) cAsPer

CS230: Digital Logic Designh and
Computer Architecture

Lecture 17: Caches
https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

https://www.cse.iitb.ac.in/~biswa/

https://www.cse.iitb.ac.in/~biswa/

Caching: 10K Feet View

/ North pole @ \

Address
Address e
Data P2t 500 to 300 cycle
p N Costly DRAM
Caching is a speculation technique © accesses®
5 Works - if locality)

-

Computer Architecture

How big/small?

~

Latency: low
Area: low
Capacity: low

g Latency: high A
Area: high
Computer Architecture Capacity: high /

1K Feet View of an O3 core: A bit Deeper
m

oAy

A.LOAD) DRAM: 300 cycles 1. LI0OAD®
2.SUB 1cycle © 2.SUB ®
3. LOAD 300 cycles . [3.10AD ®
4. LOAD 300 cycles . [4.LOAD ®
| 5. MUL) 2cycles ® 5. MUL®

In-order Instruction Fetch
(Multiple fetch in one cycle)

[Processor core says all LOADs should take one cycle. Ehh!]

Computer Architecture 4

Impact of one DRAM access

DRAM: 100ns (16 instructions per ns)

™~

/1. LOAD Y
2.SUB

3. LOAD
4. LOAD

{4-fetch and issue processor running at 4GHz (0.25ns) J

Computer Architecture 5

Impact of one DRAM access

DRAM: 100ns (16 instructions per ns)

™~

/1. LOAD Y
2.SUB

3. LOAD
4. LOAD

[4-fetch and issue processor running at 4GHz (0.25ns)]

#instructions can get executed during one DRAM
access: 1600 ® ®

Computer Architecture 6

Cache with latency

/ North pole @ \

Address Address

Data: 1 cycle Dat
Y %9200 to 300 cycle

N U

N Costly DRAM
accesses®

p
32 to 64KB $ will be available in one
to four cycles ®

South poe

Cache hierarchy with latency

Address

/ North pole ©
7, S Address [BE%,
10 cycles

‘Address
10s of KBs 100s of KBs

Core

Data: 1 cycle 30 cycles'

[Multi-level cache hierarchy }

.

-

1000s of KBs

Computer Architecture

Cache hierarchy with latency

/ North pole ©
7, 9Address BRVo Al Address
10 cycles

Address : : W
30 cycles
10s of KBs 100s of KBs

Data: 1 cycle
1000s of KBs

Core

[Multi-level cache hierarchy }

[How many levels ?}
[Total latency < DRAM latency 1

computer Arcnrtecture

Takeaway

[Latency and bandwidth (multiple ports) }

12 S

L3S

Computer Architecture 10

Takeaway

[Latency and bandwidth (multiple ports) }

[Latency}

A

L3S

Computer Architecture 11

Takeaway

[Latency and bandwidth (multiple ports) }

[Latency}

L3S [Capacity }

Computer Architecture 12

Accessing a cache

One byte

. >

_ /

Computer Architecture 13

Bytes to blocks (lines)

One byte

One line

[Typical line size: 64 to 128 Bytes }

Computer Architecture 14

A bit deeper: 1024 lines each of 32B

4 GB DRAM One byte
(/
| o (4 4 1] 7]
Line O .
. \
Address (32-b!t) One line
—_— -

Computer Architecture 15

A bit deeper: 1024 lines each of 32B

4 GB DRAM One byte
s //
Line O ~
_ e e e e e
g ,:Address (32-b:|t) One line
J — !

Line 1023i I

Line number (index): 10 bits
Byte offset (offset): 5 bits

Computer Architecture 16

Direct Mapped Cache

Line O

— Line_ 512
Line 1023

Computer Architecture

17

Direct Mapped in Action

31 14 5 0
Cache Tag A Cache Index Byte Select
Ex: Ox50 Ex: Ox01 Ex: Ox00
Valid Bit Cache Tag Cache Data
Byte 31 Byte 1 Byte O 0
.II III :
: 0x50 Byte 63 Byte 33 Byte 3y P —
L B | B REN] RERRR] RERRRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERREREERRERRRRRRRRRRRRER] RERRERIRBERREERRRRRRRERRRRRREERRERRERRRRRRRREERRRRRRERRRRRRRRRRRRNERHNI] 2.
3
Byte 1023 Byte 992 1023
Computer Architecture 18

What if we have multiple ways?

