
https://www.cse.iitb.ac.in/~biswa/

CS230: Digital Logic Design and
Computer Architecture
Lecture 13: Mitigating Control Hazards

https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

https://www.cse.iitb.ac.in/~biswa/

Bypassing/forwarding: Updated Datapath

Computer Architecture 2

M
E

M
/W

R

I
D

/E
X

E
X

/M
E

M

Data
Memory

A
L
U

m
ux

m
ux

R
e
giste

rs

NextPC

Immediate

m
ux

How does it help?

Computer Architecture 3

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

lw r4, 0(r1)

sw r4,12(r1)

or r8,r6,r9

xor r10,r9,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Does it help always?

Computer Architecture 4

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

What and
Where?
Control
Hazard

Computer Architecture 5

• For Jumps

• Opcode, offset, and PC

• For Jump Register

• Opcode and register value

• For Conditional Branches

• Opcode, offset, PC, and register (for condition)

• For all others

• Opcode and PC

What do we need to calculate next PC?

• PC - Fetch

• Opcode, offset - Decode (or Fetch?)

• Register value - Decode

• Branch condition ((rs)==0) - Execute (or Decode?)

In what stage do we know these?

Speculate, PC=PC+4

Computer Architecture 6

I2

I1

104

PC addr

inst

Inst
Memory

kill

PCSrc (pc+4 / target) stall

Add
E M

0x4

Add

nop
IR IR

Jump?

IR

I1
I2
I3
I4

096 ADD
100 J304
104 ADD
304 ADD

What happens on mis-speculation, i.e., when next
instruction is not PC+4?

How? Insert NOPs

Conditional branches

Computer Architecture 7

I1
I2
I3
I4

096 ADD
100 BEQZ r1 200
104 ADD
304 ADD

Branch condition is not known
until the execute stage

Instructions between a branch instruction and the target are
in the wrong-path if the branch is not taken

Again (stalls/NOPs)

Computer Architecture 8

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1
(I2) 100: BEQZ 200 IF2 ID2 EX2 MA2 WB2
(I3) 104: ADD IF3 ID3 nop nop nop
(I4) 108: IF4 nop nop nop nop
(I5) 304: ADD IF5 ID5 EX5 MA5 WB5

time
t0 t1 t2 t3 t4 t5 t6 t7

Resource
Usage

IF I1 I2
ID I1
EX
MA
WB

I3
I2
I1

I4
I3
I2
I1

I5
nop I5
nop nop I5
I2 nop nop I5
I1 I2 nop nop I5

Branches: Taken/Not Taken and Target

Computer Architecture 9

Instruction Taken known? Target known?

J
After Inst. Decode After Inst. Decode

BEQZ/BNEZ After Inst. Execute After Inst. Execute

what action should be taken in the decode stage?
Can we add an ALU in the decode stage?

What else can be done? Compiler?

Delayed branch: Define branch to take place AFTER a
following instruction(used to be in early RISC
processors)

Computer Architecture 10

branch instruction
sequential successor1

sequential successor2

........
sequential successorn

branch target if taken

Branch delay of length n

Scheduling Branch Delay Slots

Computer Architecture 11
A is the best choice, fills delay slot & reduces instruction count (IC)

add $1,$2,$3

if $2=0 then

delay slot

A. From before branch

becomes

if $2=0 then

add $1,$2,$3

Scheduling Branch Delay Slots

Computer Architecture 12
A is the best choice, fills delay slot & reduces instruction count (IC)

add $1,$2,$3

if $2=0 then

delay slot

A. From before branch B. From branch target

add $1,$2,$3

if $1=0 then

delay slot

sub $4,$5,$6

becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3

if $1=0 then

sub $4,$5,$6

Scheduling Branch Delay Slots

Computer Architecture 13
A is the best choice

add $1,$2,$3

if $2=0 then

delay slot

A. From before branch B. From branch target

add $1,$2,$3

if $1=0 then

delay slot

C. From fall through

add $1,$2,$3

if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3

if $1=0 then

sub $4,$5,$6

becomes
add $1,$2,$3

if $1=0 then

sub $4,$5,$6

Word of Caution!

Do not put a branch

in the branch delay slot 

Computer Architecture 14

Stalls and Performance

For a program with N instructions and S stall cycles,

Average CPI = N

N

Computer Architecture 15

Stalls and Performance

For a program with N instructions and S stall cycles,

Average CPI = N+S

N

Computer Architecture 16

New Pipeline Speedup

Pipeline Speedup = Pipeline Depth

--

1+pipeline stalls because of branches

Pipeline stalls (branches) = Branch frequency X penalty

Computer Architecture 17

Summary

Computer Architecture 18

Data Hazards

Bypassing/forwarding

Stalls (NOPs) – if no scope for bypassing

Control hazards

Speculate, PC=PC+4, kill the wrong path

Delayed branch with the help of branch delay
slots, new pipeline speedup

Branch instructions

Computer Architecture 19

I1:
I2:

I3:
I4:

I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

IF (Fetch) ID (Decode) EX (ALU) MEM WB

IF ID

IF

EX

ID

IF

MEM WB
EX stage computes
if branch is taken

If branch is taken, these
instructions MUST NOT complete!

I-Mem

Branch Predictors

Computer Architecture 20

I1:
I2:

I3:
I4:

I5:

t1 t2 t3 t4 t5 t6 t7 t8Time:
Inst

I6:

IF (Fetch) ID (Decode) EX (ALU) MEM WB

IF ID

IF

EX

ID

IF

MEM WB
EX stage computes
if branch is taken

If branch is taken, these
instructions MUST NOT complete!

