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Bypassing/forwarding: Updated Datapath
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How does it help?
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Does it help always?
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What and 
Where? 
Control 
Hazard
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• For Jumps

• Opcode, offset, and PC

• For Jump Register

• Opcode and register value

• For Conditional Branches

• Opcode, offset, PC, and register (for condition)

• For all others

• Opcode and PC

What do we need to calculate next PC?

• PC - Fetch

• Opcode, offset - Decode (or Fetch?)

• Register value - Decode

• Branch condition ((rs)==0) - Execute (or Decode?)

In what stage do we know these?



Speculate, PC=PC+4
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I2

I1

104

PC addr

inst

Inst
Memory

kill

PCSrc (pc+4 / target) stall

Add
E M

0x4

Add

nop
IR IR

Jump?

IR

I1
I2
I3
I4

096 ADD
100 J304
104 ADD
304 ADD

What happens on mis-speculation, i.e., when next
instruction is not PC+4?

How? Insert NOPs



Conditional branches
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I1
I2
I3
I4

096 ADD
100 BEQZ r1 200
104 ADD
304 ADD

Branch condition is not known
until the execute stage

Instructions between a branch instruction and the target are
in the wrong-path if the branch is not taken  



Again (stalls/NOPs)
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time
t0 t1 t2 t3 t4 t5 t6 t7 . . . .

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1
(I2) 100: BEQZ 200 IF2 ID2 EX2 MA2 WB2
(I3) 104: ADD IF3 ID3 nop nop nop
(I4) 108: IF4 nop nop nop nop
(I5) 304: ADD IF5 ID5 EX5 MA5 WB5

time
t0 t1 t2 t3 t4 t5 t6 t7 . . . .

Resource
Usage

IF I1 I2
ID I1
EX
MA
WB

I3
I2
I1

I4
I3
I2
I1

I5
nop I5
nop nop I5
I2 nop nop I5
I1 I2 nop nop I5



Branches: Taken/Not Taken and Target
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Instruction Taken known? Target known?

J
After Inst. Decode After Inst. Decode

BEQZ/BNEZ After Inst. Execute After Inst. Execute

what action should be taken in the decode stage?
Can we add an ALU in the decode stage? 



What else can be done? Compiler?

Delayed branch: Define branch to take place AFTER a 
following instruction(used to be in early RISC 
processors)
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branch instruction
sequential successor1

sequential successor2

........
sequential successorn

branch target if taken

Branch delay of length n



Scheduling Branch Delay Slots
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A is the best choice, fills delay slot & reduces instruction count (IC)

add $1,$2,$3  

if $2=0 then

delay slot

A. From before branch

becomes

if $2=0 then

add $1,$2,$3



Scheduling Branch Delay Slots
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A is the best choice, fills delay slot & reduces instruction count (IC)

add $1,$2,$3  

if $2=0 then

delay slot

A. From before branch B. From branch target

add $1,$2,$3  

if $1=0 then

delay slot

sub $4,$5,$6

becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3  

if $1=0 then

sub $4,$5,$6



Scheduling Branch Delay Slots
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A is the best choice

add $1,$2,$3  

if $2=0 then

delay slot

A. From before branch B. From branch target

add $1,$2,$3  

if $1=0 then

delay slot

C. From fall through

add $1,$2,$3  

if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3  

if $1=0 then

sub $4,$5,$6

becomes
add $1,$2,$3  

if $1=0 then

sub $4,$5,$6



Word of Caution!

Do not put a branch 

in the branch delay slot 
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Stalls and Performance 

For a program with N instructions and S stall cycles,

Average CPI =    N

---------

N
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Stalls and Performance 

For a program with N instructions and S stall cycles,

Average CPI =   N+S

---------

N

Computer Architecture 16



New Pipeline Speedup 

Pipeline Speedup =   Pipeline Depth 

----------------------------------------------------

1+pipeline stalls because of branches

Pipeline stalls (branches) = Branch frequency X penalty
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Summary
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Data Hazards

Bypassing/forwarding 

Stalls (NOPs) – if no scope for bypassing 

Control hazards

Speculate,  PC=PC+4, kill the wrong path 

Delayed branch with the help of branch delay 
slots, new pipeline speedup



Branch instructions
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I1:
I2:

I3:
I4:

I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

IF (Fetch) ID (Decode) EX (ALU) MEM WB

IF ID

IF

EX

ID

IF

MEM WB
EX stage computes 
if branch is taken

If branch is taken, these 
instructions MUST NOT complete!

