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Phones 
(smart/non-smart) 
on silence plz, 
Thanks 
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Endianness (Byte ordering within a word)

Computer Architecture 3

• Big Endian:  address of most significant byte = word address 
(xx00 = Big end of word), MIPS

• Little Endian: address of least significant byte = word address
(xx00 = Little end of word), x86

Think about an egg ☺

msb lsb
3     2      1     0

little endian byte 0

0     1      2     3
big endian byte 0



Just for an example, do not take it for granted …
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unsigned int i = 1;
char *c = (char*)&i;  // reading the LSB
Printf (“%d”, *c);

unsigned int i = 12345678;
char *c = (char*)&i;
Printf (“%d”, *c);



Example
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unsigned int i = 1;
char *c = (char*)&i;  // reading the LSB
Printf (“%d”, *c);
Little endian: 1
Big endian: 0

unsigned int i = 12345678;
char *c = (char*)&i;
Printf (“%d”, *c);
Little endian: 78
Big endian: 12



Instruction Alignment: Why we need it? 
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0      1      2      3

Aligned

Not

Aligned

Aligned:

x-byte access starting from an address y: y % x must be zero.  



MIPS vs X86

MIPS does not allow unaligned accesses 

x86 does not enforce alignment ☺

Whose job is to generate aligned/unaligned accesses? 
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MIPS vs X86

MIPS does not allow unaligned accesses 

x86 does not enforce alignment ☺

Whose job is to generate aligned/unaligned accesses?

Compiler  
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Let’s go a bit deeper
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Object of size s bytes at byte add. A is aligned 
if A mod s = 0

Alignment for faster transfer of data ? 

Why fast ?? 

Think about memory (caches if you know).  



Memory operations and alignment network 

LOADs and STOREs need an alignment network that makes sure data 
loaded/written are aligned.
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lb R1, 1($s3)

4-byte chunk

Register R1



For the Curious ones

https://lemire.me/blog/2012/05/31/data-alignment-for-speed-myth-
or-reality/
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https://lemire.me/blog/2012/05/31/data-alignment-for-speed-myth-or-reality/
https://lemire.me/blog/2012/05/31/data-alignment-for-speed-myth-or-reality/


Single Cycle Processor 

• All operations – single cycle ☺

• Clock cycle (unit of time) will be defined based on the longest 
instruction. 

• Two paths of interest: datapath and control. Control tells datapath
what to do.

• Do not forget the stored program concept.
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Clock Cycle

Tick, clock tick, clock period, clock, clock cycle, or cycle

Discrete time intervals

Based on processor frequency (clock rate)

1GHz processor, clock cycle = 1ns

4GHz processor, clock cycle = 0.25ns 
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Let’s start 
with the 
datapath
Anything that stores data or operates 
on data, within a processor

14



Instruction Memory
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32

Addr.

Instruction

32

Instr.
Mem

Remember: No writes to instruction 
memory ☺

Not concerned about how programs 
are loaded into this memory.



Program Counter
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3232 PC

Remember: No writes to instruction 
memory ☺



Register File
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32
rd1

RegFile

32
rd2

Write Enable (a.k.a. register write)
32

wd

5
rs1

5
rs2

5
ws

rs1 and rs2: Read register 1 and 2

ws: Write register

wd: Write data



The ALU
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32A
L
U

32

32

op



Data Memory
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32

Addr.

data

32

Data
Mem

data

32

Memory Read/Write

Why data and instruction memory 
and not one memory? 
Later in the course ☺



Address and Data Bus (Instruction Fetch)
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32

Addr

Inst.

32

Instr
Mem

Fetching straight-line MIPS instructions requires a machine 
that generates this timing diagram:

CLK

Addr

Data IMem[PC + 8]IMem[PC + 4]IMem[PC]

PC + 8PC + 4PC

PC == Program Counter, points to next instruction.



Decode and Execute
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32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

32A
L
U

32

32

op

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10  Logic

Remember the opcode field 
is the input to the control unit



All in one go
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32

Addr Data

Instr

Mem

32
D

PC

Q

32

32

+

32

32

0x4

To rs1,

rs2, ws, 

op decode

logic ...

32

rd1

RegFile

32
rd2

WE
32

wd

5
rs1

5
rs2

5
ws

32A

L

U

32

32

op



What about I format?
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Loads from Memory
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32

rd1

RegFile

32
rd2

WE
32

wd

5
rs1

5
rs2

5
ws

ExtRegDest

ALUsrcExtOp

ALUctr

MemToReg

MemWr

Syntax: LW $1, 32($2)  Action: $1 = M[$2 + 32]

RegWr



Branch Instructions
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Clk

32

Instr  

Mem

Addr Data

32
D

PC

Q

32

32

+

32

32

0x4

Syntax: BEQ $1, $2, 12

Action: If ($1 != $2), PC = PC + 4  
Action: If ($1 == $2), PC = PC + 4 + 48

PCSrc

32

+

32

Ex

te

nd



Control Signals So far

• MemRead

• MemWrite

• RegWrite

• MemtoReg

• RegDst

• ALUop, ALUSrc

• PCSrc (we have not discussed about the branch)

Computer Architecture 26

Read

address

Instruction

memory

Instruction

[31-0]

Control

I [31 - 26]

I [5 - 0]

RegWrite

ALUSrc

ALUOp

MemWrite

MemRead

MemToReg

RegDst

PCSrc

Zero



In detail

• MemRead: Read from memory when assert 

• MemWrite: Write into the memory when assert

• RegWrite: Reg. on Write register updated with the input, on assert

• MemtoReg: On assert, memory to register, on deassert, ALU to 
register

• RegDst: On assert, use rd field, on deassert use rt field 

• ALUSrc: On assert, lower 16 bits of an inst., on deassert from the 
second register 

• PCSrc: On assert, branch target, deassert, PC+4
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Control Signal Table
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Operation RegDst RegWrite ALUSrc ALUOp MemWrite MemRead MemToReg

add 1 1 0 010 0 0 0

sub 1 1 0 110 0 0 0

and 1 1 0 000 0 0 0

or 1 1 0 001 0 0 0

slt 1 1 0 111 0 0 0

lw 0 1 1 010 0 1 1

sw X 0 1 010 1 0 X

beq X 0 0 110 0 0 X



The Complete Picture
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I[31-26]: Control unit



Why not single cycle?

• The longest possible datapath is the clock cycle time.

What does it mean? 
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Why not single cycle?
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one clock cycle: 8ns 

Processor frequency: 125MHz

Cycle per Instruction (CPI): 1

An add instruction: 
no need of 8ns



Why not single cycle?

• The longest possible datapath is the clock cycle time.

Violating common case fast (Confucius says)
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Oh No! Such a bad design
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ALU-type 

Load 

Store 

Branch 

Jump 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

(and jr) 

(except  
jr & jal) 



Single to Multi Cycle
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Clock 

  

Clock 

  

Instr 2 Instr 1 Instr 3 Instr 4 

3 cycles 3 cycles 4 cycles 5 cycles 

Time 
saved 

Instr 1 Instr 4 Instr 3 Instr 2 

Time 
needed 

Time 
needed 

Time 
allotted 

Time 
allotted 



que tenga un 
buen día
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