I-Mem

A control

instr?

Taken

or Not

Taken?

If taken,

where to?

What PC?

Branch

Predictor

Predictions

A quick recap

What if PC=PC+4? Not TRUE

Flush/kill all the instructions in the wrong path.

Computer Architecture 21

Branch
Prediction:
10K Feet

View

Computer Architecture 22

Predict whether the next PC is a branch PC, at the
fetch stage?

Branch
Prediction:
10K Feet
View

Computer Architecture 23

Predict whether the next PC is a branch PC, at the
fetch stage?

If branch, will it be taken?

Branch
Prediction:
10K Feet
View

Computer Architecture 24

Predict whether the next PC is a branch PC, at the
fetch stage?

If branch, will it be taken?

If taken, what is the target address?

Branch
Prediction:
10K Feet
View

Computer Architecture 25

Predict whether the next PC is a branch PC, at the
fetch stage?

If branch, will it be taken?

If taken, what is the target address?

How?

Branch
Prediction:
10K Feet
View

Computer Architecture 26

Predict whether the next PC is a branch PC, at the
fetch stage?

If branch, will it be taken?

If taken, what is the target address?

How?

We know whether it is a branch PC or not in the
decode stage. Oh no 

Branch Predictor: A bit deeper

Three tasks

1. Is the PC a branch/jump? YES/NO

2. If Yes, can we predict the direction? Taken or not-
taken

3. If taken, can we predict the target address?

Computer Architecture 27

Let’s see

Computer Architecture 28

Program
Counter

Address of the

current branch

Let’s see

Computer Architecture 29

Direction predictor

Program
Counter

PC + 4

taken?

Next Fetch

Address

Address of the

current branch

Let’s see

Computer Architecture 30

target address

Direction predictor

Repository of Target Addresses (BTB: Branch Target Buffer)

Program
Counter

PC + 4

taken?

Next Fetch

Address

hit?

Address of the

current branch

Static (compiler) Direction Prediction Techniques

Computer Architecture 31

Always not-taken: Simple to implement: no need for BTB,

no direction prediction

Low accuracy: ~30-40%

Always taken: No direction prediction, we need BTB though

Better accuracy: ~60-70%

Backward branches (i.e., loop branches) are usually taken

Dynamic Predictors

Microarchitectural way of predicting it.

Simple one: Last time predictor

Computer Architecture 32

Last-time predictor

Computer Architecture 33

predict
taken

predict
not

taken

actually
taken

actually
not taken

Last-time predictor

Computer Architecture 34

predict
taken

predict
not

taken

actually
not taken

actually
taken

actually
taken

actually
not taken

Implementation

Computer Architecture 35

K bits of branch
instruction address

Index

Implementation

Computer Architecture 36

K bits of branch
instruction address

Index

Branch history
table of 2K entries,
1 bit per entry

Implementation

Computer Architecture 37

K bits of branch
instruction address

Index

Branch history
table of 2K entries,
1 bit per entry

Use this entry to
predict this branch:

0: predict not taken
1: predict taken

Performance of Last-time predictor

Computer Architecture 38

TTTTTTTTTTNNNNNNNNNN - 90% accuracy

Always mispredicts the last iteration and the first
iteration of a loop branch

Accuracy for a loop with N iterations = (N-2)/N

+ Loop branches for loops with large number of
iterations

-- Loop branches for loops will small number of
iterations

Performance contd.

Computer Architecture 39

TNTNTNTNTNTNTNTNTNTN → 0% accuracy

20% of all instructions are branches, 85% accuracy
Last-time predictor CPI =

[1 + (0.20*0.15) * 2] =

1.06 (minimum two stalls to resolve a branch)

Coffee Credits
Lisan: +1

Computer Architecture 40

	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Bypassing/forwarding: Updated Datapath
	Slide 3: How does it help?
	Slide 4: Does it help always?
	Slide 5: What and Where? Control Hazard
	Slide 6: Speculate, PC=PC+4
	Slide 7: Conditional branches
	Slide 8: Again (stalls/NOPs)
	Slide 9: Branches: Taken/Not Taken and Target
	Slide 10: What else can be done? Compiler?
	Slide 11: Scheduling Branch Delay Slots
	Slide 12: Scheduling Branch Delay Slots
	Slide 13: Scheduling Branch Delay Slots
	Slide 14: Word of Caution!
	Slide 15: Stalls and Performance
	Slide 16: Stalls and Performance
	Slide 17: New Pipeline Speedup
	Slide 18: Summary
	Slide 19: Branch instructions
	Slide 20: Branch Predictors
	Slide 21: A quick recap
	Slide 22: Branch Prediction: 10K Feet View
	Slide 23: Branch Prediction: 10K Feet View
	Slide 24: Branch Prediction: 10K Feet View
	Slide 25: Branch Prediction: 10K Feet View
	Slide 26: Branch Prediction: 10K Feet View
	Slide 27: Branch Predictor: A bit deeper
	Slide 28: Let’s see
	Slide 29: Let’s see
	Slide 30: Let’s see
	Slide 31: Static (compiler) Direction Prediction Techniques
	Slide 32: Dynamic Predictors
	Slide 33: Last-time predictor
	Slide 34: Last-time predictor
	Slide 35: Implementation
	Slide 36: Implementation
	Slide 37: Implementation
	Slide 38: Performance of Last-time predictor
	Slide 39: Performance contd.
	Slide 40: Coffee Credits Lisan: +1

