
https://www.cse.iitb.ac.in/~biswa/

CS230: Digital Logic Design and 
Computer Architecture
Lecture 10: Intro. to Single cycle CPU 

https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

https://www.cse.iitb.ac.in/~biswa/


Phones 
(smart/non-smart) 
on silence plz, 
Thanks 

Computer Architecture 2



Endianness (Byte ordering within a word)

Computer Architecture 3

• Big Endian:  address of most significant byte = word address 
(xx00 = Big end of word), MIPS

• Little Endian: address of least significant byte = word address
(xx00 = Little end of word), x86

Think about an egg ☺

msb lsb
3     2      1     0

little endian byte 0

0     1      2     3
big endian byte 0



Just for an example, do not take it for granted …

Computer Architecture 4

unsigned int i = 1;
char *c = (char*)&i;  // reading the LSB
Printf (“%d”, *c);

unsigned int i = 12345678;
char *c = (char*)&i;
Printf (“%d”, *c);



Example

Computer Architecture 5

unsigned int i = 1;
char *c = (char*)&i;  // reading the LSB
Printf (“%d”, *c);
Little endian: 1
Big endian: 0

unsigned int i = 12345678;
char *c = (char*)&i;
Printf (“%d”, *c);
Little endian: 78
Big endian: 12



Instruction Alignment: Why we need it? 

Computer Architecture 6

0      1      2      3

Aligned

Not

Aligned

Aligned:

x-byte access starting from an address y: y % x must be zero.  



MIPS vs X86

MIPS does not allow unaligned accesses 

x86 does not enforce alignment ☺

Whose job is to generate aligned/unaligned accesses? 

Computer Architecture 7



MIPS vs X86

MIPS does not allow unaligned accesses 

x86 does not enforce alignment ☺

Whose job is to generate aligned/unaligned accesses?

Compiler  

Computer Architecture 8



Let’s go a bit deeper

Computer Architecture 9

Object of size s bytes at byte add. A is aligned 
if A mod s = 0

Alignment for faster transfer of data ? 

Why fast ?? 

Think about memory (caches if you know).  



Memory operations and alignment network 

LOADs and STOREs need an alignment network that makes sure data 
loaded/written are aligned.

Computer Architecture 10

lb R1, 1($s3)

4-byte chunk

Register R1



For the Curious ones

https://lemire.me/blog/2012/05/31/data-alignment-for-speed-myth-
or-reality/

Computer Architecture 11

https://lemire.me/blog/2012/05/31/data-alignment-for-speed-myth-or-reality/
https://lemire.me/blog/2012/05/31/data-alignment-for-speed-myth-or-reality/


Single Cycle Processor 

• All operations – single cycle ☺

• Clock cycle (unit of time) will be defined based on the longest 
instruction. 

• Two paths of interest: datapath and control. Control tells datapath
what to do.

• Do not forget the stored program concept.

Computer Architecture 12



Clock Cycle

Tick, clock tick, clock period, clock, clock cycle, or cycle

Discrete time intervals

Based on processor frequency (clock rate)

1GHz processor, clock cycle = 1ns

4GHz processor, clock cycle = 0.25ns 

Computer Architecture 13



Let’s start 
with the 
datapath
Anything that stores data or operates 
on data, within a processor

14



Instruction Memory

Computer Architecture 15

32

Addr.

Instruction

32

Instr.
Mem

Remember: No writes to instruction 
memory ☺

Not concerned about how programs 
are loaded into this memory.



Program Counter

Computer Architecture 16

3232 PC

Remember: No writes to instruction 
memory ☺



Register File

Computer Architecture 17

32
rd1

RegFile

32
rd2

Write Enable (a.k.a. register write)
32

wd

5
rs1

5
rs2

5
ws

rs1 and rs2: Read register 1 and 2

ws: Write register

wd: Write data



The ALU

Computer Architecture 18

32A
L
U

32

32

op



Data Memory

Computer Architecture 19

32

Addr.

data

32

Data
Mem

data

32

Memory Read/Write

Why data and instruction memory 
and not one memory? 
Later in the course ☺



Address and Data Bus (Instruction Fetch)

Computer Architecture 20

32

Addr

Inst.

32

Instr
Mem

Fetching straight-line MIPS instructions requires a machine 
that generates this timing diagram:

CLK

Addr

Data IMem[PC + 8]IMem[PC + 4]IMem[PC]

PC + 8PC + 4PC

PC == Program Counter, points to next instruction.



Decode and Execute

Computer Architecture 21

32
rd1

RegFile

32
rd2

WE32
wd

5
rs1

5
rs2

5
ws

32A
L
U

32

32

op

opcode rs rt rd functshamt

Decode fields to get : ADD $8 $9 $10  Logic

Remember the opcode field 
is the input to the control unit



All in one go

Computer Architecture 22

32

Addr Data

Instr

Mem

32
D

PC

Q

32

32

+

32

32

0x4

To rs1,

rs2, ws, 

op decode

logic ...

32

rd1

RegFile

32
rd2

WE
32

wd

5
rs1

5
rs2

5
ws

32A

L

U

32

32

op



What about I format?

