CS230: Digital Logic Design and Computer Architecture
 Lecture 2: Logic gates and K-maps
 https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

rocucuras

Phones (smart/non-smart) on silence plz, Thanks

Logistics

- Join Piazza now
- Lab on Monday, January 9, 2 PM SL1 to SL3, attendance compulsory
- You can meet me and discuss if anything is not clear
- Problem set 1 by next week. Ungraded, for your practice only
- Detailed course content by end of this week

Range of Numbers

System

Range

Unsigned
 $\left[0,2^{N}-1\right]$

Sign/Magnitude $\quad\left[-2^{N-1}+1,2^{N-1}-1\right]$
Two's Complement $\quad\left[-2^{N-1}, 2^{N-1}-1\right]$
Remember sign/magnitude has two zeros $;$

To represent a signed number in 2's complement form using large number of bits

Repeat the sign bit at the msbs as needed

Overflow

$1101+0101 ?$

PAUSE

Common Logic Gates

Universal Logic gates? Coffee points++

NAND and NOR

A bit of Boolean algebra

Operations with 0 and 1:
Dual

1. $\mathrm{X}+0=\mathrm{X}$
1D. $X \cdot 1=X$
2. $X+1=1$
2D. $X \cdot 0=0$

AND, OR with identities

gives you back the original
variable or the identity (dot: AND, plus: OR)

Idempotent Law:
3. $\mathbf{X}+\mathbf{X}=\mathbf{X}$

3D. $X \cdot X=X$
AND, OR with self = self
Involution Law:
4. $\overline{\bar{X})}=\mathbf{X}$

Laws of Complementarity:
5. $\mathrm{X}+\overline{\mathrm{X}}=1$

5D. $\mathrm{X} \cdot \overline{\mathrm{X}}=0$
double complement $=$ no complement

Commutative Law:

6. $\mathbf{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X}$
6D. $\mathrm{X} \cdot \mathrm{Y}=\mathrm{Y} \cdot \mathrm{X}$
Just an axiom...

Computer Architecture

Contd.

Associative Laws:
7. $(\mathbf{X}+\mathbf{Y})+\mathrm{Z}=\mathrm{X}+(\mathrm{Y}+\mathrm{Z})$

$$
=\mathbf{X}+\mathbf{Y}+\mathbf{Z}
$$

7D. $(\mathrm{X} \cdot \mathrm{Y}) \cdot \mathrm{Z}=\mathrm{X} \cdot(\mathrm{Y} \cdot \mathrm{Z})$
Parenthesis order

$$
=\mathrm{X} \cdot \mathrm{Y} \cdot \mathrm{Z}
$$

does not matter

Distributive Laws:

8. $\mathrm{X} \cdot(\mathrm{Y}+\mathrm{Z})=(\mathrm{X} \cdot \mathrm{Y})+(\mathrm{X} \cdot \mathrm{Z}) \quad$ 8D. $\mathrm{X}+(\mathrm{Y} \cdot \mathrm{Z})=(\mathrm{X}+\mathrm{Y}) \cdot(\mathrm{X}+\mathrm{Z}) \quad$ Axiom

Simplification Theorems:
9. $\mathrm{X} \cdot \mathrm{Y}+\mathrm{X} \cdot \boldsymbol{Y}=\mathrm{X}$
10. $\mathrm{X}+\mathrm{X} \cdot \mathrm{Y}=\mathrm{X}$, how?
11. $(\mathrm{X}+\bar{Y}) \cdot \mathrm{Y}=\mathrm{X} \cdot \mathrm{Y}$

11D. $(\mathrm{X} \cdot \overline{\mathrm{Y}})+\mathrm{Y}=\mathrm{X}+\mathrm{Y}$

Useful for
simplifying
expressions

Actually worth remembering - they show up a lot in real designs...

DeMorgan's Law (Can you prove it)?

