
https://www.cse.iitb.ac.in/~biswa/

CS230: Digital Logic Design and
Computer Architecture

Lecture 12: Data/Control Hazards
https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

https://www.cse.iitb.ac.in/~biswa/

The ideal world

Computer Architecture 2

• Uniform Sub-operations

–Operation (op) can be partitioned into uniform-latency sub-ops

• Repetition of Identical Operations

–Same ops performed on many different inputs

• Independent Operations

–All ops are mutually independent

The real world

Computer Architecture 3

• Uniform Sub-operations NO

–Operation can be partitioned into uniform-latency sub-ops

• Repetition of Identical Operations NO

–Same ops performed on many different inputs

• Independent Operations NO

–All ops are mutually independent

Structural/Data/Control
Hazards

What is a hazard ? Anything that prevents an
instruction to move ahead in the pipeline.

Structural: Resource conflicts, two instructions
want to access the same structure on the same
clock cycle.

Computer Architecture 4

An Example with unified (single) memory

Computer Architecture 5

M

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L
UM Reg M Reg

A
L
UM Reg M Reg

A
L
UM Reg M Reg

A
L
UReg M Reg

A
L
UM Reg M Reg

Can’t read same
memory twice in
same clock cycle

What about registers?

Computer Architecture 6

M

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
L
UM Reg M Reg

A
L
UM Reg M Reg

A
L
UM Reg M Reg

A
L
UReg M Reg

A
L
UM Reg M Reg

Can read/write the
register file (same
register) in same
clock cycle ☺ but..
Real picture is
different

Remember: Edge-
triggered Structural hazards are highly infrequent

Data Hazards

C
o

m
p

u
te

r A
rch

ite
ctu

re

7

INSTRUCTION DEPENDS ON THE RESULT
(DATA) OF PREVIOUS INSTRUCTION(S).

HAZARDS HAPPEN BECAUSE OF DATA
DEPENDENCES.

Data dependences (hazards)

Computer Architecture 8

add R1, R2, R3

sub R2, R4, R1

or R1, R6, R3

read-after-write
(RAW)

True dependence

Data dependences (hazards)

Computer Architecture 9

add R1, R2, R3

sub R2, R4, R1

or R1, R6, R3

add R1, R2, R3

sub R2, R4, R1

or R1, R6, R3

read-after-write
(RAW)

write-after-read
(WAR)

True dependence anti dependence

Data dependences (hazards)

Computer Architecture 10

add R1, R2, R3

sub R2, R4, R1

or R1, R6, R3

add R1, R2, R3

sub R2, R4, R1

or R1, R6, R3

add R1, R2, R3

sub R2, R4, R1

or R1, R6, R3

read-after-write
(RAW)

write-after-read
(WAR)

write-after-write
(WAW)

True dependence anti dependence output dependence

Data Hazards

C
o

m
p

u
te

r A
rch

ite
ctu

re

Read-After-Write (RAW)

• Read must wait until earlier write finishes

Anti-Dependence (WAR)

• Write must wait until earlier read finishes

• Output Dependence (WAW)

• Earlier write can’t overwrite later write

(WAW hazard: not possible with vanilla 5-stage
pipeline)

11

Data Hazards (Examples)

Computer Architecture 12

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Reg A
LU DMemIfetch Reg

Time (clock cycles)

Control Hazards
Hazards that arise from branch/jump instructions and any instructions

that change the PC.

Computer Architecture 13

An Example

Computer Architecture 14

What do you do with the 3 instructions in between?
How do you do it?

10: beq r1,r3,36

14: and r2,r3,r5 

18: or r6,r1,r7 

22: add r8,r1,r9 

50: xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

What happens on a hazard?

Instruction cannot move forward

Instruction must wait to get the
hazard resolved.

The pipeline must stall 

It is like air bubbles in pipelines

Computer Architecture 15

Stall/Bubble

Computer Architecture 16

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Stall

Instr 3

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 6 Cycle 7Cycle 5

Reg

A
L
U

DMemIfetch Reg

Bubble Bubble Bubble BubbleBubble

De-assert all control signals

How to implement a stall?

