
https://www.cse.iitb.ac.in/~biswa/

CS230: Digital Logic Design and
Computer Architecture

Lecture 17: Caches
https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

https://www.cse.iitb.ac.in/~biswa/

Caching: 10K Feet View

Computer Architecture 2

Costly DRAM
accesses

200 to 300 cyclesC
o

re
North pole ☺

Address

Data

$
 Address

Data

Caching is a speculation technique ☺
Works – if locality

How big/small?

Computer Architecture 3
$

$

C
o

re

Latency: low
Area: low
Capacity: low

Latency: high
Area: high
Capacity: high

Computer Architecture 4

1K Feet View of an O3 core: A bit Deeper

In-order Instruction Fetch
(Multiple fetch in one cycle)

1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB
1. LOAD 

3. LOAD 
4. LOAD 
5. MUL

2. SUB 

DRAM: 300 cycles

300 cycles
300 cycles

1 cycle ☺

2 cycles ☺

Bottleneck

Processor core says all LOADs should take one cycle. Ehh!

Impact of one DRAM access

Computer Architecture 5

1. LOAD

3. LOAD
4. LOAD

2. SUB

DRAM: 100ns (16 instructions per ns)

.

.

.

4-fetch and issue processor running at 4GHz (0.25ns)

Impact of one DRAM access

Computer Architecture 6

1. LOAD

3. LOAD
4. LOAD

2. SUB

DRAM: 100ns (16 instructions per ns)

.

.

.

4-fetch and issue processor running at 4GHz (0.25ns)

#instructions can get executed during one DRAM
access: 1600 

Cache with latency

Computer Architecture 7

Costly DRAM
accesses

200 to 300 cyclesC
o

re

South pole ☺

North pole ☺

Address

Data: 1 cycle

$
 Address

Data

32 to 64KB $ will be available in one
to four cycles 

Cache hierarchy with latency

Computer Architecture 8

C
o

re

South pole ☺

North pole ☺

Address
Data: 1 cycle

$
 Address

10 cycles

Multi-level cache hierarchy

$

$

Address

30 cycles

10s of KBs 100s of KBs
1000s of KBs

Cache hierarchy with latency

Computer Architecture 9

C
o

re

South pole ☺

North pole ☺

Address
Data: 1 cycle

$
 Address

10 cycles

Multi-level cache hierarchy

$

$

Address

30 cycles

10s of KBs 100s of KBs
1000s of KBs

How many levels ?

Total latency < DRAM latency

Takeaway

Computer Architecture 10

L1 $

L2 $

L3 $

Latency and bandwidth (multiple ports)

Takeaway

Computer Architecture 11

L1 $

L2 $

L3 $

Latency and bandwidth (multiple ports)

Latency

Takeaway

Computer Architecture 12

L1 $

L2 $

L3 $

Latency and bandwidth (multiple ports)

Latency

Capacity

Accessing a cache

Computer Architecture 13

C
o

re
One byte

Bytes to blocks (lines)

Computer Architecture 14

C
o

re
One byte

One line

Typical line size: 64 to 128 Bytes

A bit deeper: 1024 lines each of 32B

Computer Architecture 15

C
o

re

One byte

Line 0

Address (32-bit)

4 GB DRAM

Line 1023

One line

A bit deeper: 1024 lines each of 32B

Computer Architecture 16

C
o

re

One byte

Line 0

Address (32-bit)

4 GB DRAM

Line 1023

One line

Line number (index): 10 bits

Byte offset (offset): 5 bits

Direct Mapped Cache

Computer Architecture 17

Tag Index Offset

Line 0

Line 1023

Line 512
.
.
.

byte

Direct Mapped in Action

Computer Architecture 18

:

0x50

Valid Bit

:

Cache Tag

Byte 32

0

1

2

3

:

Cache Data

Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :

Byte 992Byte 1023 : 1023

Ex: 0x50 Ex: 0x00

Cache Index

0531

Cache Tag Byte Select

14

Ex: 0x01

What if we have multiple ways?