12. $\overline{(X+Y+Z+\cdots)}=\bar{X} \cdot \bar{Y} \cdot \bar{Z} \ldots$

12D. $\overline{(X . Y . Z \ldots)}=\bar{X}+\bar{Y}+\bar{Z}+\ldots$

- Think of this as a transformation
- Let's say we have:

$$
F=A+B+C
$$

- Applying DeMorgan's Law (12), gives us

$$
F=\overline{\overline{(A+B+C)}}=\overline{(\bar{A} \cdot \bar{B} \cdot \bar{C})}
$$

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false Computer Architecture

Contd. with a Truth Table

$$
A=\overline{(X+Y)}=\bar{X} \bar{Y}
$$

NOR is equivalent to AND with inputs complemented

X	Y	$\overline{X+Y}$	\bar{X}	\bar{Y}	$\bar{X} \bar{Y}$
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	0

$$
B=\overline{(X Y)}=\bar{X}+\bar{Y}
$$

NAND is equivalent to OR with inputs complemented

Computer Architecture

Remember: It is not

$$
\begin{gathered}
\overline{(X . Y)}=\bar{X} \cdot \bar{Y} \\
\overline{(X+Y)}=\bar{X}+\bar{Y}
\end{gathered}
$$

Definitions of interest

- A normal term is a product or sum term in which no variable appears more than once.
- Examples: $a, \bar{a}, a+c, \bar{a} c d$ are normal terms; $\bar{a}+a, \bar{a} a$ are not normal terms.
- A minterm of n variables is a normal product term with n literals. There are 2^{n} such product terms.
- Examples of 3 -variable minterms: ābc, abc
- Example: $\bar{a} b$ is not a 3 -variable minterm.
- A maxterm of n variables is a normal sum term with n literals. There are 2^{n} such sum terms.
- Examples of 3-variable maxterms: $\bar{a}+b+c, a+b+c$

Definitions of interest

- A sum of products (SOP) expressions is a set of product (AND) terms connected with logical sum (OR) operators.
- Examples: $a, \bar{a}, a b+c, \bar{a} c+b d e, a+b$ are SOP expressions.
- A product of sum (POS) expressions is a set of sum (OR) terms connected with logical product (OR) operators.
- Examples: $a, \bar{a}, a+b+c,(\bar{a}+c)(b+d)$ are POS expressions.

Definitions of interest

- The canonical sum of products (CSOP) form of an expression refers to rewriting the expression as a sum of minterms.
- Examples for 3-variables: $\bar{a} b c+a b c$ is a CSOP expression; $\bar{a} b+c$ is not.
- The canonical product of sums (CPOS) form of an expression refers to rewriting the expression as a product of maxterms.
- Examples for 3-variables: $(\bar{a}+b+c)(a+b+c)$ is a CPOS expression; $(\bar{a}+b) c$ is not.
- There is a close correspondence between the truth table and minterms and maxterms.

Computer Architecture

SOP: Sum of Products

Also known as disjunctive normal form or minterm expansion
Find all the input combinations (minterms) for which the output of the function is TRUE.

- Each row in a truth table has a minterm
- A minterm is a product (AND) of literals
- Each minterm is TRUE for that row (and only that row)

All Boolean equations can be written in SOP form

Contd.

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

- Only the shaded product term $-\mathbf{A} \overline{\mathbf{B}} \mathbf{C}=\mathbf{1} \cdot \overline{\mathbf{0}} \cdot \mathbf{1}-$ will be 1

Contd
 - Ṡtandard "shorthand" notation

- If we agree on the order of the variables in the rows of truth table...
- then we can enumerate each row with the decimal number that corresponds to the binary number created by the input pattern
$\left.\begin{array}{lll|l}A & B & C & F\end{array}\right]$

$$
f=
$$

We can write this as a sum of products
Or, we can use a summation notation

Contd.

Computer Architecture

We are on the same page?

Row number	x_{1}	x_{2}	x_{3}	Minterm	Maxterm
0	0	0	0	$m_{0}=\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{0}=x_{1}+x_{2}+x_{3}$
1	0	0	1	$m_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}$	$M_{1}=x_{1}+x_{2}+\bar{x}_{3}$
2	0	1	0	$m_{2}=\bar{x}_{1} x_{2} \bar{x}_{3}$	$M_{2}=x_{1}+\bar{x}_{2}+x_{3}$
3	0	1	1	$m_{3}=\bar{x}_{1} x_{2} x_{3}$	$M_{3}=x_{1}+\bar{x}_{2}+\bar{x}_{3}$
4	1	0	0	$m_{4}=x_{1} \bar{x}_{2} \bar{x}_{3}$	$M_{4}=\bar{x}_{1}+x_{2}+x_{3}$
5	1	0	1	$m_{5}=x_{1} \bar{x}_{2} x_{3}$	$M_{5}=\bar{x}_{1}+x_{2}+\bar{x}_{3}$
6	1	1	0	$m_{6}=x_{1} x_{2} \bar{x}_{3}$	$M_{6}=\bar{x}_{1}+\bar{x}_{2}+x_{3}$
7	1	1	1	$m_{7}=x_{1} x_{2} x_{3}$	$M_{7}=\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}$

