
https://www.cse.iitb.ac.in/~biswa/

CS230: Digital Logic Design and
Computer Architecture

Lecture 2: Logic gates and K-maps
https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

https://www.cse.iitb.ac.in/~biswa/

Phones (smart/non-smart)
on silence plz, Thanks

Computer Architecture 2

Logistics

• Join Piazza now

• Lab on Monday, January 9, 2 PM SL1 to SL3,
attendance compulsory

• You can meet me and discuss if anything is not clear

• Problem set 1 by next week. Ungraded, for your
practice only

• Detailed course content by end of this week

Computer Architecture 3

Range of Numbers

Computer Architecture 4

Remember sign/magnitude has two zeros ☺

Sign
Extension

Computer Architecture 5

To represent a signed number
in 2’s complement form using
large number of bits

Repeat the sign bit at the
msbs as needed

Overflow

1101 + 0101 ?

Computer Architecture 6

PAUSE

Computer Architecture 7

Common Logic Gates

Computer Architecture 8

Universal Logic gates? Coffee
points++

NAND and NOR

Computer Architecture 9

A bit of Boolean algebra

Computer Architecture 10

Operations with 0 and 1:

Idempotent Law:

Involution Law:

Laws of Complementarity:

Commutative Law:

1. X + 0 = X
2. X + 1 = 1

3. X + X = X

4. = X

5. X + = 1

6. X + Y = Y + X

AND, OR with identities
gives you back the original
variable or the identity (dot: AND, plus: OR)

AND, OR with self = self

double complement =
no complement

AND, OR with complement
gives you an identity

Just an axiom…

1D. X • 1 = X
2D. X • 0 = 0

3D. X • X = X

5D. X • = 0

6D. X • Y = Y • X

Dual

ഥ𝐗ഥ𝐗

(ഥ𝑿)

Contd.

Computer Architecture 11

Distributive Laws:

Simplification Theorems:
9. X • Y + X • = X

10. X + X • Y = X, how?

11. (X +) • Y = X • Y

9D. (X + Y) • (X +) = X

10D. X • (X + Y) = X

11D. (X •) + Y = X + Y

ഥ𝒀

ഥ𝒀

ഥ𝒀

ഥ𝒀

8. X • (Y+ Z) = (X • Y) + (X • Z) 8D. X + (Y• Z) = (X + Y) • (X + Z)

Associative Laws:
7. (X + Y) + Z = X + (Y + Z)

= X + Y + Z

7D. (X • Y) • Z = X • (Y • Z)
= X • Y • Z

Parenthesis order
does not matter

Axiom

Useful for
simplifying
expressions

Actually worth remembering — they show up a lot in real designs…

DeMorgan’s Law (Can you prove it)?

Computer Architecture 12

 Think of this as a transformation

▪ Let’s say we have:

F = A + B + C

▪ Applying DeMorgan’s Law (12), gives us

12.

12D. (𝑿 . 𝒀. 𝒁.…) = ഥ𝑿 + ഥ𝒀 + ഥ𝒁 + …

(𝑿 + 𝒀 + 𝒁 +⋯) = ഥ𝑿. ഥ𝒀. ഥ𝒁.…

𝑭 = (𝑨 + 𝑩 + 𝑪) = (ഥ𝑨. ഥ𝑩. ഥ𝑪)

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false

Contd. with a Truth Table

Computer Architecture 13

NOR is equivalent to AND
with inputs complemented

NAND is equivalent to OR
with inputs complemented

𝑨 = (𝑿 + 𝒀) = ഥ𝑿ഥ𝒀

𝑩 = (𝑿𝒀) = ഥ𝑿 + ഥ𝒀

𝑿
𝒀

𝑿
𝒀

𝑿
𝒀

𝑩

𝑩𝑿
𝒀

𝑨

𝑨

𝑿 𝒀 𝑿𝒀 ഥ𝑿 ഥ𝒀 ഥ𝑿 + ഥ𝒀

0 0 1 1 1 1

0 1 1 1 0 1

1 0 1 0 1 1

1 1 0 0 0 0

𝑿 𝒀 𝑿 + 𝒀 ഥ𝑿 ഥ𝒀 ഥ𝑿ഥ𝒀

0 0 1 1 1 1

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 0

Remember: It is not

Computer Architecture 14

(𝑿. 𝒀) = ഥ𝑿. ഥ𝒀

(𝑿 + 𝒀) = ഥ𝑿 + ഥ𝒀

Definitions of interest

Computer Architecture 15

◼ A normal term is a product or sum term in which no

variable appears more than once.

 Examples: a, ā, a+c, ācd are normal terms; ā+a, āa are not

normal terms.

◼ A minterm of n variables is a normal product term with n

literals. There are 2n such product terms.

 Examples of 3-variable minterms: ābc, abc

 Example: āb is not a 3-variable minterm.

◼ A maxterm of n variables is a normal sum term with n

literals. There are 2n such sum terms.

