
https://www.cse.iitb.ac.in/~biswa/

CS230: Digital Logic Design and
Computer Architecture

Lecture 15: Beyond scalar and performance
evaluation

https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

https://www.cse.iitb.ac.in/~biswa/

Exception handling and Pipelining

Computer Architecture 2

PC
Inst.
Mem D Decode E M

Data
Mem W+

Illegal
Opcode

Overflow
Data address
Exceptions

PC address
Exception

Asynchronous Interrupts

• When do we stop the pipeline for precise interrupts or exceptions?

• How to handle multiple simultaneous exceptions in different
pipeline stages?

• How and where to handle external asynchronous interrupts?

Nothing can happen
now?

Contd.

Computer Architecture 3

PC Inst. Mem D Decode E M
Data
Mem W+

Illegal Opcode Overflow Data address
Exceptions

PC address
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

C
au

se
EP

C

Kill D
Stage

Kill F Stage Kill E
Stage

Select
Handler PC

Kill
Writeback

Commit Point

Contd.

Computer Architecture 4

•Hold exception flags in pipeline until commit point for
instructions that will be killed

• Exceptions in earlier pipe stages override later exceptions
for a given instruction

• If exception at commit: update cause and EPC registers,
kill all stages, inject handler PC into fetch stage

Moving on in the
pursuit of IPC++

Computer Architecture 5

Beyond Scalar

Computer Architecture 6

• Scalar pipeline limited to CPI ≥ 1.0
•Can never run more than 1 insn per cycle

• “Superscalar” can achieve CPI ≤ 1.0 (i.e., IPC ≥ 1.0)
• Superscalar means executing multiple insns in

parallel

Instruction Level Parallelism (ILP)

Computer Architecture 7

• Scalar pipeline (baseline)
• Instruction overlap parallelism = D

• Peak IPC = 1.0
D

Su
cc

e
ss

iv
e

In
st

ru
ct

io
n
s

Time in cycles

1 2 3 4 5 6 7 8 9 10 11 12

D different instructions overlapped

Superscalar Processor

Computer Architecture 8

• Superscalar (pipelined) Execution
• Instruction parallelism = D x N

• Peak IPC = N per cycle

Su
cc

e
ss

iv
e

In
st

ru
ct

io
n
s

Time in cycles

1 2 3 4 5 6 7 8 9 10 11 12

N

D x N different instructions overlapped

What is the deal?

Computer Architecture 9

We get an IPC boost if the number of instructions
fetched in one cycle are independent ☺

Complicates datapaths, multi-ported structures,
complicates exception handling

Out of order (O3) processor:
Pursuit of even higher IPC

Computer Architecture 10

Out-of-order follows data-flow order

Computer Architecture 11

Example:

(1) r1 r4 / r7

(2) r8 r1 + r2

(3) r5 r5 + 1

(4) r6 r6 - r3

(5) r4 r5 + r6

(6) r7 r8 * r4

/* assume division takes 20 cycles */

1 2 3 4 5 6

In-order execution

1

3 5 2 6

4

Out-of-order execution

2 5

Data Flow Graph

1 3 4

r1 r5 r6

r8 r4

6

1 2 4 5 6

3

In-order (2-way superscalar)

O3

Two or more instructions can execute in any order if
they have no dependences (RAW, WAW, WAR)

Completely orthogonal to superscalar/pipelining

Computer Architecture 12

O3 + Superscalar

Computer Architecture 13

In-order Instruction Fetch
(Multiple fetch in one cycle)

1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB

O3 + Superscalar

Computer Architecture 14

In-order Instruction Fetch
(Multiple fetch in one cycle)

1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB

300 cycles

30 cycles
5 cycles ☺

1 cycle ☺

2 cycles ☺

Out-of-order execution

O3 + Superscalar

Computer Architecture 15

In-order Instruction Fetch
(Multiple fetch in one cycle)

1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB

300 cycles

30 cycles
5 cycles ☺

1 cycle ☺

2 cycles ☺

1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB

In-order CommitOut-of-order execution

The Big Picture

Computer Architecture 16

Program Form Processing Phase

Static program

dynamic inst.