Computer Architecture 17

Imm

IR
PC

we
addr

rdata

wdata

Ext

stall?
0x4

Add

nop we
rs1
rs2

rd1
ws
wdrd2 ALU

we
addr

Memory

fetch
phase

GPRs

execute phase

rdata

Memory

wdata

Don’t fetch a new instruction and don’t change the PC

insert a nop (compiler way)

An example of an NOP

sll $0 $0 (in MIPS)

Computer Architecture 18

Simple Example
(no bubbles)

Computer Architecture 19

add r3, r2, r1

add r6, r5, r4

C1 C2 C3 C4 C5 C6 C7 C8

IF1 ID1 IE1 IM1 IWB1

IF2 ID2 IE2 IM2 IWB2

Simple Example
(2 bubbles)

Computer Architecture 20

add r3, r2, r1

add r6, r5, r3

C1 C2 C3 C4 C5 C6 C7 C8

IF1 ID1 IE1 IM1 IWB1

IF2 ID2 ID2 ID2 IE2 IM2 IWB2

Control Hazard and NOPs

Computer Architecture 21

I4 I5

time
t0 t1 t2 t3 t4 t5 t6 t7

Resource

Usage

IF

ID

EX

MA

WB

I1 I2

I1

I3

I2

I1

I4

nop

I2

I1

I5

I4

nop

I2

I1

I5

nop I4

I2 nop

nop 

I5

I4 I5

pipeline bubble

time
t0 t1

IF1 ID1

IF2

t7t2 t3 t4 t5 t6

EX1 MA1 WB1

ID2 EX2 MA2 WB2

IF3 nop nop nop nop

IF4 ID4 EX4 MA4 WB4

(I1) 096: ADD
(I2) 100: J 200
(I3) 104: ADD
(I4) 304: ADD

What happens to the speedup?

Speedup = CPI unpipelined = CPI unpipelined

---------------------- -------------------------------------

CPI pipelined ideal CPI + stalls/instructions

Computer Architecture 22

Ideal CPI=1, assume stages are perfectly balanced

Data Hazard Detector and stalls

Computer Architecture 23

Execute to decode:
EX/MEM.RegisterRd = ID/EX.RegisterRs
EX/MEM.RegisterRd = ID/EX.RegisterRt
Memory to decode:
MEM/WB.RegisterRd = ID/EX.RegisterRs
MEM/WB.RegisterRd = ID/EX.RegisterRt
what about instructions that do not write into the
registers?

Bypassing

Route data as soon as possible after it is calculated to
the earlier pipeline stage

Computer Architecture 24

Bypassing/forwarding: Updated Datapath

Computer Architecture 25

M
E

M
/W

R

I
D

/E
X

E
X

/M
E

M

Data
Memory

A
L
U

m
ux

m
ux

R
e
giste

rs

NextPC

Immediate

m
ux

How does it help?

Computer Architecture 26

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

lw r4, 0(r1)

sw r4,12(r1)

or r8,r6,r9

xor r10,r9,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Does it help always?

Computer Architecture 27

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Coffee Credits

Dhananjay: +1

XYZ : +2 

Computer Architecture 28

	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: The ideal world
	Slide 3: The real world
	Slide 4: Structural/Data/Control Hazards
	Slide 5: An Example with unified (single) memory
	Slide 6: What about registers?
	Slide 7: Data Hazards
	Slide 8: Data dependences (hazards)
	Slide 9: Data dependences (hazards)
	Slide 10: Data dependences (hazards)
	Slide 11: Data Hazards
	Slide 12: Data Hazards (Examples)
	Slide 13: Control Hazards
	Slide 14: An Example
	Slide 15: What happens on a hazard?
	Slide 16: Stall/Bubble
	Slide 17: How to implement a stall?
	Slide 18: An example of an NOP
	Slide 19: Simple Example (no bubbles)
	Slide 20: Simple Example (2 bubbles)
	Slide 21: Control Hazard and NOPs
	Slide 22: What happens to the speedup?
	Slide 23: Data Hazard Detector and stalls
	Slide 24: Bypassing
	Slide 25: Bypassing/forwarding: Updated Datapath
	Slide 26: How does it help?
	Slide 27: Does it help always?
	Slide 28: Coffee Credits