 Examples of 3-variable maxterms: ā+b+c, a+b+c

Definitions of interest

Computer Architecture 16

◼ A sum of products (SOP) expressions is a set of product

(AND) terms connected with logical sum (OR) operators.

 Examples: a, ā, ab+c, āc+bde, a+b are SOP expressions.

◼ A product of sum (POS) expressions is a set of sum

(OR) terms connected with logical product (OR)

operators.

 Examples: a, ā, a+b+c, (ā+c)(b+d) are POS expressions.

Definitions of interest

Computer Architecture 17

◼ The canonical sum of products (CSOP) form of an
expression refers to rewriting the expression as a sum of
minterms.

 Examples for 3-variables: ābc + abc is a CSOP expression;

āb + c is not.

◼ The canonical product of sums (CPOS) form of an
expression refers to rewriting the expression as a product
of maxterms.

 Examples for 3-variables: (ā+b+c)(a+b+c) is a CPOS

expression; (ā+b)c is not.

◼ There is a close correspondence between the truth table
and minterms and maxterms.

SOP: Sum of Products

Computer Architecture 18

Also known as disjunctive normal form or minterm expansion

0 1 1 1 0 0 1 0 1 1 1 0

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

All Boolean equations can be written in SOP form

• Each row in a truth table has a minterm

• A minterm is a product (AND) of literals

• Each minterm is TRUE for that row (and only that row)

𝐀 𝐁 𝐂 𝐅

Find all the input combinations (minterms) for which the output of the function is TRUE.

Contd.

Computer Architecture 19

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

◼ Only the shaded product term — 𝐀ഥ𝑩𝐂 = 𝟏 ∙ ഥ𝟎 ∙ 𝟏— will be 1

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪 + 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

Activates
this term

Contd.

Computer Architecture 20

◼ Standard “shorthand” notation

❑ If we agree on the order of the variables in the rows of truth
table…

◼ then we can enumerate each row with the decimal number that
corresponds to the binary number created by the input pattern

111 = decimal 7 so this is minterm #7, or m7

100 = decimal 4 so this is minterm #4, or m4

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

f =

= ∑m(3,4,5,6,7)

m3 + m4 + m5 + m6 + m7 We can write this as a sum of products

Or, we can use a summation notation

𝐀 𝐁 𝐂 𝐅

Contd.

Computer Architecture 21

Shorthand Notation for
Minterms of 3 Variables

F in canonical form:

F(A,B,C) = ∑m(3,4,5,6,7)

= m3 + m4 + m5 + m6 + m7

canonical form ≠ minimal form

2-Level AND/OR
Realization

minterms
0 0 0 = m0
0 0 1 = m1
0 1 0 = m2
0 1 1 = m3
1 0 0 = m4
1 0 1 = m5
1 1 0 = m6
1 1 1 = m7

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪
+ 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂

𝑭 = 𝐀ഥ𝑩 𝑪 + ഥ𝑪 + ഥ𝑨𝐁𝐂 + 𝐀𝐁(𝑪 + ഥ𝑪)

= 𝐀ഥ𝑩 + ഥ𝑨𝐁𝐂 + 𝐀𝐁

= 𝐀(ഥ𝑩 + 𝑩) + ഥ𝑨𝐁𝐂

= 𝐀 + ഥ𝑨𝐁𝐂

= 𝐀 + 𝐁𝐂

ഥ𝑨ഥ𝑩ഥ𝑪
ഥ𝑨ഥ𝑩𝑪
ഥ𝑨𝑩ഥ𝑪
ഥ𝑨𝑩𝑪
𝑨ഥ𝑩ഥ𝑪
𝑨ഥ𝑩𝑪
𝑨𝑩ഥ𝑪
𝑨𝑩𝑪

𝐀 𝐁 𝐂

We are on the same page?

Computer Architecture 22

POS: Product of Sum

Computer Architecture 23

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

For the given input, only the shaded sum term
will equal 0

Anything ANDed with 0 is 0; Output F will be 0

Product of Sums (POS)

0 0 0 0 0 1

sums

product

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)

𝑭 = 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩 + ഥ𝑪 (𝑨 + ഥ𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

Each sum term represents one of the
“zeros” of the function

This input

Activates this term

𝑨 + ഥ𝑩 + 𝑪 = 𝟎 + ഥ𝟏 + 𝟎

0 1 0

Find all the input combinations (maxterms) for which the output of the function is FALSE.

The function evaluates to FALSE (i.e., output is 0) if any of the Sums (maxterms) causes the output to be 0

Contd.