I-Mem



Branch Predictors
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I1:
I2:

I3:
I4:

I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

IF (Fetch) ID (Decode) EX (ALU) MEM WB

IF ID

IF

EX

ID

IF

MEM WB
EX stage computes 
if branch is taken

If branch is taken, these 
instructions MUST NOT complete!

I-Mem

A control 

instr?

Taken 

or Not 

Taken?

If taken, 

where to? 

What PC?

Branch 

Predictor

Predictions



A quick recap

What if PC=PC+4? Not TRUE 

Flush/kill all the instructions in the wrong path.  
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Branch 
Prediction: 
10K Feet 

View
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Predict whether the next PC is a branch PC, at the 
fetch stage? 



Branch 
Prediction: 
10K Feet 
View
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Predict whether the next PC is a branch PC, at the 
fetch stage? 

If branch, will it be taken?



Branch 
Prediction: 
10K Feet 
View
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Predict whether the next PC is a branch PC, at the 
fetch stage? 

If branch, will it be taken?

If taken, what is the target address?  



Branch 
Prediction: 
10K Feet 
View
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Predict whether the next PC is a branch PC, at the 
fetch stage? 

If branch, will it be taken?

If taken, what is the target address?  

How? 



Branch 
Prediction: 
10K Feet 
View

Computer Architecture 26

Predict whether the next PC is a branch PC, at the 
fetch stage? 

If branch, will it be taken?

If taken, what is the target address?  

How? 

We know whether it is a branch PC or not in the 
decode stage. Oh no 



Branch Predictor: A bit deeper

Three tasks

1. Is the PC a branch/jump? YES/NO 

2. If Yes, can we predict the direction? Taken or not-
taken

3. If taken, can we predict the target address? 
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Let’s see
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Program 
Counter

Address of the 

current branch



Let’s see

Computer Architecture 29

Direction predictor

Program 
Counter

PC + 4

taken?

Next Fetch

Address

Address of the 

current branch



Let’s see
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target address

Direction predictor

Repository of Target Addresses (BTB: Branch Target Buffer)

Program 
Counter

PC + 4

taken?

Next Fetch

Address

hit?

Address of the 

current branch



Static (compiler) Direction Prediction Techniques
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Always not-taken: Simple to implement: no need for BTB, 

no direction prediction

Low accuracy: ~30-40%

Always taken: No direction prediction, we need BTB though

Better accuracy: ~60-70% 

Backward branches (i.e., loop branches) are usually taken



Dynamic Predictors

Microarchitectural way of predicting it. 

Simple one: Last time predictor 
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Last-time predictor
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predict
taken

predict
not

taken

actually
taken

actually
not taken



Last-time predictor
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predict
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Implementation 
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K bits of branch
instruction address

Index



Implementation 
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K bits of branch
instruction address

Index

Branch history
table of 2K entries,
1 bit per entry



Implementation 
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K bits of branch
instruction address

Index

Branch history
table of 2K entries,
1 bit per entry

Use this entry to
predict this branch:

0: predict not taken
1: predict taken



Performance of Last-time predictor
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TTTTTTTTTTNNNNNNNNNN - 90% accuracy

Always mispredicts the last iteration and the first 
iteration of a loop branch

Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large number of 
iterations

-- Loop branches for loops will small number of 
iterations



Performance contd.
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TNTNTNTNTNTNTNTNTNTN → 0% accuracy

20% of all instructions are branches, 85% accuracy
Last-time predictor CPI = 

[ 1 + (0.20*0.15) * 2 ]  = 

1.06 (minimum two stalls to resolve a branch)



Coffee Credits
Lisan: +1
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