Computer Architecture 23



Loads from Memory

Computer Architecture 24

32

rd1

RegFile

32
rd2

WE
32

wd

5
rs1

5
rs2

5
ws

ExtRegDest

ALUsrcExtOp

ALUctr

MemToReg

MemWr

Syntax: LW $1, 32($2)  Action: $1 = M[$2 + 32]

RegWr



Branch Instructions

Computer Architecture 25

Clk

32

Instr  

Mem

Addr Data

32
D

PC

Q

32

32

+

32

32

0x4

Syntax: BEQ $1, $2, 12

Action: If ($1 != $2), PC = PC + 4  
Action: If ($1 == $2), PC = PC + 4 + 48

PCSrc

32

+

32

Ex

te

nd



Control Signals So far

• MemRead

• MemWrite

• RegWrite

• MemtoReg

• RegDst

• ALUop, ALUSrc

• PCSrc (we have not discussed about the branch)

Computer Architecture 26

Read

address

Instruction

memory

Instruction

[31-0]

Control

I [31 - 26]

I [5 - 0]

RegWrite

ALUSrc

ALUOp

MemWrite

MemRead

MemToReg

RegDst

PCSrc

Zero



In detail

• MemRead: Read from memory when assert 

• MemWrite: Write into the memory when assert

• RegWrite: Reg. on Write register updated with the input, on assert

• MemtoReg: On assert, memory to register, on deassert, ALU to 
register

• RegDst: On assert, use rd field, on deassert use rt field 

• ALUSrc: On assert, lower 16 bits of an inst., on deassert from the 
second register 

• PCSrc: On assert, branch target, deassert, PC+4

Computer Architecture 27



Control Signal Table

Computer Architecture 28

Operation RegDst RegWrite ALUSrc ALUOp MemWrite MemRead MemToReg

add 1 1 0 010 0 0 0

sub 1 1 0 110 0 0 0

and 1 1 0 000 0 0 0

or 1 1 0 001 0 0 0

slt 1 1 0 111 0 0 0

lw 0 1 1 010 0 1 1

sw X 0 1 010 1 0 X

beq X 0 0 110 0 0 X



The Complete Picture

Computer Architecture 29

I[31-26]: Control unit



Why not single cycle?

• The longest possible datapath is the clock cycle time.

What does it mean? 

Computer Architecture 30



Why not single cycle?

Computer Architecture 31

one clock cycle: 8ns 

Processor frequency: 125MHz

Cycle per Instruction (CPI): 1

An add instruction: 
no need of 8ns



Why not single cycle?

• The longest possible datapath is the clock cycle time.

Violating common case fast (Confucius says)

Computer Architecture 32



Oh No! Such a bad design

Computer Architecture 33

     
 

 
 

 
 
 

 
 

 
 
 

 
 

P 
C 
 

     
 

 
 

 
 
 

 
 

 
 
 

 
 

P 
C 
 

     
 

 
 

 
 
 

 
 

 
 
 

 
 

P 
C 
 

     
 

 
 

 
 
 

 
 

 
 
 

 
 

P 
C 
 

     
 

 
 

 
 
 

 
 

 
 
 

 
 

P 
C 
 

ALU-type 

Load 

Store 

Branch 

Jump 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

Not 
used 

(and jr) 

(except  
jr & jal) 



Single to Multi Cycle

Computer Architecture 34

Clock 

  

Clock 

  

Instr 2 Instr 1 Instr 3 Instr 4 

3 cycles 3 cycles 4 cycles 5 cycles 

Time 
saved 

Instr 1 Instr 4 Instr 3 Instr 2 

Time 
needed 

Time 
needed 

Time 
allotted 

Time 
allotted 



que tenga un 
buen día


	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Phones (smart/non-smart) on silence plz, Thanks 
	Slide 3: Endianness (Byte ordering within a word)
	Slide 4: Just for an example, do not take it for granted …
	Slide 5: Example
	Slide 6: Instruction Alignment: Why we need it? 
	Slide 7: MIPS vs X86
	Slide 8: MIPS vs X86
	Slide 9: Let’s go a bit deeper
	Slide 10: Memory operations and alignment network 
	Slide 11: For the Curious ones
	Slide 12: Single Cycle Processor 
	Slide 13: Clock Cycle
	Slide 14: Let’s start with the datapath
	Slide 15: Instruction Memory
	Slide 16: Program Counter
	Slide 17: Register File
	Slide 18: The ALU
	Slide 19: Data Memory
	Slide 20: Address and Data Bus (Instruction Fetch)
	Slide 21: Decode and Execute
	Slide 22: All in one go
	Slide 23: What about I format?
	Slide 24: Loads from Memory
	Slide 25: Branch Instructions
	Slide 26: Control Signals So far
	Slide 27: In detail
	Slide 28: Control Signal Table
	Slide 29: The Complete Picture
	Slide 30: Why not single cycle?
	Slide 31: Why not single cycle?
	Slide 32: Why not single cycle?
	Slide 33: Oh No! Such a bad design
	Slide 34: Single to Multi Cycle
	Slide 35: que tenga un buen día