POS: Product of Sum

Find all the input combinations (maxterms) for which the output of the function is FALSE.
Product of Sums (POS)

Each sum term represents one of the "zeros" of the function

\mathbf{A}	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

For the given input, only the shaded sum term will equal 0

$$
A+\bar{B}+C=\mathbf{0}+\overline{\mathbf{1}}+\mathbf{0}
$$

Anything ANDed with 0 is 0 ; Output F will be 0

The function evaluates to FALSE (i.e., output is 0) if any of the Sums (maxterms) causes the output to be 0
Computer Architecture

Contd.

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand replace minterm indices with the indices not already used E.g., $\mathrm{F}(A, B, C)=\sum m(3,4,5,6,7)=\Pi M(0,1,2)$
2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand replace maxterm indices with the indices not already used E.g., $F(A, B, C)=\Pi M(0,1,2)=\sum m(3,4,5,6,7)$
3. Expansion of \mathbf{F} to expansion of $\overline{\boldsymbol{F}}$:
E. g. , $F(A, B, C)=\sum m(3,4,5,6,7) \longrightarrow \bar{F}(A, B, C)=\sum m(0,1,2)$

$$
=\prod M(0,1,2)
$$

$$
=\prod M(3,4,5,6,7)
$$

4. Minterm expansion of \mathbf{F} to Maxterm expansion of \bar{F} : rewrite in Maxterm form, using the same indices as F

$$
\text { E.g. } \left.\begin{array}{rl}
\mathrm{F}(A, B, C) & =\sum m(3,4,5,6,7) \longrightarrow \bar{F}(A, B, C)
\end{array}\right)=\prod M(3,4,5,6,7)
$$

K-Maps

- Karnaugh Map (K-map) method

- K-map is an alternative method of representing the truth table that helps visualize adjacencies in up to 6 dimensions
- Physical adjacency \leftrightarrow Logical adjacency

2-variable K-map \quad 3-variable K-map

	00	01	11	10
0	000	001	011	010
1	100	101	111	110

4-variable K-map				
$C D$	00	01	11	10
00	0000	0001	0011	0010
01	0100	0101	0111	011
11	1100	1101	1111	1110
10	1000	1001	1011	1010

How? To minimize the Function

$B C$	00	01	11	10
0	000	001	011	010
1	100	101	111	110

[^0]
How?

Computer Architecture

Example: Grouping Minterms

Example: Grouping Maxterms

Some more examples

Simplified Expression: $\quad f(w, x, y, z)=\{M 0, M 2, M 4, M 6\}\{M 5, M 7, M 13, M 15\}$ \{M2,M6,M10,M14\}

$$
=(w+z)(\bar{x}+\bar{z})(\bar{y}+z)
$$

Why minimize?

Efficient resource usage

Resource scarcity

Summary

- Very simple guideline:
- Circle all the rectangular blocks of 1's in the map, using the fewest possible number of circles
- Each circle should be as large as possible
- Read off the implicants that were circled
- Some of them may be "don't care" (X) Try it yourself
- More formally:
- A Boolean equation is minimized when it is written as a sum of the fewest number of prime implicants
- Each circle on the K-map represents an implicant
- The largest possible circles are prime implicants
paUSE

Combinational Circuits

- Combinational logic is often grouped into larger building blocks to build more complex systems
- Hides the unnecessary gate-level details to emphasize the function of the building block
- Output is only dependent on the input
- We now examine:
- Decoder
- Multiplexer
- Full adder

Chapter 2.1 to 2.7 of H\&H

Coffee points:

- Dhananjay 210050044
- Guramrit 210050061

तुमचा दिवस चांगला जावो

[^0]: K-map adjacencies go "around the edges"
 Wrap around from first to last column
 Wrap around from top row to bottom row

