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Phones (smart/non-smart) 
on silence plz, Thanks 
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Logistics

• Join Piazza now 

• Lab on Monday, January 9, 2 PM SL1 to SL3, 
attendance compulsory  

• You can meet me and discuss if anything is not clear

• Problem set 1 by next week. Ungraded, for your 
practice only

• Detailed course content by end of this week 
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Range of Numbers
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Remember sign/magnitude has two zeros ☺



Sign 
Extension
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To represent a signed number 
in 2’s complement form using 
large number of bits 

Repeat the sign bit at the 
msbs as needed 



Overflow

1101 + 0101 ? 
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PAUSE
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Common Logic Gates
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Universal Logic gates? Coffee 
points++ 

NAND and NOR 
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A bit of Boolean algebra 
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Operations with 0 and 1:

Idempotent Law:

Involution Law:

Laws of  Complementarity:

Commutative Law:

1.  X + 0 = X
2.  X + 1 = 1

3.  X + X = X

4.  = X

5.  X + = 1

6.  X + Y = Y + X

AND, OR with identities
gives you back the original
variable or the identity (dot: AND, plus: OR)

AND, OR with self  = self

double complement = 
no complement

AND, OR with complement
gives you an identity

Just an axiom…

1D.  X • 1 = X
2D.  X • 0 = 0

3D.  X • X = X

5D.  X • = 0

6D.  X • Y = Y • X

Dual

ഥ𝐗ഥ𝐗

(ഥ𝑿)



Contd.
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Distributive Laws:

Simplification Theorems:
9.   X • Y  +  X • = X

10.  X + X • Y = X, how?

11.  (X + ) • Y = X • Y

9D.   (X + Y)  •  (X + ) = X

10D.  X • (X + Y) = X

11D.  (X • ) + Y = X + Y

ഥ𝒀

ഥ𝒀

ഥ𝒀

ഥ𝒀

8.  X • (Y+ Z) = (X • Y) + (X • Z) 8D.  X + (Y• Z) = (X + Y) • (X + Z)

Associative Laws:
7.  (X + Y) + Z = X + (Y + Z)

= X + Y + Z

7D.  (X • Y) • Z = X • (Y • Z)
= X • Y • Z

Parenthesis order
does not matter

Axiom

Useful for
simplifying
expressions

Actually worth remembering — they show up a lot in real designs…



DeMorgan’s Law (Can you prove it)? 
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 Think of this as a transformation

▪ Let’s say we have:  

F = A + B + C

▪ Applying DeMorgan’s Law (12), gives us

12.

12D.  (𝑿 . 𝒀. 𝒁.… ) = ഥ𝑿 + ഥ𝒀 + ഥ𝒁 + …

(𝑿 + 𝒀 + 𝒁 +⋯) = ഥ𝑿. ഥ𝒀. ഥ𝒁.…

𝑭 = (𝑨 + 𝑩 + 𝑪) = (ഥ𝑨. ഥ𝑩. ഥ𝑪)

At least one of A, B, C is TRUE --> It is not the case that A, B, C are all false



Contd. with a Truth Table
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NOR is equivalent to AND
with inputs complemented

NAND is equivalent to OR
with inputs complemented

𝑨 = (𝑿 + 𝒀) = ഥ𝑿ഥ𝒀

𝑩 = (𝑿𝒀) = ഥ𝑿 + ഥ𝒀

𝑿
𝒀

𝑿
𝒀

𝑿
𝒀

𝑩

𝑩𝑿
𝒀

𝑨

𝑨

𝑿 𝒀 𝑿𝒀 ഥ𝑿 ഥ𝒀 ഥ𝑿 + ഥ𝒀

0 0 1 1 1 1

0 1 1 1 0 1

1 0 1 0 1 1

1 1 0 0 0 0

𝑿 𝒀 𝑿 + 𝒀 ഥ𝑿 ഥ𝒀 ഥ𝑿ഥ𝒀

0 0 1 1 1 1

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 0



Remember: It is not 
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(𝑿. 𝒀) = ഥ𝑿. ഥ𝒀

(𝑿 + 𝒀) = ഥ𝑿 + ഥ𝒀



Definitions of interest
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◼ A normal term is a product or sum term in which no 

variable appears more than once.

 Examples: a, ā, a+c, ācd are normal terms; ā+a, āa are not 

normal terms.

◼ A minterm of n variables is a normal product term with n

literals. There are 2n such product terms.

 Examples of 3-variable minterms: ābc, abc

 Example: āb is not a 3-variable minterm.

◼ A maxterm of n variables is a normal sum term with n

literals. There are 2n such sum terms.

