CS230: Digital Logic Design and Computer Architecture

Lecture 21: DRAM Organization and Controller
https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

DRAM Organization

Channel
Rank

Chip

Computer Architecture
Column

Rank

Computer Architecture

Ranks, Banks, Rows, Columns

Ranks, Banks, Rows, Columns

16-bit interface: 16 bits from each chip in one go
Computer Architecture

Ranks, Banks, Rows, Columns

Each rank has 64-bit wide data bus

If a rank is of width x8 then \# DRAM chips ??
What about x4, \# DRAM chips ??
If a rank is of width $x 8$ then \# DRAM chips ?? 8

What about x4, \# DRAM chips ?? 16

Row Decoder and Row buffer

 (Sense Amplifier)

Each bank has a row buffer
Stores the last used row

[^0]
An Example

2Gb * 8 DRAM Chips (one side of the rank)
Total 16 chips +2 chips for ECC (for both the ranks)
64 bit + 8 bit ECC interface (72 bit wide DIMM)
Transferring a 64B cache line will take 8 transfers of 8B each
8B will come from 8 chips (8 bits from one chip)
1 bit from each DRAM array assuming 8 DRAM arrays per bank

DRAM to LLC interaction

Physical memory space

Computer Architecture

DRAM to LLC interaction

Physical memory space

Computer Architecture

DRAM to LLC interaction

Physical memory space

Computer Architecture

DRAM to LLC

Physical memory space

8 cycles (DRAM IO): 1 cycle transfers 8 bytes from a column
Computer Architecture

DRAM Address Mapping (One Channel)

2GB DRAM, 8 Banks, 16K rows, 2K Columns per bank

Cache Interleaving: Consecutive cache blocks in consecutive banks

Row Interleaving: Consecutive rows in consecutive banks

Row (14 bits)	Bank (3 bits)	Column (11 bits)	Byte in bus (3 bits)

Row Access

A "DRAM row" is also called a "DRAM page"
"Sense amplifiers" also called "row buffer"
Each address is a <row,column> pair Access to a "closed row"

- Activate command opens row (placed into row buffer)
- Read/write command reads/writes column in the row buffer
- Precharge command closes the row and prepares the bank for next access
Access to an "open row"
- No need for activate command

Row Buffer hit/miss/conflict

DRAM Timing Constraints

tRAS: Row address strobe latency
tRP: Precharge latency
tCAS: Column address strobe latency
tRC: Row cycle time: tRAS+tRP

Row (Page) Policies

Open Page (do not get confused with an OS page)
After an access: Keep the page in the row-buffer
Consecutive accesses to the same page : Row-buffer Hit
On an access to different page: Close the row and open the new one Closed page:
After an access: Close the page if there are no accesses to the same row in the request queue.
Consecutive accesses to different page : Low latency On an access to different page: No need to close the row

10K view on the latency

Page Empty: ACT + CAS

Page Hit: CAS

Page Miss: PRE+ACT+CAS

DRAM Refresh

DRAM cells

SenseAmps
Row Buffer

DRAM cells lose contents after awhile,
Refresh command refreshes all rows at different granularity

How to implement a refresh? What is the latency? How frequent?
DRAM cells are refreshed every 64 ms at normal temperature $\left(<85^{\circ} \mathrm{C}\right)$.

DRAM Controller

Reads and Writes(Writebacks)

Reads are critical to performance

Write Queue stores writes and the writes are serviced after \# writes reach a threshold

The direction of the data bus changes from reads to writes. So ??

DRAM controller creates DRAM commands from based on the requests at read Q and write Q

DRAM Scheduling

Based on
Row-buffer locality, Source of the request, Loads/Stores
Load criticality
Satisfy all the timing constraints. Around 60

FR-FCFS

Prefers requests with Row hits (column-first) FR: First Ready

Names	Memory clock	I/O bus clock	Transfer rate	Theoretical bandwidth
DDR-200, PC-1600	100 MHz	100 MHz	$200 \mathrm{MT} / \mathrm{s}$	$1.6 \mathrm{~GB} / \mathrm{s}$
DDR-400, PC-3200	200 MHz	200 MHz	$400 \mathrm{MT} / \mathrm{s}$	$3.2 \mathrm{~GB} / \mathrm{s}$
$\begin{aligned} & \text { DDR2-800, PC2- } \\ & 6400 \end{aligned}$	200 MHz	400 MHz	$800 \mathrm{MT} / \mathrm{s}$	6.4 GB/s
$\begin{aligned} & \text { DDR3-1600, PC3- } \\ & 12800 \end{aligned}$	200 MHz	800 MHz	$1600 \mathrm{MT} / \mathrm{s}$	12.8 GB/s
$\begin{aligned} & \text { DDR4-2400, PC4- } \\ & 19200 \end{aligned}$	300 MHz	1200 MHz	$2400 \mathrm{MT} / \mathrm{s}$	$19.2 \mathrm{~GB} / \mathrm{s}$
$\begin{aligned} & \text { DDR4-3200, PC4- } \\ & 25600 \end{aligned}$	400 MHz	1600 MHz	$3200 \mathrm{MT} / \mathrm{s}$	25.6 GB/s
DDR5-4800, PC5- 38400	300 MHz	2400 MHz	$4800 \mathrm{MT} / \mathrm{s}$	38.4 GB/s
DDR5-6400, PC5- 51200	400 MHz	3200 MHz	$6400 \mathrm{MT} / \mathrm{s}$	$51.2 \mathrm{~GB} / \mathrm{s}$

آَ كا دن (جها كزّرـا

[^0]: Column mux