Computer Architecture 24

1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

3. Expansion of to expansion of :

4. Minterm expansion of to Maxterm expansion of :
rewrite in Maxterm form, using the same indices as

E.g., 𝐅 𝑨,𝑩, 𝑪 = σ𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 = ς𝑴(𝟎, 𝟏, 𝟐)

E.g., 𝐅 𝑨,𝑩, 𝑪 = ς𝑴(𝟎, 𝟏, 𝟐) = σ𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

𝐄. 𝐠. , 𝐅 𝑨,𝑩, 𝑪 =෍𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 ഥ𝑭 𝑨,𝑩, 𝑪 =෍𝒎(𝟎, 𝟏, 𝟐)

=ෑ𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕=ෑ𝑴(𝟎, 𝟏, 𝟐)

𝐅 ഥ𝑭

𝐄. 𝐠. , 𝐅 𝑨,𝑩, 𝑪 =෍𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 ഥ𝑭 𝑨,𝑩, 𝑪 = ς𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

=෍𝒎(𝟎, 𝟏, 𝟐)=ෑ𝑴(𝟎, 𝟏, 𝟐)

𝐅 ഥ𝑭
𝐅

K-Maps

Computer Architecture 25

•Karnaugh Map (K-map) method
• K-map is an alternative method of representing the truth table that helps

visualize adjacencies in up to 6 dimensions

• Physical adjacency ↔ Logical adjacency
2-variable K-map

00 01 11 10

00 0000 0001 0011 0010

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

3-variable K-map 4-variable K-map

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨𝑩
𝑪𝑫

𝑨
𝑩𝑪

0 1

0 00 01

1 10 11

𝑨
𝑩

Coffee points
Why 11 before 10 ?

Computer Architecture 26

Numbering Scheme: 00, 01, 11, 10 is called a
“Gray Code” — only a single bit (variable) changes

from one code word and the next code word

How? To minimize the Function

Computer Architecture 27

Adjacent

000

001

010

011

110

111

100

101

000

001

010

011

110

111

100

101

Adjacent

K-map adjacencies go “around the edges”

Wrap around from first to last column

Wrap around from top row to bottom row

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨
𝑩𝑪

How?

Computer Architecture 28

00 01 11 10

00 1 0 0 1

01 0 1 0 0

11 1 1 1 1

10 1 1 1 1

𝑨𝑩
𝑪𝑫

Strategy for “circling” rectangles on Kmap:

As big as possible

Biggest “oops!” that people forget:

Wrap-arounds

𝐅(𝐀, 𝐁, 𝐂, 𝐃) =෍𝒎(𝟎, 𝟐, 𝟓, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓)

𝐅 = 𝐀 + ഥ𝑩ഥ𝑫 + 𝐁ഥ𝑪𝑫𝐀 + ഥ𝑩ഥ𝑫𝐀

Some more
examples

Some more
examples

Why minimize?

Efficient resource usage

Resource scarcity

Computer Architecture 31

Summary

Computer Architecture 32

• Very simple guideline:
• Circle all the rectangular blocks of 1’s in the map, using the fewest possible number

of circles
• Each circle should be as large as possible

• Read off the implicants that were circled
• Some of them may be “don’t care” (X) Try it yourself

• More formally:
• A Boolean equation is minimized when it is written as a sum of the fewest number of

prime implicants
• Each circle on the K-map represents an implicant
• The largest possible circles are prime implicants

PAUSE

Computer Architecture 33

Combinational Circuits

Computer Architecture 34

• Combinational logic is often grouped into larger building blocks to
build more complex systems

• Hides the unnecessary gate-level details to emphasize the function of
the building block

• Output is only dependent on the input

• We now examine:
• Decoder
• Multiplexer
• Full adder

Textbook reading
Chapter 2.1 to 2.7 of H&H

Computer Architecture 35

Coffee points:

• Dhananjay 210050044

• Guramrit 210050061

Computer Architecture 36

तुमचा दिवस चाांगला जावो

Computer Architecture 37

	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Phones (smart/non-smart) on silence plz, Thanks
	Slide 3: Logistics
	Slide 4: Range of Numbers
	Slide 5: Sign Extension
	Slide 6: Overflow
	Slide 7: PAUSE
	Slide 8: Common Logic Gates
	Slide 9: Universal Logic gates? Coffee points++
	Slide 10: A bit of Boolean algebra
	Slide 11: Contd.
	Slide 12: DeMorgan’s Law (Can you prove it)?
	Slide 13: Contd. with a Truth Table
	Slide 14: Remember: It is not
	Slide 15: Definitions of interest
	Slide 16: Definitions of interest
	Slide 17: Definitions of interest
	Slide 18: SOP: Sum of Products
	Slide 19: Contd.
	Slide 20: Contd.
	Slide 21: Contd.
	Slide 22: We are on the same page?
	Slide 23: POS: Product of Sum
	Slide 24: Contd.
	Slide 25: K-Maps
	Slide 26: Coffee points
	Slide 27: How? To minimize the Function
	Slide 28: How?
	Slide 29: Some more examples
	Slide 30: Some more examples
	Slide 31: Why minimize?
	Slide 32: Summary
	Slide 33: PAUSE
	Slide 34: Combinational Circuits
	Slide 35: Textbook reading
	Slide 36: Coffee points:
	Slide 37: तुमचा दिवस चांगला जावो

