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Caching: 10K Feet View
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Costly DRAM 
accesses

200 to 300 cyclesC
o

re
North pole ☺

Address

Data

$
 Address

Data

Caching is a speculation technique ☺
Works – if locality  



How big/small?
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Latency: low
Area: low
Capacity: low

Latency: high
Area: high
Capacity: high
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1K Feet View of an O3 core: A bit Deeper 

In-order Instruction Fetch
(Multiple fetch in one cycle)

1. LOAD

3. LOAD
4. LOAD
5. MUL

2. SUB
1. LOAD 

3. LOAD 
4. LOAD 
5. MUL

2. SUB 

DRAM: 300 cycles

300 cycles
300 cycles 

1 cycle ☺

2 cycles ☺

Bottleneck

Processor core says all LOADs should take one cycle. Ehh!



Impact of one DRAM access
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1. LOAD

3. LOAD
4. LOAD

2. SUB

DRAM: 100ns (16 instructions per ns)

.

.

.

4-fetch and issue processor running at 4GHz (0.25ns)



Impact of one DRAM access
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1. LOAD

3. LOAD
4. LOAD

2. SUB

DRAM: 100ns (16 instructions per ns)

.

.

.

4-fetch and issue processor running at 4GHz (0.25ns)

#instructions can get executed during one DRAM 
access: 1600 



Cache with latency
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Costly DRAM 
accesses

200 to 300 cyclesC
o

re

South pole ☺

North pole ☺

Address

Data: 1 cycle

$
 Address

Data

32 to 64KB $ will be available in one 
to four cycles 



Cache hierarchy with latency
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South pole ☺

North pole ☺

Address
Data: 1 cycle

$
 Address

10 cycles

Multi-level cache hierarchy

$
 

$
 

Address

30 cycles

10s of KBs 100s of KBs
1000s of KBs



Cache hierarchy with latency
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South pole ☺

North pole ☺

Address
Data: 1 cycle

$
 Address

10 cycles

Multi-level cache hierarchy

$
 

$
 

Address

30 cycles

10s of KBs 100s of KBs
1000s of KBs

How many levels ?

Total latency < DRAM latency 



Takeaway
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L1 $ 

L2 $ 

L3 $ 

Latency and bandwidth (multiple ports)



Takeaway
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L1 $ 

L2 $ 

L3 $ 

Latency and bandwidth (multiple ports)

Latency



Takeaway
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L1 $ 

L2 $ 

L3 $ 

Latency and bandwidth (multiple ports)

Latency

Capacity



Accessing a cache
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One byte



Bytes to blocks (lines)
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C
o

re
One byte

One line

Typical line size: 64 to 128 Bytes



A bit deeper: 1024 lines each of 32B
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One byte

Line 0

Address (32-bit)

4 GB DRAM

Line 1023

One line



A bit deeper: 1024 lines each of 32B
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C
o

re

One byte

Line 0

Address (32-bit)

4 GB DRAM

Line 1023

One line

Line number (index): 10 bits

Byte offset    (offset): 5 bits



Direct Mapped Cache
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Tag Index Offset

Line 0

Line 1023

Line 512
.
.
.

byte 



Direct Mapped in Action
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:

0x50

Valid Bit

:

Cache Tag

Byte 32

0

1

2

3

:

Cache Data

Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :

Byte 992Byte 1023 : 1023

Ex: 0x50 Ex: 0x00

Cache Index

0531

Cache Tag Byte Select

14

Ex: 0x01



What if we have multiple ways?
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One byte

Line 0

Line 1023

Set 0

Set 511

Tag Index Offset

byte 

Tag

Tag

Tag

Tag



2-way associative in action
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Cache Index

0531

Cache Tag Byte Select

14

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Mux 01
Sel1 Sel0

OR

Hit

Compare Compare

Cache Block



4-way associative: Just a better picture
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DataTagV

0

1

2

.

.

.

255

DataTagV
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255

DataTagV

0

1

2

.

.

.

255

DataTagV

0

1

2

.

.

.

255

Index

Tag

Hit Data

4x1 select



Extreme: One cache, one set, fully associative
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One byte

Line 0

Line 1023

Tag Offset

byte 

Tag

Tag

Tag

Tag



A bit different way
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Baker Street: Cache Index ☺

221b: Tag bits ☺

Sherlock Holmes: Byte offset ☺☺



Knobs of interest
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Line size, associativity, cache size 

Tradeoff: latency, complexity, energy/power

Tips: Think about the extremes:
Line size = one byte or cache size 
Associativity = one or #lines 
Cache size = Goal oriented: latency/bandwidth or capacity

https://github.com/HewlettPackard/cacti/

https://github.com/HewlettPackard/cacti/


Cache misses
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Cold Miss: cache starts empty and this is the first reference

Conflict Miss: Many mapped to the same index bits

Capacity Miss: Cache size is not sufficient 

Coherence Miss: in Multi-core systems, only [not I/O coherence] 



On a Miss, Replace a block, which block?
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Think of each block in a set having a “priority”
Indicating how important it is to keep the block in the cache

Key issue: How do you determine/adjust block priorities?

Ideally: Belady’s OPT policy, replace the block that will be used furthest 
in the future. No one knows the future though ☺

There are three key decisions in a set:
Insertion, promotion, eviction (replacement)



A simple LRU (Least-Recently-Used) Policy
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Cache Eviction Policy: On a miss (block i), which block to evict (replace) ? 

Cache Insertion Policy: New block i inserted into MRU.

Cache Promotion Policy: On a future hit (block i), promote to MRU 

a b c d e f g h

MRU LRU
SET A

i a b c d e f g

MRU LRU
SET A

We need priority bits per block. For example, a 16-way cache will need four bit/block LRU 
causes thrashing when working set > cache size



Types of Applications
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Let’s redefine cache misses
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Compulsory: first reference to a line (a.k.a. cold start misses)
•misses that would occur even with infinite cache

Capacity: cache is too small to hold all data 
•misses that would occur even under perfect (Belady’s) 

replacement policy

Conflict: misses that occur because of collisions due to line-
placement strategy
•misses that would not occur with ideal full associativity



Coffee Credits

Karan : + 1

Dhananjay: +1 
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хорошего дня 
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