Ta Index Offset 1
[5 J One byte
7)/
Set 0 Tag L Line O
| —————T—
Tag
Ta \
Set 511 % byte
Tag | I Line 1023
AN =/
Computer Architecture 19

2—\3/}/ay assoclative In actioq4

5 0
| Cache Tag Cache Index | Byte Select
|
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
A-Ft-fp--------- N e P S I i
I
I
| |
e e e R e L —
I 1

—ED ey (D

Cache Block
Computer Architecture 20

4-way associative: Just a better picture

Tag g e
Index
V Tag Data V Tag Data V Tag Data V Tag Data
0 0 0 0
1 1 1 1
2 2 2 2
— ? | : ? | Ak ! H !
255 255 255 255
n<> <> <> n<>
————>__ 4x1 select
Hit . Data
Computer Architecture 21

[Tag

Offset 1

J

)

Tag

Tag

—

)

Tag

Tag

—

Computer Architecture

~

/

byge

\E]

Extreme: One cache, one set, fully associative

One byte

Line O

Line 1023

22

A bit different way

’ [Baker Street: Cache Index © 1

'221b: Tag bits ® }

‘Sherlock Holmes: Byte offset © © |

Computer Architecture 23

Knobs of interest

'Line size, associativity, cache size]

:Tradeoff: latency, complexity, energy/power]

-

Tips: Think about the extremes:

Line size = one byte or cache size

Associativity = one or #lines

Cache size = Goal oriented: latency/bandwidth or capacity

https://github.com/HewlettPackard/cacti/

Computer Architecture

24

https://github.com/HewlettPackard/cacti/

Cache misses

Cold Miss: cache starts empty and this is the first reference J

Conflict Miss: Many mapped to the same index bits J

|
|
{Capacity Miss: Cache size is not sufficient J
|

Coherence Miss: in Multi-core systems, only [not |/O coherence] J

Computer Architecture 25

On a Miss, Replace a block, which block?

Think of each block in a set having a “priority”
Indicating how important it is to keep the block in the cache

Key issue: How do you determine/adjust block priorities?

ldeally: Belady’s OPT policy, replace the block that will be used furthest
in the future. No one knows the future though ©

There are three key decisions in a set:
Insertion, promotion, eviction (replacement)

Computer Architecture 26

A simple LRU (Least-Recently-Used) Policy

[Cache Eviction Policy: On a miss (block i), which block to evict (replace) ? J

L MRU LRU }
A (e

{Cache Insertion Policy: New block i inserted into MRU. }

MRU LRU
{SETA Er }

{Cache Promotion Policy: On a future hit (block i), promote to MRU }

We need priority bits per block. For example, a 16-way cache will need four bit/block LRU
causes thrashing when working set > cache size

Computer Architecture 27

Types of Applications

100

|
I
75 |
I

Miss Rate
L
[

I
I

251 I _ i 4L i
|
I

0 |

VI3 A5 61 99W A2y h5 6199 vY 3 s 61 %9 VL d A5 61 g 9D
Cache Size (MB) Cache Size (MB) Cache Size (MB) Cache Size (MB)
(a) Cache “Friendly” Workloads (b) Cache “Fitting” Workloads (c) Cache “Thrashing” Workloads (d) Streaming Workloads

Computer Architecture 28

Let’s redefine cache misses

Compulsory: first reference to a line (a.k.a. cold start misses)
* misses that would occur even with infinite cache

Capacity: cache is too small to hold all data
* misses that would occur even under perfect (Belady’s)
replacement policy
Conflict: misses that occur because of collisions due to line-
placement strategy
* misses that would not occur with ideal full associativity

Computer Architecture 29

Coffee Credits

Karan:+1

Dhananjay: +1

\ \
) J X \ o
By f &
| 1 } ,..;"“?f({ X N
T o S

XOPOLUEero AHA

	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Caching: 10K Feet View
	Slide 3: How big/small?
	Slide 4: 1K Feet View of an O3 core: A bit Deeper
	Slide 5: Impact of one DRAM access
	Slide 6: Impact of one DRAM access
	Slide 7: Cache with latency
	Slide 8: Cache hierarchy with latency
	Slide 9: Cache hierarchy with latency
	Slide 10: Takeaway
	Slide 11: Takeaway
	Slide 12: Takeaway
	Slide 13: Accessing a cache
	Slide 14: Bytes to blocks (lines)
	Slide 15: A bit deeper: 1024 lines each of 32B
	Slide 16: A bit deeper: 1024 lines each of 32B
	Slide 17: Direct Mapped Cache
	Slide 18: Direct Mapped in Action
	Slide 19: What if we have multiple ways?
	Slide 20: 2-way associative in action
	Slide 21: 4-way associative: Just a better picture
	Slide 22: Extreme: One cache, one set, fully associative
	Slide 23: A bit different way
	Slide 24: Knobs of interest
	Slide 25: Cache misses
	Slide 26: On a Miss, Replace a block, which block?
	Slide 27: A simple LRU (Least-Recently-Used) Policy
	Slide 28: Types of Applications
	Slide 29: Let’s redefine cache misses
	Slide 30: Coffee Credits
	Slide 31: хорошего дня

