13] Kocher et al., ”Spectre attacks: Exploiting speculative execution,” in S&P
2019, pp. 1-19

[14] A. Seznec, ”A 256 kbits l-tage branch predictor,” Journal of Instruction-
Level Parallelism (JILP) 2007, vol. 9, pp. 1-6

[15] “Champsim simulator.” [Online]. Available: https://github.com/
ChampSim/ChampSim

[16] ”Spec cpu 2017.” [Online]. Available: https://www.spec.org/cpu2017/
[17] The 1st Instruction Prefetching Championship. [Online]. Available: https:

//research.ece.ncsu.edu/ipc/
[18] Pcacti tool. [Online]. Available: https://sportlab.usc.edu/downloads/

download/
[19] Koruyeh et al., ”Spectre Returns! speculation attacks using the return

stack buffer,” in WOOT 2018.
[20] Maisuradze and Rossow, ”Ret2spec: Speculative execution using return

stack buffers,” in SIGSAC 2018, pp. 2109-2122
[21] Schwarz et al., ”NetSpectre: read arbitrary memory over network,” in

ESORICS 2019, pp. 279-299
[22] Bhattacharyya et al., ”SMoTherSpectre: exploiting speculative execution

through port contention”, in CCS 2019, pp. 785-800

https://github.com/ChampSim/ChampSim
https://github.com/ChampSim/ChampSim
https://www.spec.org/cpu2017/
https://research.ece.ncsu.edu/ipc/
https://research.ece.ncsu.edu/ipc/
https://sportlab.usc.edu/downloads/download/
https://sportlab.usc.edu/downloads/download/


[23] Yan et al., ”Invisispec: Making speculative execution invisible in the cache
hierarchy,” in MICRO 2018, pp. 428-441

[24] Saileshwar and Qureshi, ”Cleanupspec: An ”undo” approach to safe
speculation,” In MICRO 2019, pp. 73-86

[25] Zhao et al., ”Conditional speculation: An effective approach to safeguard
out-of-order execution against spectre attacks,” in HPCA 2019, pp. 264-
276

[26] Khasawneh et al., ”Safespec: Banishing the spectre of a meltdown with
leakage-free speculation,” in DAC 2019, pp. 1-6

[27] Fustos et al., ”Spectreguard: An efficient data-centric defense mechanism
against spectre attacks,” In DAC 2019, pp. 1-6

[28] Sakalis et al., ”Ghost loads: What is the cost of invisible speculation?,”
In CF 2019, pp. 153-163

[29] Behnia et al. ”Speculative interference attacks: Breaking invisible specu-
lation schemes,” In ASPLOS 2021, pp. 1046-1060


	Introduction
	Background
	SpecPref
	L0/L1 instruction prefetcher
	L0/L1 data prefetcher
	L2 data prefetchers

	Evaluation
	Conclusion
	References