 Examples of 3-variable maxterms: ā+b+c, a+b+c



Definitions of interest
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◼ A sum of products (SOP) expressions is a set of product 

(AND) terms connected with logical sum (OR) operators.

 Examples: a, ā, ab+c, āc+bde, a+b are SOP expressions.

◼ A product of sum (POS) expressions is a set of sum 

(OR) terms connected with logical product (OR) 

operators.

 Examples: a, ā, a+b+c, (ā+c)(b+d) are POS expressions.



Definitions of interest
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◼ The canonical sum of products (CSOP) form of an 
expression refers to rewriting the expression as a sum of 
minterms.

 Examples for 3-variables: ābc + abc is a CSOP expression;

āb + c is not.

◼ The canonical product of sums (CPOS) form of an 
expression refers to rewriting the expression as a product 
of maxterms.

 Examples for 3-variables: (ā+b+c)(a+b+c) is a CPOS 

expression; (ā+b)c is not.

◼ There is a close correspondence between the truth table 
and minterms and maxterms.



SOP: Sum of Products
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Also known as disjunctive normal form or minterm expansion

0 1 1 1 0 0 1 0 1 1 1 0

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

All Boolean equations can be written in SOP form

• Each row in a truth table has a minterm

• A minterm is a product (AND) of literals

• Each minterm is TRUE for that row (and only that row)

𝐀 𝐁 𝐂 𝐅

Find all the input combinations (minterms) for which the output of the function is TRUE.



Contd.
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0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

◼ Only the shaded product term — 𝐀ഥ𝑩𝐂 = 𝟏 ∙ ഥ𝟎 ∙ 𝟏— will be 1  

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪 + 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

Activates
this term



Contd.
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◼ Standard “shorthand” notation

❑ If we agree on the order of the variables in the rows of truth 
table…

◼ then we can enumerate each row with the decimal number that 
corresponds to the binary number created by the input pattern

111 = decimal 7 so this is minterm #7, or  m7

100 = decimal 4 so this is minterm #4, or  m4

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

f =

= ∑m(3,4,5,6,7)

m3 + m4 + m5 + m6 + m7 We can write this as a sum of products

Or, we can use a summation notation

𝐀 𝐁 𝐂 𝐅



Contd.
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Shorthand Notation for
Minterms of  3 Variables

F in canonical form:

F(A,B,C) = ∑m(3,4,5,6,7)

= m3 + m4 + m5 + m6 + m7

canonical form ≠ minimal form

2-Level AND/OR
Realization

minterms
0 0 0 = m0
0 0 1 = m1
0 1 0 = m2
0 1 1 = m3
1 0 0 = m4
1 0 1 = m5
1 1 0 = m6
1 1 1 = m7

𝑭 = ഥ𝑨𝐁𝐂 + 𝐀ഥ𝑩ഥ𝑪
+ 𝐀ഥ𝑩𝐂 + 𝐀𝐁ഥ𝑪 + 𝐀𝐁𝐂

𝑭 = 𝐀ഥ𝑩 𝑪 + ഥ𝑪 + ഥ𝑨𝐁𝐂 + 𝐀𝐁(𝑪 + ഥ𝑪)

= 𝐀ഥ𝑩 + ഥ𝑨𝐁𝐂 + 𝐀𝐁

= 𝐀(ഥ𝑩 + 𝑩) + ഥ𝑨𝐁𝐂

= 𝐀 + ഥ𝑨𝐁𝐂

= 𝐀 + 𝐁𝐂

ഥ𝑨ഥ𝑩ഥ𝑪
ഥ𝑨ഥ𝑩𝑪
ഥ𝑨𝑩ഥ𝑪
ഥ𝑨𝑩𝑪
𝑨ഥ𝑩ഥ𝑪
𝑨ഥ𝑩𝑪
𝑨𝑩ഥ𝑪
𝑨𝑩𝑪

𝐀 𝐁 𝐂



We are on the same page?
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POS: Product of Sum
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0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

For the given input, only the shaded sum term 
will equal 0 

Anything ANDed with 0 is 0; Output F will be 0

Product of Sums (POS)

0  0    0 0  0   1

sums

product

𝑭 = (𝑨 + 𝑩 + 𝑪)(𝑨 + 𝑩 + ഥ𝑪)(𝑨 + ഥ𝑩 + 𝑪)

𝑭 = 𝑨 + 𝑩 + 𝑪 𝑨 + 𝑩 + ഥ𝑪 (𝑨 + ഥ𝑩 + 𝑪)𝐀 𝐁 𝐂 𝐅

Each sum term represents one of the 
“zeros” of the function

This input

Activates this term

𝑨 + ഥ𝑩 + 𝑪 = 𝟎 + ഥ𝟏 + 𝟎

0  1 0

Find all the input combinations (maxterms) for which the output of the function is FALSE.