Computer Architecture 19

One byte

Line 0

Line 1023

Set 0

Set 511

Tag Index Offset

byte

Tag

Tag

Tag

Tag

2-way associative in action

Computer Architecture 20

Cache Index

0531

Cache Tag Byte Select

14

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Mux 01
Sel1 Sel0

OR

Hit

Compare Compare

Cache Block

4-way associative: Just a better picture

Computer Architecture 21

DataTagV

0

1

2

.

.

.

255

DataTagV

0

1

2

.

.

.

255

DataTagV

0

1

2

.

.

.

255

DataTagV

0

1

2

.

.

.

255

Index

Tag

Hit Data

4x1 select

Extreme: One cache, one set, fully associative

Computer Architecture 22

One byte

Line 0

Line 1023

Tag Offset

byte

Tag

Tag

Tag

Tag

A bit different way

Computer Architecture 23

Baker Street: Cache Index ☺

221b: Tag bits ☺

Sherlock Holmes: Byte offset ☺☺

Knobs of interest

Computer Architecture 24

Line size, associativity, cache size

Tradeoff: latency, complexity, energy/power

Tips: Think about the extremes:
Line size = one byte or cache size
Associativity = one or #lines
Cache size = Goal oriented: latency/bandwidth or capacity

https://github.com/HewlettPackard/cacti/

https://github.com/HewlettPackard/cacti/

Cache misses

Computer Architecture 25

Cold Miss: cache starts empty and this is the first reference

Conflict Miss: Many mapped to the same index bits

Capacity Miss: Cache size is not sufficient

Coherence Miss: in Multi-core systems, only [not I/O coherence]

On a Miss, Replace a block, which block?

Computer Architecture 26

Think of each block in a set having a “priority”
Indicating how important it is to keep the block in the cache

Key issue: How do you determine/adjust block priorities?

Ideally: Belady’s OPT policy, replace the block that will be used furthest
in the future. No one knows the future though ☺

There are three key decisions in a set:
Insertion, promotion, eviction (replacement)

A simple LRU (Least-Recently-Used) Policy

Computer Architecture 27

Cache Eviction Policy: On a miss (block i), which block to evict (replace) ?

Cache Insertion Policy: New block i inserted into MRU.

Cache Promotion Policy: On a future hit (block i), promote to MRU

a b c d e f g h

MRU LRU
SET A

i a b c d e f g

MRU LRU
SET A

We need priority bits per block. For example, a 16-way cache will need four bit/block LRU
causes thrashing when working set > cache size

Types of Applications

Computer Architecture 28

Let’s redefine cache misses

Computer Architecture 29

Compulsory: first reference to a line (a.k.a. cold start misses)
•misses that would occur even with infinite cache

Capacity: cache is too small to hold all data
•misses that would occur even under perfect (Belady’s)

replacement policy

Conflict: misses that occur because of collisions due to line-
placement strategy
•misses that would not occur with ideal full associativity

Coffee Credits

Karan : + 1

Dhananjay: +1

Computer Architecture 30

хорошего дня

Computer Architecture 31

	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Caching: 10K Feet View
	Slide 3: How big/small?
	Slide 4: 1K Feet View of an O3 core: A bit Deeper
	Slide 5: Impact of one DRAM access
	Slide 6: Impact of one DRAM access
	Slide 7: Cache with latency
	Slide 8: Cache hierarchy with latency
	Slide 9: Cache hierarchy with latency
	Slide 10: Takeaway
	Slide 11: Takeaway
	Slide 12: Takeaway
	Slide 13: Accessing a cache
	Slide 14: Bytes to blocks (lines)
	Slide 15: A bit deeper: 1024 lines each of 32B
	Slide 16: A bit deeper: 1024 lines each of 32B
	Slide 17: Direct Mapped Cache
	Slide 18: Direct Mapped in Action
	Slide 19: What if we have multiple ways?
	Slide 20: 2-way associative in action
	Slide 21: 4-way associative: Just a better picture
	Slide 22: Extreme: One cache, one set, fully associative
	Slide 23: A bit different way
	Slide 24: Knobs of interest
	Slide 25: Cache misses
	Slide 26: On a Miss, Replace a block, which block?
	Slide 27: A simple LRU (Least-Recently-Used) Policy
	Slide 28: Types of Applications
	Slide 29: Let’s redefine cache misses
	Slide 30: Coffee Credits
	Slide 31: хорошего дня

