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Caching: 10K Feet View

/ North pole @ \

Address
Address e
Data P2t 500 to 300 cycle
p N Costly DRAM
Caching is a speculation technique © accesses®
5 Works - if locality )

-
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How big/small?

~

Latency: low
Area: low
Capacity: low

g Latency: high A
Area: high
Computer Architecture Capacity: high /




1K Feet View of an O3 core: A bit Deeper
m

oAy

A.LOAD ) DRAM: 300 cycles 1. LI0OAD®
2.SUB 1cycle © 2.SUB ®
3. LOAD 300 cycles . [3.10AD ®
4. LOAD 300 cycles . [4.LOAD ®
| 5. MUL ) 2cycles ® 5. MUL®

In-order Instruction Fetch
(Multiple fetch in one cycle)

[Processor core says all LOADs should take one cycle. Ehh! ]

Computer Architecture 4




Impact of one DRAM access

DRAM: 100ns (16 instructions per ns)

™~

/1. LOAD Y
2.SUB

3. LOAD
4. LOAD

{4-fetch and issue processor running at 4GHz (0.25ns) J
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Impact of one DRAM access

DRAM: 100ns (16 instructions per ns)

™~

/1. LOAD Y
2.SUB

3. LOAD
4. LOAD

[4-fetch and issue processor running at 4GHz (0.25ns) ]

#instructions can get executed during one DRAM
access: 1600 ® ®
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Cache with latency

/ North pole @ \

Address Address

Data: 1 cycle Dat
Y %9200 to 300 cycle

N U

N Costly DRAM
accesses®

p
32 to 64KB $ will be available in one
to four cycles ®

South poe




Cache hierarchy with latency

Address

/ North pole ©
7, S Address [BE%,
10 cycles

‘Address
10s of KBs 100s of KBs

Core

Data: 1 cycle 30 cycles'

[ Multi-level cache hierarchy }

.

-

1000s of KBs
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Cache hierarchy with latency

/ North pole ©
7, 9Address BRVo Al Address
10 cycles

Address : : W
30 cycles
10s of KBs 100s of KBs

Data: 1 cycle
1000s of KBs

Core

[ Multi-level cache hierarchy }

[How many levels ?}
[ Total latency < DRAM latency 1

computer Arcnrtecture




Takeaway

[Latency and bandwidth (multiple ports) }

12 S

L3S

Computer Architecture 10



Takeaway

[Latency and bandwidth (multiple ports) }

[ Latency}

A

L3S
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Takeaway

[Latency and bandwidth (multiple ports) }

[ Latency}

L3S [ Capacity }
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Accessing a cache

One byte

. >

\_ /

Computer Architecture 13



Bytes to blocks (lines)

One byte

One line

[ Typical line size: 64 to 128 Bytes }
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A bit deeper: 1024 lines each of 32B

4 GB DRAM One byte
( /
| o (4 4 1 ] 7]
Line O .
. \
Address (32-b!t) One line
—_— -
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A bit deeper: 1024 lines each of 32B

4 GB DRAM One byte
s //
Line O ~
_ e e e e e
g ,:Address (32-b:|t) One line
J — !

Line 1023i I

Line number (index): 10 bits
Byte offset (offset): 5 bits
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Direct Mapped Cache

Line O

— Line_ 512
Line 1023

Computer Architecture
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Direct Mapped in Action

31 14 5 0
Cache Tag A Cache Index Byte Select
Ex: Ox50 Ex: Ox01 Ex: Ox00
Valid Bit Cache Tag Cache Data
Byte 31 Byte 1 Byte O 0
.II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII :
: 0x50 Byte 63 Byte 33 Byte 3y P —
L B | B REN] RERRR] RERRRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRERREREERRERRRRRRRRRRRRER] RERRERIRBERREERRRRRRRERRRRRREERRERRERRRRRRRREERRRRRRERRRRRRRRRRRRNERHNI] 2.
3
Byte 1023 Byte 992 1023
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What if we have multiple ways?

Ta Index Offset 1
[ 5 J One byte
7 )/
Set 0 Tag L Line O
| —————T—
Tag
Ta \
Set 511 % byte
Tag | I Line 1023
AN =/
Computer Architecture 19



2—\3/}/ay assoclative In actioq4

5 0
| Cache Tag Cache Index | Byte Select
|
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
A-Ft-fp--------- N e P S I i
I
I
| |
e e e R e L —
I 1

—ED ey (D

Cache Block
Computer Architecture 20




4-way associative: Just a better picture

Tag g e
Index
V  Tag Data V  Tag Data V  Tag Data V  Tag Data
0 0 0 0
1 1 1 1
2 2 2 2
— ? | : ? | Ak ! H !
255 255 255 255
n<> <> <> n<>
————>__ 4x1 select
Hit . Data
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[Tag

Offset 1

J

)

Tag

Tag

—

)

Tag

Tag

—

Computer Architecture

~

/

byge

\E ]

Extreme: One cache, one set, fully associative

One byte

Line O

Line 1023

22



A bit different way

’ [Baker Street: Cache Index © 1

'221b: Tag bits ® }

‘Sherlock Holmes: Byte offset © © |
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Knobs of interest

'Line size, associativity, cache size ]

:Tradeoff: latency, complexity, energy/power ]

-

Tips: Think about the extremes:

Line size = one byte or cache size

Associativity = one or #lines

Cache size = Goal oriented: latency/bandwidth or capacity

https://github.com/HewlettPackard/cacti/

Computer Architecture
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Cache misses

Cold Miss: cache starts empty and this is the first reference J

Conflict Miss: Many mapped to the same index bits J

|
|
{Capacity Miss: Cache size is not sufficient J
|

Coherence Miss: in Multi-core systems, only [not |/O coherence] J
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On a Miss, Replace a block, which block?

Think of each block in a set having a “priority”
Indicating how important it is to keep the block in the cache

Key issue: How do you determine/adjust block priorities?

ldeally: Belady’s OPT policy, replace the block that will be used furthest
in the future. No one knows the future though ©

There are three key decisions in a set:
Insertion, promotion, eviction (replacement)
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A simple LRU (Least-Recently-Used) Policy

[Cache Eviction Policy: On a miss (block i), which block to evict (replace) ? J

L MRU LRU }
A (e

{Cache Insertion Policy: New block i inserted into MRU. }

MRU LRU
{SETA Er }

{Cache Promotion Policy: On a future hit (block i), promote to MRU }

We need priority bits per block. For example, a 16-way cache will need four bit/block LRU
causes thrashing when working set > cache size

Computer Architecture 27



Types of Applications

100

|
I
75 |
I

Miss Rate
L
[

I
I

251 I _ i 4L i
|
I

0 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

VI3 A5 61 99W A2y h5 6199 vY 3 s 61 %9 VL d A5 61 g 9D
Cache Size (MB) Cache Size (MB) Cache Size (MB) Cache Size (MB)
(a) Cache “Friendly” Workloads (b) Cache “Fitting” Workloads (c) Cache “Thrashing” Workloads (d) Streaming Workloads
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Let’s redefine cache misses

Compulsory: first reference to a line (a.k.a. cold start misses)
* misses that would occur even with infinite cache

Capacity: cache is too small to hold all data
* misses that would occur even under perfect (Belady’s)
replacement policy
Conflict: misses that occur because of collisions due to line-
placement strategy
* misses that would not occur with ideal full associativity
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Karan:+1
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