The function evaluates to FALSE (i.e., output is 0)  if any of the Sums (maxterms) causes the output to be 0



Contd. 
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1. Minterm to Maxterm conversion:
rewrite minterm shorthand using maxterm shorthand
replace minterm indices with the indices not already used

2. Maxterm to Minterm conversion:
rewrite maxterm shorthand using minterm shorthand
replace maxterm indices with the indices not already used

3. Expansion of to expansion of :

4. Minterm expansion of to Maxterm expansion of :
rewrite in Maxterm form, using the same indices as 

E.g., 𝐅 𝑨,𝑩, 𝑪 = σ𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 = ς𝑴(𝟎, 𝟏, 𝟐)

E.g., 𝐅 𝑨,𝑩, 𝑪 = ς𝑴(𝟎, 𝟏, 𝟐) = σ𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

𝐄. 𝐠. , 𝐅 𝑨,𝑩, 𝑪 =෍𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 ഥ𝑭 𝑨,𝑩, 𝑪 =෍𝒎(𝟎, 𝟏, 𝟐)

=ෑ𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕=ෑ𝑴(𝟎, 𝟏, 𝟐)

𝐅 ഥ𝑭

𝐄. 𝐠. , 𝐅 𝑨,𝑩, 𝑪 =෍𝒎 𝟑, 𝟒, 𝟓, 𝟔, 𝟕 ഥ𝑭 𝑨,𝑩, 𝑪 = ς𝑴 𝟑, 𝟒, 𝟓, 𝟔, 𝟕

=෍𝒎(𝟎, 𝟏, 𝟐)=ෑ𝑴(𝟎, 𝟏, 𝟐)

𝐅 ഥ𝑭
𝐅



K-Maps
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•Karnaugh Map (K-map) method
• K-map is an alternative method of representing the truth table that helps 

visualize adjacencies in up to 6 dimensions

• Physical adjacency ↔ Logical adjacency
2-variable K-map

00 01 11 10

00 0000 0001 0011 0010

01 0100 0101 0111 0110

11 1100 1101 1111 1110

10 1000 1001 1011 1010

3-variable K-map 4-variable K-map

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨𝑩
𝑪𝑫

𝑨
𝑩𝑪

0 1

0 00 01

1 10 11

𝑨
𝑩



Coffee points
Why 11 before 10 ?
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Numbering Scheme: 00, 01, 11, 10  is called a
“Gray Code” — only a single bit (variable) changes

from one code word and the next code word



How? To minimize the Function
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Adjacent

000

001

010

011

110

111

100

101

000

001

010

011

110

111

100

101

Adjacent

K-map adjacencies go “around the edges”

Wrap around from first to last column

Wrap around from top row to bottom row

00 01 11 10

0 000 001 011 010

1 100 101 111 110

𝑨
𝑩𝑪



How?
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00 01 11 10

00 1 0 0 1

01 0 1 0 0

11 1 1 1 1

10 1 1 1 1

𝑨𝑩
𝑪𝑫

Strategy for “circling” rectangles on Kmap:

As big as possible

Biggest “oops!” that people forget:

Wrap-arounds

𝐅(𝐀, 𝐁, 𝐂, 𝐃) =෍𝒎(𝟎, 𝟐, 𝟓, 𝟖, 𝟗, 𝟏𝟎, 𝟏𝟏, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓)

𝐅 = 𝐀 + ഥ𝑩ഥ𝑫 + 𝐁ഥ𝑪𝑫𝐀 + ഥ𝑩ഥ𝑫𝐀



Some more 
examples



Some more 
examples



Why minimize?

Efficient resource usage 

Resource scarcity 
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Summary
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• Very simple guideline:
• Circle all the rectangular blocks of 1’s in the map, using the fewest possible number 

of circles
• Each circle should be as large as possible

• Read off the implicants that were circled
• Some of them may be “don’t care” (X) Try it yourself

• More formally:
• A Boolean equation is minimized when it is written as a sum of the fewest number of 

prime implicants
• Each circle on the K-map represents an implicant
• The largest possible circles are prime implicants



PAUSE
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Combinational Circuits

Computer Architecture 34

• Combinational logic is often grouped into larger building blocks to 
build more complex systems

• Hides the unnecessary gate-level details to emphasize the function of 
the building block

• Output is only dependent on the input 

• We now examine: 
• Decoder
• Multiplexer
• Full adder



Textbook reading
Chapter 2.1 to 2.7 of H&H
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Coffee points:

• Dhananjay 210050044 

• Guramrit    210050061
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तुमचा दिवस चाांगला जावो
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