
https://www.cse.iitb.ac.in/~biswa/

CS230: Digital Logic Design and
Computer Architecture

Lecture 22: Connecting All the Dots (O3 processor)
https://www.cse.iitb.ac.in/~biswa/courses/CS230/main.html

https://www.cse.iitb.ac.in/~biswa/

Recap

Computer Architecture 2

Remember out-of-order
processor

Inorder fetch, out-of-order
execute, inorder commit

Now, we will discuss in details

Static scheduling: Compiler can
do

Tomasulo’s Organization for dynamic
scheduling

Computer Architecture 3

FP adders

Add1
Add2
Add3

FP multipliers

Mult1
Mult2

From Mem FP Registers

Reservation
Stations

To Mem

FP Op
Queue

Load Buffers

Store
Buffers

Load1
Load2
Load3
Load4
Load5
Load6

Points to remember

Computer Architecture 4

• Control & buffers distributed with Function Units (FU)

– FU buffers called “reservation stations”; have pending operands

• Registers in instructions replaced by values or pointers to reservation stations(RS); called
register renaming ;

– avoids WAR, WAW hazards

– More reservation stations than registers, so can do optimizations compilers can’t

• Results to FU from RS over Common Data Bus that broadcasts results to all FUs

• Load and Stores treated as FUs with RSs as wells

• Decode stage of the pipeline: becomes two stages:

Issue: Decode instructions, check structural hazards

Read operands: Wait until no data hazards, then read operands.

Some processors use the term dispatch and issue.

Reservation Station Components

Computer Architecture 5

Op: Operation to perform in the unit (e.g., + or –)

Vj, Vk: Value of Source operands

– Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source registers (value to be written)

– Qj,Qk=0 => ready

– Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy

Register result status—Indicates which functional unit will write each register, if one exists.
Blank when no pending instructions that will write that register.

The New Pipeline

Inorder Instruction fetch

Fetched instructions enqueued into a Q called
Instruction Q (IQ).

Inorder instruction issue from the IQ

Outoforder execution

New concept of register renaming through reservation
stations that eliminates WAR and WAW hazards

6Computer Architecture

An Example
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 Load1 No

LD F2 45+ R3 Load2 No

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
0 FU

Think about memory hierarchy ☺

Computer Architecture

Cycle 1
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 Load1 Yes 34+R2

LD F2 45+ R3 Load2 No

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
1 FU Load1

Load: 2 cycle
FP add: 2 cycles
FP multiply: 10 cycles
FP divide: 40 cycles

Computer Architecture

Cycle 2
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 Load1 Yes 34+R2

LD F2 45+ R3 2 Load2 Yes 45+R3

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
2 FU Load2 Load1

can have multiple loads outstanding

Computer Architecture

Cycle 3
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 Load1 Yes 34+R2

LD F2 45+ R3 2 Load2 Yes 45+R3

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 Yes MULTD R(F4) Load2

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
3 FU Mult1 Load2 Load1

• Note: registers names are removed (“renamed”) in Reservation Stations;
MULT issued

Computer Architecture

Register Renaming

Computer Architecture 11

• Tomasulo provides Implicit Register Renaming

– User registers renamed to reservation station tags

• Explicit Register Renaming:

– Use physical register file that is larger than number of registers
specified by ISA

• Keep a translation table:

– ISA register => physical register mapping

– Physical register becomes free when not being used by any
instructions in progress. More later after ROB.

Explicit Register Renaming

Computer Architecture 12

• Rapid access to a table of translations

• A physical register file that has more registers than specified by the
ISA

• Ability to figure out which physical registers are free.

– No free registers  stall on issue

• Thus, register renaming doesn’t require reservation stations.
However:

– Many modern architectures use explicit register renaming +
Tomasulo-like reservation stations to control execution.

Tomasulo, O3 completion, we need inorder complete
(commit)

Computer Architecture 13

• Instructions fetched and decoded into instruction
reorder buffer in-order

• Execution is out-of-order ( out-of-order completion)
• Commit (write-back to architectural state, i.e., regfile &
memory) is in-order

Temporary storage needed to hold results before commit
(shadow registers and store buffers)

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Kill
Kill Kill

Exception?Inject handler PC

Dynamic scheduling with speculative
execution

Computer Architecture 14

Reorder

Buffer
FP

Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

C
om

pa
r ne

tw
ork

Need as many ports on ROB as register file

Reorder Table

D
e
st

 R
e
g

R
e
su

lt

E
x
ce

pt
io
ns

?

V
a
li
d

Pr
og

ra
m
 C

ou
nt

e
r

Speculative O3 with Tomasulo and ROB

Computer Architecture 15

1. Issue—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr & send operands & reorder
buffer no. for destination (this stage sometimes called “dispatch”)

2. Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch CDB for result; when both in
reservation station, execute; checks RAW (sometimes called “issue”)

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4. Commit—When instruction reaches head of the ROB, update register with reorder result

When instr. at head of reorder buffer & result present, update register with result (or store
to memory) and remove instr from reorder buffer. Mispredicted branch flushes reorder
buffer (sometimes called “graduation”)

Computer Architecture 16

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0 LD F0,10(R2) N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

Computer Architecture 17

2 ADDD R(F4),ROB1

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F10

F0

ADDD F10,F4,F0

LD F0,10(R2)

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

Computer Architecture 18

3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB1

To
Memory

FP adders FP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2

F10

F0

DIVD F2,F10,F6

ADDD F10,F4,F0

LD F0,10(R2)

N

N

N

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R2
Dest

Reorder Buffer

Registers

If the predicted taken path is wrong,
flush out all instructions from the ROB
and reissue in the correct order

Remember exception/page
fault handling gets resolved
when the instruction
reaches the head of the ROB

Memory Disambiguation

Computer Architecture 19

•Question: Given a load that follows a store in program order,
are the two related?
• (Alternatively: is there a RAW hazard between the store and the load)?

Eg: st 0(R2),R5

ld R6,0(R3)

•Can we go ahead and start the load early?
• Answer is that we are not allowed to start load until we know that address 0(R2)  0(R3)

Intel Core
Microarchitecture

Computer Architecture 20

Intel Core
Microarchitecture

Computer Architecture 21

	Slide 1: CS230: Digital Logic Design and Computer Architecture
	Slide 2: Recap
	Slide 3: Tomasulo’s Organization for dynamic scheduling
	Slide 4: Points to remember
	Slide 5: Reservation Station Components
	Slide 6: The New Pipeline
	Slide 7: An Example
	Slide 8: Cycle 1
	Slide 9: Cycle 2
	Slide 10: Cycle 3
	Slide 11: Register Renaming
	Slide 12: Explicit Register Renaming
	Slide 13: Tomasulo, O3 completion, we need inorder complete (commit)
	Slide 14: Dynamic scheduling with speculative execution
	Slide 15: Speculative O3 with Tomasulo and ROB
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Memory Disambiguation
	Slide 20: Intel Core Microarchitecture
	Slide 21