Stream (trace)

execution

window

completed

instructions

Dispatch/ dependences

inst. Issue

inst execution

inst. Reorder &

commit

The notion of Commit

After commit, the results of a committed instruction is
visible to the programmer

and

the order at which instructions are fetched is also
visible.

Computer Architecture 17

Why we need in-order commit?

Think about exceptions and precise exceptions

We should know till when we are done as per the
programmer’s view.

Computer Architecture 18

Quantifying
Performance

19

Performance: Time (Iron Law)

Time/Program =

Instructions/program X cycles/instruction X Time/cycle

Source code ISA microarch.

Compiler microarch. technology

ISA

Computer Architecture 20

Performance: Time (Iron Law)

Time/Program =

Instructions/program X cycles/instruction X Time/cycle

(∑ IC(i) X CPI (i)) X Time/cycle

Computer Architecture 21

Example

Program p = one billion instructions

Processor takes one cycle per instruction

Processor clock is 1GHz

CPU time = 109 instructions X 1 cycle/instruction X 1 ns

= 1 second

Computer Architecture 22

Example

Program p = one billion instructions

Processor takes one cycle per instruction

Processor clock is 4 GHz

CPU time = 109 instructions X 1 cycle/instruction X 1/4 ns

= 0.25 second (4X faster)

Computer Architecture 23

Example

Program p = one billion instructions

Processor processes 10 instructions in one cycle

Processor clock is 4 GHz

CPU time = 109 instructions X 0.10 cycle/instruction X 1/4 ns

= 0.025 second (40X faster)

Computer Architecture 24

Example (Role of compiler/programmer)

Program p = one million instructions

Processor processes 1 instruction in one cycle

Processor clock is 4 GHz

CPU time = 106 instructions X 1 cycle/instruction X 1/4 ns

= 0.00025 second (4000X faster)

Computer Architecture 25

A bit deeper

Program p has 10 billion instructions

* 2 billion branches (CPI of 4)

* 3 billion Loads (CPI of 2)

* 1 billion Stores (CPI of 3)

* Rest 4 billion, arithmetic instructions (CPI of 1)

Clock rate 4GHz, What is the execution time?

Computer Architecture 26

Which one ?

Processor IMTEL: CPI 2, Clock rate 2GHz

Processor AND: CPI 1, Clock rate 1GHz

Assume compiler/ISA/… are the same.

IMTEL: 2 X 0.5 ns = 1 ns per instruction

AND: 1 X 1ns = 1ns per instruction ☺

Computer Architecture 27

Empirical Evaluation

Computer Architecture 28

Benchmarks

Metrics

Latency and bandwidth

Simulators

Tenha um bom dia

Computer Architecture 29

	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Exception handling and Pipelining
	Slide 3: Contd.
	Slide 4: Contd.
	Slide 5: Moving on in the pursuit of IPC++
	Slide 6: Beyond Scalar
	Slide 7: Instruction Level Parallelism (ILP)
	Slide 8: Superscalar Processor
	Slide 9: What is the deal?
	Slide 10: Out of order (O3) processor: Pursuit of even higher IPC
	Slide 11: Out-of-order follows data-flow order
	Slide 12: O3
	Slide 13: O3 + Superscalar
	Slide 14: O3 + Superscalar
	Slide 15: O3 + Superscalar
	Slide 16: The Big Picture
	Slide 17: The notion of Commit
	Slide 18: Why we need in-order commit?
	Slide 19: Quantifying Performance
	Slide 20: Performance: Time (Iron Law)
	Slide 21: Performance: Time (Iron Law)
	Slide 22: Example
	Slide 23: Example
	Slide 24: Example
	Slide 25: Example (Role of compiler/programmer)
	Slide 26: A bit deeper
	Slide 27: Which one ?
	Slide 28: Empirical Evaluation
	Slide 29: Tenha um bom dia

